1
|
Cole AR, Ankley GT, Cavallin JE, Collins JR, Jensen KM, Kahl MD, Kasparek AJ, Kwon BR, Shmaitelly YM, Langan LM, Villeneuve DL, Brooks BW. Inhibition of Fin Regeneration in Fathead Minnow ( Pimephales promelas) by a Potent Synthetic Glucocorticoid and Development of Adverse Outcome Pathway 334. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9497-9506. [PMID: 40326831 DOI: 10.1021/acs.est.5c02446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Despite structural and functional conservation across vertebrate species, the glucocorticoid receptor has been minimally studied in comparison to other biological targets for endocrine-disrupting compounds in aquatic systems. Because prolonged use of pharmaceutical glucocorticoids in humans has been linked to osteoporosis and impaired bone growth, we hypothesized that the ability of teleost fish to regenerate fins following damage may be inhibited by exposure to synthetic glucocorticoids in the environment. In the present study, we examined fin regeneration following a 7 days waterborne exposure of juvenile fathead minnows (Pimephales promelas) to the synthetic glucocorticoids, fluticasone propionate and dexamethasone. Expression of several biologically relevant gene products (sgk1, tdgf1, runx2a, lef1, shha, and tsc22d3) was measured in paired caudal fin and whole-body tissues. Fluticasone propionate and dexamethasone significantly impaired fin regeneration at measured water concentrations of 2.62 μg/L and 4.62 mg/L, respectively. Changes in gene expression indicated disruption of intercellular communication in the Wnt/β-catenin and bone morphogenetic protein (BMP) signaling pathways after exposure to 4.86 μg/L fluticasone propionate. Upregulation of tsc22d3, a transcription factor responsible for suppression of anti-inflammatory response, may be the plausible cause of repressed cellular signaling. These findings advance the development of adverse outcome pathway 334─Glucocorticoid Receptor Activation Leads to Impaired Fin Regeneration─and elucidate both the mechanistic relationship between activation of the glucocorticoid receptor by fluticasone propionate and inhibition of fin regeneration, which could plausibly reduce individual fitness in aquatic systems.
Collapse
Affiliation(s)
- Alexander R Cole
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76706, United States
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Jenna E Cavallin
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Jacob R Collins
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, US EPA, Duluth, Minnesota 55804, United States
| | - Kathleen M Jensen
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Michael D Kahl
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Alex J Kasparek
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, US EPA, Duluth, Minnesota 55804, United States
| | - Ba Reum Kwon
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76706, United States
| | - Yesmeena M Shmaitelly
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76706, United States
| | - Laura M Langan
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76706, United States
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|
2
|
Begum A, Rabbane MG, Moniruzzaman M, Hasan MR, Chang X. Cadmium Pollution Deteriorates the Muscle Quality of Labeo rohita by Altering Its Nutrients and Intestinal Microbiota Diversity. Biol Trace Elem Res 2025:10.1007/s12011-025-04524-1. [PMID: 39881065 DOI: 10.1007/s12011-025-04524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.00 (control), 0.05, and 0.40 mg/L for 30 days and assessed fish health, muscle quality, and intestinal bacterial diversity. We observed significant Cd bioaccumulation in the fish muscle and intestine at 0.40 mg/L treatment, adversely impacting fish health with lower growth indices, higher mortality, behavioral aberrations, and clinical anomalies. More interestingly, Cd exposure decreased muscle quality by reducing nutrient levels, including fat, protein, iron, zinc, mono and polyunsaturated fatty acids, and increasing free amino acids and saturated fatty acids. Elevated oxidative stress markers, including total superoxide dismutase (T-SOD), catalase (CAT), and hydrogen peroxide (H2O2), were detected in the muscles, indicating degraded quality as a result of damage to cellular structures including proteins, lipids, and DNA. Simultaneously, we found Cd exposure altered fish intestinal microbial diversity, impairing muscle nutrient assimilation, thereby influencing muscle quality. Functional predictions suggested a decrease in pathways related to fermentation and chemoheterotrophy in the exposed groups. Overall, this study highlights how Cd toxicity jeopardizes fish health and deteriorates muscle quality which needs to be addressed for human benefit.
Collapse
Affiliation(s)
- Ayesha Begum
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, People's Republic of China
- Department of Applied Food Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Md Golam Rabbane
- Department of Fisheries, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Moniruzzaman
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Rakibul Hasan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
3
|
Yang F, Zeng Y, Huai W, Zha W, Wan Y. Responses of cyprinid (Ancherythroculter nigrocauda) to flow with a semi-circular cylinder patch. JOURNAL OF FISH BIOLOGY 2022; 100:884-893. [PMID: 35199352 DOI: 10.1111/jfb.15020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Flows in river habitats are characterized by unsteady turbulence due to the existence of woody debris, boulders and vegetation. As a representative aquatic species, fish is important for the riverine ecosystems, with its complex behavioural responses to turbulent flows. Previous studies investigated the fish-vortices interaction with vortex streets by placing objects with simplified geometries centred at the flow. Nonetheless, complex river morphology in natural rivers results in much more spatially heterogeneous flows due to randomly distributed obstructions. Thus, a semi-circular cylinder patch located on one side of the flume is used to mimic a vegetation patch at the riverbank. The patch varies in diameter (D0 = 16, 20 and 24 cm) and density (φ = 0.04 and 0.1), whereas the flow velocity is fixed at 25 cm s-1 . Fish are observed to swim in three typical patterns, which are "swim around" (pattern 1), "spill" (pattern 2) and "swim through" (pattern 3). For flow with a dense patch, all three patterns are recorded, but only patterns 1 and 2 are observed in sparse patches. It is noticed that in patterns 1 and 2, fish prefer to hold place in zones of low velocity and low turbulence. Moreover, variations in patch diameter have little influence on pattern selection. Results showed that tail beat amplitude (TBA*) in each zone displayed more variations compared with tail beat frequency (TBF). In addition, Spearman's rank tests revealed that TBA* is affected by none of the four hydrodynamic variables ( U , u std , τ xy , Ω z ), whereas flow velocity imposes the most influence on TBF. Both diameter and density of the patch displayed no significant influence on TBA* and TBF.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Yuhong Zeng
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Wenxin Huai
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Wei Zha
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Yunjiao Wan
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Safian D, Wiegertjes GF, Pollux BJA. The Fish Family Poeciliidae as a Model to Study the Evolution and Diversification of Regenerative Capacity in Vertebrates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.613157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The capacity of regenerating a new structure after losing an old one is a major challenge in the animal kingdom. Fish have emerged as an interesting model to study regeneration due to their high and diverse regenerative capacity. To date, most efforts have focused on revealing the mechanisms underlying fin regeneration, but information on why and how this capacity evolves remains incomplete. Here, we propose the livebearing fish family Poeciliidae as a promising new model system to study the evolution of fin regeneration. First, we review the current state of knowledge on the evolution of regeneration in the animal kingdom, with a special emphasis on fish fins. Second, we summarize recent advances in our understanding of the mechanisms behind fin regeneration in fish. Third, we discuss potential evolutionary pressures that may modulate the regenerative capacity of fish fins and propose three new theories for how natural and sexual selection can lead to the evolution of fin regeneration: (1) signaling-driven fin regeneration, (2) predation-driven fin regeneration, and (3) matrotrophy-suppressed fin regeneration. Finally, we argue that fish from the family Poeciliidae are an excellent model system to test these theories, because they comprise of a large variety of species in a well-defined phylogenetic framework that inhabit very different environments and display remarkable variation in reproductive traits, allowing for comparative studies of fin regeneration among closely related species, among populations within species or among individuals within populations. This new model system has the potential to shed new light on the underlying genetic and molecular mechanisms driving the evolution and diversification of regeneration in vertebrates.
Collapse
|
5
|
Nadermann N, Volkoff H. Effects of short-term exercise on food intake and the expression of appetite-regulating factors in goldfish. Peptides 2020; 123:170182. [PMID: 31678371 DOI: 10.1016/j.peptides.2019.170182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
In mammals, growing evidence indicates that exercise affects food intake, metabolism and the expression and blood levels of appetite regulators. In this study, we examined the effects of short-term (30 min, at low and high water flow) exercise on food intake, glucose levels and the expressions of appetite regulators in goldfish hypothalamus (irisin, orexin, CART, leptin), intestine (CCK, PYY, proglucagon/GLP-1), muscle (irisin) and liver (leptin), of brain-derived neurotrophic factor (BDNF) in brain, interleukin-6 (IL6) in muscle and hypothalamus, and major metabolic enzymes, the glycolytic enzyme glucokinase (GCK) and its regulatory protein (GCKR) in liver, the lipolytic enzyme lipoprotein lipase in intestine and muscle, and trypsin in intestine. Fish submitted to high flow exercise had a lower post-exercise food intake compared to control fish but no differences were seen in glucose levels between groups. Exercise induced an increase in hypothalamic expression levels of CART, IL6 and BDNF, but not orexin, irisin, CRF, leptin and NPY. High flow exercise induced an increase in intestine CCK, PYY and GLP-1, and muscle irisin and IL-6 expression levels. Exercise had no effects on expression levels of hepatic leptin or any of the metabolic enzymes examined. Our results suggest that, in goldfish, short-term exercise might decrease feeding in part by affecting the expressions of myokines and peripheral, but not central appetite regulators or metabolic enzyme/hormones.
Collapse
Affiliation(s)
- Noelle Nadermann
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Hochschule Mannheim University, Mannheim, 68163, Germany
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
6
|
Welfare Challenges Influence the Complexity of Movement: Fractal Analysis of Behaviour in Zebrafish. FISHES 2019. [DOI: 10.3390/fishes4010008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to assess welfare is an important refinement that will ensure the good condition of animals used in experimentation. The present study investigated the impact of invasive procedures on the patterns of movement of zebrafish (Danio rerio). Recordings were made before and after fin clipping, PIT tagging and a standard pain test and these were compared with control and sham handled zebrafish. The fractal dimension (FD) from the 3D trajectories was calculated to determine the effect of these treatments on the complexity of movement patterns. While the FD of zebrafish trajectories did not differ over time in either the control or sham group, the FDs of the treatment groups reduced in complexity. The FD of fish injected with different strengths of acetic acid declined in a dose-dependent manner allowing us to develop an arbitrary scale of severity of the treatments. The 3D trajectory plots from some groups indicated the presence of repetitive swimming patterns akin to stereotypical movements. When administered with lidocaine, which has analgesic properties, the movement complexity of fin clipped fish reverted to a pattern that resembled that of control fish. Fractal analysis of zebrafish locomotion could potentially be adopted as a tool for fish welfare assessment.
Collapse
|
7
|
Alavi-Yeganeh MS, Razavi S, Egan JP. Taillessness and skeletal deformity in striped piggy Pomadasys stridens (Osteichthyes: Haemulidae) from the Persian Gulf. DISEASES OF AQUATIC ORGANISMS 2019; 132:209-213. [PMID: 31188136 DOI: 10.3354/dao03322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Taillessness (absence of the caudal fin and some of the caudal peduncle) and skeletal deformity is described in 2 striped piggy Pomadasys stridens (Haemulidae) specimens collected from the Persian Gulf along the coast of Hormuz Island, Iran. Deformed specimens were entirely missing caudal fins along with at least 1 caudal vertebra, caudal portions of vertebral columns were bent dorsoventrally, posterior sections of swim bladders were reduced in size, and caudal vertebral centra were compacted anteroposteriorly in 1 individual. Environmental conditions in the Persian Gulf may be responsible for these deformities, but genetic causes cannot be entirely ruled out.
Collapse
|
8
|
Goodchild CG, Simpson AM, Minghetti M, DuRant SE. Bioenergetics-adverse outcome pathway: Linking organismal and suborganismal energetic endpoints to adverse outcomes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:27-45. [PMID: 30259559 DOI: 10.1002/etc.4280] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/07/2018] [Accepted: 09/20/2018] [Indexed: 05/21/2023]
Abstract
Adverse outcome pathways (AOPs) link toxicity across levels of biological organization, and thereby facilitate the development of suborganismal responses predictive of whole-organism toxicity and provide the mechanistic information necessary for science-based extrapolation to population-level effects. Thus far AOPs have characterized various acute and chronic toxicity pathways; however, the potential for AOPs to explicitly characterize indirect, energy-mediated effects from toxicants has yet to be fully explored. Indeed, although exposure to contaminants can alter an organism's energy budget, energetic endpoints are rarely incorporated into ecological risk assessment because there is not an integrative framework for linking energetic effects to organismal endpoints relevant to risk assessment (e.g., survival, reproduction, growth). In the present analysis, we developed a generalized bioenergetics-AOP in an effort to make better use of energetic endpoints in risk assessment, specifically exposure scenarios that generate an energetic burden to organisms. To evaluate empirical support for a bioenergetics-AOP, we analyzed published data for links between energetic endpoints across levels of biological organization. We found correlations between 1) cellular energy allocation and whole-animal growth, and 2) metabolic rate and scope for growth. Moreover, we reviewed literature linking energy availability to nontraditional toxicological endpoints (e.g., locomotor performance), and found evidence that toxicants impair aerobic performance and activity. We conclude by highlighting current knowledge gaps that should be addressed to develop specific bioenergetics-AOPs. Environ Toxicol Chem 2019;38:27-45. © 2018 SETAC.
Collapse
Affiliation(s)
| | - Adam M Simpson
- Oklahoma State University, Stillwater, Oklahoma, USA
- Penn State Erie, The Behrend College, Erie, Pennsylvania, USA
| | | | - Sarah E DuRant
- Oklahoma State University, Stillwater, Oklahoma, USA
- University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
9
|
Behavioural and physiological responses to low- and high-intensity locomotion in Chinese shrimp Fenneropenaeus chinensis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 205:87-102. [DOI: 10.1007/s00359-018-1306-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022]
|
10
|
Fu C, Cao ZD, Fu SJ. Predation experience underlies the relationship between locomotion capability and survival. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:32-38. [PMID: 30236912 DOI: 10.1016/j.cbpa.2018.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
The positive relationship between locomotion performance and survival under predation has long been suggested yet seldom demonstrated with direct evidence. We investigate the effects of predator exposure on locomotion capacity (both fast-start escape and critical swimming performance), survival under predation and the relationships between these factors in juvenile Chinese bream (Parabramis pekinensis). This study aims to test whether there is a positive relationship between the above factors and whether such relationships are context dependent (i.e., with or without 20 d of predator exposure). We found that predator-exposed Chinese bream showed higher rates of survival under predation and improved fast-start swimming performance compared with individuals not exposed to predation. At individual level, no relationship was found between survival and any locomotion performance component in the no-predator group, but mean fast-start swimming speed, maneuverability and responsiveness were all positively related to survival in the predator group after 20 d of exposure. This finding indicates that the recognition of and vigilance for predators achieved through predation experience can be crucial preconditions for prey to employ the fast-start escape response, especially to escape ambush predators. Furthermore, a tradeoff was observed between the critical and fast-start swimming performances in the predator group, but not in the no-predator group, which may have been due to the intensified competition throughout the entire locomotion-support system (e.g., energy, proportions of slow- and fast-twitch muscle fibers) between critical and fast-start swimming because the increased demand for fast-start escape capacity constrains (or compromises) critical swimming performance under the threat of predation.
Collapse
Affiliation(s)
- Cheng Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Normal University, Chongqing, China
| | - Zhen-Dong Cao
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Normal University, Chongqing, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Normal University, Chongqing, China.
| |
Collapse
|
11
|
Blanco AM, Sundarrajan L, Bertucci JI, Unniappan S. Why goldfish? Merits and challenges in employing goldfish as a model organism in comparative endocrinology research. Gen Comp Endocrinol 2018; 257:13-28. [PMID: 28185936 DOI: 10.1016/j.ygcen.2017.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
Abstract
Goldfish has been used as an unconventional model organism to study a number of biological processes. For example, goldfish is a well-characterized and widely used model in comparative endocrinology, especially in neuroendocrinology. Several decades of research has established and validated an array of tools to study hormones in goldfish. The detailed brain atlas of goldfish, together with the stereotaxic apparatus, are invaluable tools for the neuroanatomic localization and central administration of endocrine factors. In vitro techniques, such as organ and primary cell cultures, have been developed using goldfish. In vivo approaches using goldfish were used to measure endogenous hormonal milieu, feeding, behaviour and stress. While there are many benefits in using goldfish as a model organism in research, there are also challenges associated with it. One example is its tetraploid genome that results in the existence of multiple isoforms of endocrine factors. The presence of extra endogenous forms of peptides and its receptors adds further complexity to the already redundant multifactorial endocrine milieu. This review will attempt to discuss the importance of goldfish as a model organism in comparative endocrinology. It will highlight some of the merits and challenges in employing goldfish as an animal model for hormone research in the post-genomic era.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Avenida Intendente Marinos Km. 8,2, 7130 Chascomús, Buenos Aires, Argentina.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
12
|
Macaulay LJ, Chernick M, Chen A, Hinton DE, Bailey JM, Kullman SW, Levin ED, Stapleton HM. Exposure to a PBDE/OH-BDE mixture alters juvenile zebrafish (Danio rerio) development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:36-48. [PMID: 27329031 PMCID: PMC5535307 DOI: 10.1002/etc.3535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/08/2016] [Accepted: 06/18/2016] [Indexed: 05/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their metabolites (e.g., hydroxylated BDEs [OH-BDEs]) are contaminants frequently detected together in human tissues and are structurally similar to thyroid hormones. Thyroid hormones partially mediate metamorphic transitions between life stages in zebrafish, making this a critical developmental window that may be vulnerable to chemicals disrupting thyroid signaling. In the present study, zebrafish were exposed to 6-OH-BDE-47 (30 nM; 15 μg/L) alone, or to a low-dose (30 μg/L) or high-dose (600 μg/L) mixture of PentaBDEs, 6-OH-BDE-47 (0.5-6 μg/L), and 2,4,6-tribromophenol (5-100 μg/L) during juvenile development (9-23 d postfertilization) and evaluated for developmental endpoints mediated by thyroid hormone signaling. Fish were sampled at 3 time points and examined for developmental and skeletal morphology, apical thyroid and skeletal gene markers, and modifications in swimming behavior (as adults). Exposure to the high-dose mixture resulted in >85% mortality within 1 wk of exposure, despite being below reported acute toxicity thresholds for individual congeners. The low-dose mixture and 6-OH-BDE-47 groups exhibited reductions in body length and delayed maturation, specifically relating to swim bladder, fin, and pigmentation development. Reduced skeletal ossification was also observed in 6-OH-BDE-47-treated fish. Assessment of thyroid and osteochondral gene regulatory networks demonstrated significantly increased expression of genes that regulate skeletal development and thyroid hormones. Overall, these results indicate that exposures to PBDE/OH-BDE mixtures adversely impact zebrafish maturation during metamorphosis. Environ Toxicol Chem 2017;36:36-48. © 2016 SETAC.
Collapse
Affiliation(s)
- Laura J. Macaulay
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - Albert Chen
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - David E. Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - Jordan M. Bailey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710 USA
| | - Seth W. Kullman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695 USA
| | - Edward D. Levin
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710 USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
- Corresponding author: Heather Stapleton, Nicholas School of the Environment, Duke University, Box 90328 LSRC A220, Durham, NC 27708, Phone: 919-613-8717, Fax: (919) 684-8741.,
| |
Collapse
|
13
|
Xia J, Ma Y, Fu C, Fu S, Cooke SJ. Effects of temperature acclimation on the critical thermal limits and swimming performance of Brachymystax lenok tsinlingensis: a threatened fish in Qinling Mountain region of China. Ecol Res 2016. [DOI: 10.1007/s11284-016-1418-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Xiao G, Feng M, Cheng Z, Zhao M, Mao J, Mirowski L. Water quality monitoring using abnormal tail-beat frequency of crucian carp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 111:185-191. [PMID: 25450932 DOI: 10.1016/j.ecoenv.2014.09.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
Fish are rapidly becoming favored as convenient sentinels for behavioral assays of toxic chemical exposure. Tail-beat frequency (TBF) of fish is highly correlated with swimming speed, which has been used to detect toxicants. Here we examined the effect on TBF of exposure to two chemicals, and evaluated the ability of this novel behavioral parameter to accurately monitor water quality. To further refine our approach, the Wall-hitting rate (WHR) was used to characterize behavioral avoidance after exposure. Overall, exposure to test chemicals at different levels induced significant increase in both behavioral parameters of the red crucian carp during 1-h exposure periods. Furthermore, the TBF achieved better performance as an indicator when it was calculated in cases where the fish hit the tank wall. Collectively, this study demonstrates the capacity of the TBF of fish to assess water quality in a reliable manner.
Collapse
Affiliation(s)
- Gang Xiao
- Department of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Min Feng
- Department of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Zhenbo Cheng
- Department of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Meirong Zhao
- College of Environmental and Resource Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jiafa Mao
- Department of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Luke Mirowski
- School of Computing & Information Systems, University of Tasmania, Australia
| |
Collapse
|
15
|
Fu C, Fu SJ, Yuan XZ, Cao ZD. Predator-driven intra-species variation in locomotion, metabolism and water velocity preference in pale chub (Zacco platypus) along a river. ACTA ACUST UNITED AC 2014; 218:255-64. [PMID: 25452504 DOI: 10.1242/jeb.109561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fish inhabit environments that vary greatly in terms of predation intensity, and these predation regimes are generally expected to be a major driver of divergent natural selection. To test whether there is predator-driven intra-species variation in the locomotion, metabolism and water velocity preference of pale chub (Zacco platypus) along a river, we measured unsteady and steady swimming and water velocity preference among fish collected from both high- and low-predation habitats in the Wujiang River. We also measured the routine metabolic rate (RMR), maximum metabolic rate (MMR) and cost of transport (COT) and calculated the optimal swimming speed (Uopt). The fish from the high-predation populations showed a shorter response latency, elevated routine metabolism, lower swimming efficiency at low swimming speed and lower water velocity preference compared with those from the low-predation populations. Neither of the kinematic parameters fast-start and critical swimming speed (Ucrit) showed a significant difference between the high- and low-predation populations. The fish from the high-predation populations may improve their predator avoidance capacity primarily through an elevated routine metabolism and shorter response latency to achieve advanced warning and escape, rather than an improved fast-start swimming speed or acceleration. Thus, the cost of this strategy is an elevated RMR, and no trade-off between unsteady and steady swimming performance was observed in the pale chub population under various predation stresses. It was interesting to find that the high-predation fish showed an unexpected lower velocity preference, which might represent a compromise between predation avoidance, foraging and energy saving.
Collapse
Affiliation(s)
- Cheng Fu
- College of Resources and Environmental Science, Key Laboratory of Southwest Resource Exploitation and Environmental Disaster Controlling Project of the Education Ministry, Chongqing University, Chongqing 400044, China
| | - Shi-Jian Fu
- College of Resources and Environmental Science, Key Laboratory of Southwest Resource Exploitation and Environmental Disaster Controlling Project of the Education Ministry, Chongqing University, Chongqing 400044, China Laboratory of Evolutionary Physiology and Behaviour, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
| | - Xin-Zhong Yuan
- College of Resources and Environmental Science, Key Laboratory of Southwest Resource Exploitation and Environmental Disaster Controlling Project of the Education Ministry, Chongqing University, Chongqing 400044, China
| | - Zhen-Dong Cao
- Laboratory of Evolutionary Physiology and Behaviour, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
| |
Collapse
|
16
|
The effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action and growth performance of juvenile Chinese bream. Comp Biochem Physiol A Mol Integr Physiol 2014; 176:32-40. [DOI: 10.1016/j.cbpa.2014.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 11/24/2022]
|