1
|
Shelley S, James RS, Eustace SJ, Eyre E, Tallis J. Effect of stimulation frequency on force, power, and fatigue of isolated mouse extensor digitorum longus muscle. J Exp Biol 2022; 225:275021. [PMID: 35413119 DOI: 10.1242/jeb.243285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
Abstract
This study examined the effect of stimulation frequency (140, 200, 230 and 260 Hz) on isometric force, work loop (WL) power, and the fatigue resistance of extensor digitorum longus (EDL) muscle (n=32), isolated from 8-10-week-old CD-1 female mice. Stimulation frequency had significant effects on isometric properties of isolated mouse EDL, whereby increasing stimulation frequency evoked increased isometric force, quicker activation, and prolonged relaxation (P <0.047), until 230 Hz and above, thereafter force and activation did not differ (P >0.137). Increasing stimulation frequency increased maximal WL power output (P <0.001; 140 Hz, 71.3±3.5; 200 Hz, 105.4±4.1; 230 Hz, 115.5±4.1; 260 Hz, 121.1±4.1 W.kg-1), but resulted in significantly quicker rates of fatigue during consecutive WL's (P <0.004). WL shapes indicate impaired muscle relaxation at the end of shortening and subsequent increased negative work appeared to contribute to fatigue at 230 and 260 Hz, but not at lower stimulation frequencies. Cumulative work was unaffected by stimulation frequency, except at the start of fatigue protocol where 230 and 260 Hz produced more work than 140 Hz (P <0.039). We demonstrate that stimulation frequency affects force, power, and fatigue, but effects are not uniform between different assessments of contractile performance. Therefore, future work examining contractile properties of isolated skeletal muscle should consider increasing stimulation frequency beyond that needed for maximal force when examining maximal power but utilise a sub-maximal stimulation frequency for fatigue assessments to avoid high degree of negative work atypical of in vivo function.
Collapse
Affiliation(s)
- Sharn Shelley
- Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Steven J Eustace
- Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Emma Eyre
- Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Jason Tallis
- Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
2
|
Tallis J, James RS, Emma LJE, Cox VM, Hurst J. High-fat diet affects measures of skeletal muscle contractile performance in a temperature specific manner but does not influence regional thermal sensitivity. J Exp Biol 2022; 225:275327. [PMID: 35363265 DOI: 10.1242/jeb.244178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022]
Abstract
The present study examined if 20-weeks high-fat diet (HFD) consumption had a temperature specific effect on the contractile performance and regional thermal sensitivity of isolated mouse soleus (SOL) and diaphragm (DIA) muscle. Four-week-old female CD-1 mice were randomly selected to consume either a standard laboratory diet or a standard laboratory diet in conjunction with a HFD for 20-weeks. Peripheral SOL and core DIA were isolated from each animal and maximal isometric force and work loop power were assessed at 20⁰C, 28⁰C, 35⁰C and 40⁰C. Increasing temperature to 35⁰C resulted in greater isometric stress, lower activation and relaxation time and higher work loop power in both muscles. A further increase in temperature to 40⁰C did not affect isometric force but increased work loop power output of the SOL. Conversely, isometric force of the DIA was reduced and work loop power maintained when temperature was increased to 40⁰C. HFD consumption resulted in greater isometric force and absolute work loop power of the SOL and reduced isometric stress of the DIA, effects that were less apparent at lower temperatures. When the relationship between temperature and each measure of contractile function was examined by linear regression, there was no difference in slope between the control or HFD groups for either SOL or DIA. These results indicate that whilst contractile function initially increases with temperature, the temperature to elicit maximal performance is muscle and contractile mode-specific. Furthermore, HFD effects on contractile function are temperature specific, but HFD does not influence the relationship between temperature and performance.
Collapse
Affiliation(s)
- Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Rob S James
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - L J Eyre Emma
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Val M Cox
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Josh Hurst
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
3
|
Wu NC, Seebacher F. Physiology can predict animal activity, exploration, and dispersal. Commun Biol 2022; 5:109. [PMID: 35115649 PMCID: PMC8814174 DOI: 10.1038/s42003-022-03055-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Physiology can underlie movement, including short-term activity, exploration of unfamiliar environments, and larger scale dispersal, and thereby influence species distributions in an environmentally sensitive manner. We conducted meta-analyses of the literature to establish, firstly, whether physiological traits underlie activity, exploration, and dispersal by individuals (88 studies), and secondly whether physiological characteristics differed between range core and edges of distributions (43 studies). We show that locomotor performance and metabolism influenced individual movement with varying levels of confidence. Range edges differed from cores in traits that may be associated with dispersal success, including metabolism, locomotor performance, corticosterone levels, and immunity, and differences increased with increasing time since separation. Physiological effects were particularly pronounced in birds and amphibians, but taxon-specific differences may reflect biased sampling in the literature, which also focussed primarily on North America, Europe, and Australia. Hence, physiology can influence movement, but undersampling and bias currently limits general conclusions.
Collapse
Affiliation(s)
- Nicholas C Wu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
4
|
Filice M, Imbrogno S, Gattuso A, Cerra MC. Hypoxic and Thermal Stress: Many Ways Leading to the NOS/NO System in the Fish Heart. Antioxidants (Basel) 2021; 10:1401. [PMID: 34573033 PMCID: PMC8471457 DOI: 10.3390/antiox10091401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Teleost fish are often regarded with interest for the remarkable ability of several species to tolerate even dramatic stresses, either internal or external, as in the case of fluctuations in O2 availability and temperature regimes. These events are naturally experienced by many fish species under different time scales, but they are now exacerbated by growing environmental changes. This further challenges the intrinsic ability of animals to cope with stress. The heart is crucial for the stress response, since a proper modulation of the cardiac function allows blood perfusion to the whole organism, particularly to respiratory organs and the brain. In cardiac cells, key signalling pathways are activated for maintaining molecular equilibrium, thus improving stress tolerance. In fish, the nitric oxide synthase (NOS)/nitric oxide (NO) system is fundamental for modulating the basal cardiac performance and is involved in the control of many adaptive responses to stress, including those related to variations in O2 and thermal regimes. In this review, we aim to illustrate, by integrating the classic and novel literature, the current knowledge on the NOS/NO system as a crucial component of the cardiac molecular mechanisms that sustain stress tolerance and adaptation, thus providing some species, such as tolerant cyprinids, with a high resistance to stress.
Collapse
Affiliation(s)
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | | |
Collapse
|
5
|
McWhinnie RB, Sckrabulis JP, Raffel TR. Temperature and mass scaling affect cutaneous and pulmonary respiratory performance in a diving frog. Integr Zool 2021; 16:712-728. [PMID: 34002945 DOI: 10.1111/1749-4877.12551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Global climate change is altering patterns of temperature variation, with unpredictable consequences for species and ecosystems. The Metabolic Theory of Ecology (MTE) provides a powerful framework for predicting climate change impacts on ectotherm metabolic performance. MTE postulates that physiological and ecological processes are limited by organism metabolic rates, which scale predictably with body mass and temperature. The purpose of this study was to determine if different metabolic proxies generate different empirical estimates of key MTE model parameters for the aquatic frog Xenopus laevis when allowed to exhibit normal diving behavior. We used a novel methodological approach in combining a flow-through respirometry setup with the open-source Arduino platform to measure mass and temperature effects on 4 different proxies for whole-body metabolism (total O2 consumption, cutaneous O2 consumption, pulmonary O2 consumption, and ventilation frequency), following thermal acclimation to one of 3 temperatures (8°C, 17°C, or 26°C). Different metabolic proxies generated different mass-scaling exponents (b) and activation energy (EA ) estimates, highlighting the importance of metabolic proxy selection when parameterizing MTE-derived models. Animals acclimated to 17°C had higher O2 consumption across all temperatures, but thermal acclimation did not influence estimates of key MTE parameters EA and b. Cutaneous respiration generated lower MTE parameters than pulmonary respiration, consistent with temperature and mass constraints on dissolved oxygen availability, SA:V ratios, and diffusion distances across skin. Our results show that the choice of metabolic proxy can have a big impact on empirical estimates for key MTE model parameters.
Collapse
Affiliation(s)
- Ryan B McWhinnie
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Jason P Sckrabulis
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Thomas R Raffel
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
6
|
Growth at Cold Temperature Increases the Number of Motor Neurons to Optimize Locomotor Function. Curr Biol 2019; 29:1787-1799.e5. [PMID: 31130453 PMCID: PMC7501754 DOI: 10.1016/j.cub.2019.04.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 01/18/2023]
Abstract
During vertebrate development, spinal neurons differentiate and connect to generate a system that performs sensorimotor functions critical for survival. Spontaneous Ca2+ activity regulates different aspects of spinal neuron differentiation. It is unclear whether environmental factors can modulate this Ca2+ activity in developing spinal neurons to alter their specialization and ultimately adjust sensorimotor behavior to fit the environment. Here, we show that growing Xenopus laevis embryos at cold temperatures results in an increase in the number of spinal motor neurons in larvae. This change in spinal cord development optimizes the escape response to gentle touch of animals raised in and tested at cold temperatures. The cold-sensitive channel TRPM8 increases Ca2+ spike frequency of developing ventral spinal neurons, which in turn regulates expression of the motor neuron master transcription factor HB9. TRPM8 is necessary for the increase in motor neuron number of animals raised in cold temperatures and for their enhanced sensorimotor behavior when tested at cold temperatures. These findings suggest the environment modulates neuronal differentiation to optimize the behavior of the developing organism. Spencer et al. discover that Xenopus larvae reared in cold temperature are better equipped to escape upon touch at cold temperature relative to warm-grown siblings. This advantage is dependent on the cold-sensitive channel TRPM8, which is necessary for increased Ca2+ spike frequency in embryonic spinal neurons, their differentiation, and survival.
Collapse
|
7
|
Ferrara PJ, Verkerke ARP, Brault JJ, Funai K. Hypothermia Decreases O2 Cost for Ex Vivo Contraction in Mouse Skeletal Muscle. Med Sci Sports Exerc 2019; 50:2015-2023. [PMID: 29787474 DOI: 10.1249/mss.0000000000001673] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Evidence suggests that the energy efficiency of key ATPases involved in skeletal muscle contractile activity is improved in a hypothermic condition. However, it is unclear how a decrease in temperature affects skeletal muscle O2 consumption (mVO2) induced by muscle contraction. METHODS Isolated mouse extensor digitorum longus (EDL) muscles were incubated in a temperature-controlled (37°C or 25°C) bath that included an O2 probe. EDL muscles from one limb were subjected to the measurement of resting mVO2, and the contralateral EDL muscles were used for the measurement of mVO2 with electrically stimulated contraction. For the resting protocol, muscles were suspended at resting tension for 15 min with continuous O2 recordings. For the contraction protocol, EDL muscles underwent 10 electrically stimulated isometric contractions with continuous O2 recordings for 15 min. The rate of O2 disappearance was quantified as micromoles of O2 per minute and normalized to the wet weight of the muscle. RESULTS Resting mVO2 was greater at 37°C than at 25°C, consistent with the idea that lower temperature reduces basal metabolic rate. Electrically stimulated contraction robustly increased mVO2 at both 37°C and 25°C, which was sustained for ~3 min postcontraction. During that period, mVO2 was elevated approximately fivefold at both 37°C and 25°C. Greater contraction-induced mVO2 at 37°C compared with 25°C occurred despite lower force generated at 37°C than at 25°C. CONCLUSIONS Together, O2 cost for muscle contraction (force-time integral per O2 consumed) was greater at 37°C than at 25°C. Levels of high-energy phosphates were consistent with greater energy demand at 37°C compared with 25°C. In conclusion, these results indicate that muscle contraction that occurs at subnormal temperature requires less O2 than at 37°C.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT.,Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT.,Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Anthony R P Verkerke
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT.,Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT.,Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Jeffrey J Brault
- Department of Kinesiology, East Carolina University, Greenville, NC.,Department of Physiology, East Carolina University, Greenville, NC.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT.,Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT.,Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT.,Department of Kinesiology, East Carolina University, Greenville, NC.,Department of Physiology, East Carolina University, Greenville, NC.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC.,Molecular Medicine Program, University of Utah, Salt Lake City, UT
| |
Collapse
|
8
|
Negative effects of parasitic lung nematodes on the fitness of a Neotropical toad (Rhinella horribilis). Parasitology 2019; 146:928-936. [PMID: 30859923 DOI: 10.1017/s0031182019000106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pathogens are increasingly implicated in amphibian declines but less is known about parasites and the role they play. We focused on a genus of nematodes (Rhabdias) that is widespread in amphibians and examined their genetic diversity, abundance (prevalence and intensity), and impact in a common toad (Rhinella horribilis) in Panama. Our molecular data show that toads were infected by at least four lineages of Rhabdias, most likely Rhabdias pseudosphaerocephala, and multiple lineages were present in the same geographic locality, the same host and even the same lung. Mean prevalence of infection per site was 63% and mean intensity of infection was 31 worms. There was a significant effect of host size on infection status in the wild: larger toads were more likely to be infected than were smaller conspecifics. Our experimental infections showed that toadlets that were penetrated by many infective Rhabdias larvae grew less than those who were penetrated by few larvae. Exposure to Rhabdias reduced toadlet locomotor performance (both sustained speed and endurance) but did not influence toadlet survival. The effects of Rhabdias infection on their host appear to be primarily sublethal, however, dose-dependent reduction in growth and an overall impaired locomotor performance still represents a significant reduction in host fitness.
Collapse
|
9
|
James RS, Tallis J. The likely effects of thermal climate change on vertebrate skeletal muscle mechanics with possible consequences for animal movement and behaviour. CONSERVATION PHYSIOLOGY 2019; 7:coz066. [PMID: 31687144 PMCID: PMC6822537 DOI: 10.1093/conphys/coz066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 05/05/2023]
Abstract
Climate change can involve alteration in the local temperature that an animal is exposed to, which in turn may affect skeletal muscle temperature. The underlying effects of temperature on the mechanical performance of skeletal muscle can affect organismal performance in key activities, such as locomotion and fitness-related behaviours, including prey capture and predator avoidance. The contractile performance of skeletal muscle is optimized within a specific thermal range. An increased muscle temperature can initially cause substantial improvements in force production, faster rates of force generation, relaxation, shortening, and production of power output. However, if muscle temperature becomes too high, then maximal force production and power output can decrease. Any deleterious effects of temperature change on muscle mechanics could be exacerbated by other climatic changes, such as drought, altered water, or airflow regimes that affect the environment the animal needs to move through. Many species will change their location on a daily, or even seasonal basis, to modulate the temperature that they are exposed to, thereby improving the mechanical performance of their muscle. Some species undergo seasonal acclimation to optimize muscle mechanics to longer-term changes in temperature or undergo dormancy to avoid extreme climatic conditions. As local climate alters, species either cope with the change, adapt, avoid extreme climate, move, or undergo localized extinction events. Given that such outcomes will be determined by organismal performance within the thermal environment, the effects of climate change on muscle mechanics could have a major impact on the ability of a population to survive in a particular location.
Collapse
Affiliation(s)
- Rob S James
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
- Corresponding author: Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, CV1 5FB Coventry, UK.
| | - Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
10
|
Seebacher F, Borg J, Schlotfeldt K, Yan Z. Energetic cost determines voluntary movement speed only in familiar environments. ACTA ACUST UNITED AC 2017; 219:1625-31. [PMID: 27252454 DOI: 10.1242/jeb.136689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/10/2016] [Indexed: 11/20/2022]
Abstract
Locomotor performance is closely related to fitness. However, in many ecological contexts, animals do not move at their maximal locomotor capacity, but adopt a voluntary speed that is lower than maximal. It is important to understand the mechanisms that underlie voluntary speed, because these determine movement patterns of animals across natural environments. We show that voluntary speed is a stable trait in zebrafish (Danio rerio), but there were pronounced differences between individuals in maximal sustained speed, voluntary speed and metabolic cost of locomotion. We accept the hypothesis that voluntary speed scales positively with maximal sustained swimming performance (Ucrit), but only in unfamiliar environments (1st minute in an open-field arena versus 10th minute) at high temperature (30°C). There was no significant effect of metabolic scope on Ucrit Contrary to expectation, we rejected the hypothesis that voluntary speed decreases with increasing metabolic cost of movement, except in familiar spatial (after 10 min of exploration) and thermal (24°C but not 18 or 30°C) environments. The implications of these data are that the energetic costs of exploration and dispersal in novel environments are higher than those for movement within familiar home ranges.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason Borg
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Kathryn Schlotfeldt
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Zhongning Yan
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Rospars JP, Meyer-Vernet N. Force per cross-sectional area from molecules to muscles: a general property of biological motors. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160313. [PMID: 27493785 PMCID: PMC4968477 DOI: 10.1098/rsos.160313] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
We propose to formally extend the notion of specific tension, i.e. force per cross-sectional area-classically used for muscles, to quantify forces in molecular motors exerting various biological functions. In doing so, we review and compare the maximum tensions exerted by about 265 biological motors operated by about 150 species of different taxonomic groups. The motors considered range from single molecules and motile appendages of microorganisms to whole muscles of large animals. We show that specific tensions exerted by molecular and non-molecular motors follow similar statistical distributions, with in particular, similar medians and (logarithmic) means. Over the 10(19) mass (M) range of the cell or body from which the motors are extracted, their specific tensions vary as M(α) with α not significantly different from zero. The typical specific tension found in most motors is about 200 kPa, which generalizes to individual molecular motors and microorganisms a classical property of macroscopic muscles. We propose a basic order-of-magnitude interpretation of this result.
Collapse
Affiliation(s)
- Jean-Pierre Rospars
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, 78000 Versailles, France
| | - Nicole Meyer-Vernet
- LESIA, Observatoire de Paris, CNRS, PSL Research University, UPMC, Sorbonne University, Paris Diderot, Sorbonne Paris Cité, 92195 Cedex Meudon, France
| |
Collapse
|
12
|
Robson AA, Halsey LG, Chauvaud L. Feet, heat and scallops: what is the cost of anthropogenic disturbance in bivalve aquaculture? ROYAL SOCIETY OPEN SCIENCE 2016; 3:150679. [PMID: 27069659 PMCID: PMC4821270 DOI: 10.1098/rsos.150679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
The effects of unnatural disturbances on the behaviour and energetics of animals are an important issue for conservation and commercial animal production. Biologging enables estimation of the energy costs of these disturbances, but not specifically the effect these costs have on growth; a key outcome measure for animal farming enterprises. We looked at how natural and anthropogenically induced activity and energy expenditure of king scallops Pecten maximus varies with temperature. These data were then used to model growth time of king scallops reared in an aquaculture facility under different temperatures and anthropogenic disturbance levels. The scallops exhibited a typical total metabolic rate (MR)-temperature curve, with a peak reached at a middling temperature. The percentage of their total MR associated with spinning and swimming, behavioural responses to disturbance, was considerable. Interestingly, as temperature increased, the activity MR associated with a given level of activity decreased; a hitherto unreported relationship in any species. The model results suggest there is a trade-off in the ambient temperature that should be set by hatcheries between the optimal for scallop growth if completely undisturbed versus mitigating against the energy costs elicited by anthropogenic disturbance. Furthermore, the model indicates that this trade-off is affected by scallop size. Aquaculture facilities typically have controls to limit the impact of human activities, yet the present data indicate that hatcheries may be advised to consider whether more controls could further decrease extraneous scallop behaviours, resulting in enhanced scallop yields and improved financial margins.
Collapse
Affiliation(s)
- Anthony A. Robson
- LabexMER, UMS 3113 CNRS, Institut Universitaire Européen de la Mer, Université de Brest, Rue Dumont D’Urville, 29280 Plouzané, France
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Lewis G. Halsey
- Centre for Research in Ecology, Department of Life Sciences, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK
| | - Laurent Chauvaud
- Laboratoire des Sciences de L’Environnement Marin (UMR CNRS 6539), Institut Universitaire Européen de la Mer, Technopôle Brest Iroise, 29280 Plouzané, France
| |
Collapse
|
13
|
Rodgers GG, Tenzing P, Clark TD. Experimental methods in aquatic respirometry: the importance of mixing devices and accounting for background respiration. JOURNAL OF FISH BIOLOGY 2016; 88:65-80. [PMID: 26768972 DOI: 10.1111/jfb.12848] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
In light of an increasing trend in fish biology towards using static respirometry techniques without the inclusion of a mixing mechanism and without accurately accounting for the influence of microbial (background) respiration, this paper quantifies the effect of these approaches on the oxygen consumption rates (ṀO2 ) measured from juvenile barramundi Lates calcarifer (mean ± s.e. mass = 20·31 ± 0·81 g) and adult spiny chromis damselfish Acanthochromis polyacanthus (22·03 ± 2·53 g). Background respiration changed consistently and in a sigmoidal manner over time in the treatment with a mixing device (inline recirculation pump), whereas attempts to measure background respiration in the non-mixed treatment yielded highly variable estimates of ṀO2 that were probably artefacts due to the lack of water movement over the oxygen sensor during measurement periods. This had clear consequences when accounting for background respiration in the calculations of fish ṀO2 . Exclusion of a mixing device caused a significantly lower estimate of ṀO2 in both species and reduced the capacity to detect differences between individuals as well as differences within an individual over time. There was evidence to suggest that the magnitude of these effects was dependent on the spontaneous activity levels of the fish, as the difference between mixed and non-mixed treatments was more pronounced for L. calcarifer (sedentary) than for A. polyacanthus (more spontaneously active). It is clear that respirometry set-ups for sedentary species must contain a mixing device to prevent oxygen stratification inside the respirometer. While more active species may provide a higher level of water mixing during respirometry measurements and theoretically reduce the need for a mixing device, the level of mixing cannot be quantified and may change with diurnal cycles in activity. To ensure consistency across studies without relying on fish activity levels, and to enable accurate assessments of background respiration, it is recommended that all respirometry systems should include an appropriate mixing device.
Collapse
Affiliation(s)
- G G Rodgers
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - P Tenzing
- AIMS@JCU Research Program, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - T D Clark
- AIMS@JCU Research Program, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| |
Collapse
|
14
|
Halsey LG, Matthews PGD, Rezende EL, Chauvaud L, Robson AA. The interactions between temperature and activity levels in driving metabolic rate: theory, with empirical validation from contrasting ectotherms. Oecologia 2015; 177:1117-29. [PMID: 25575673 DOI: 10.1007/s00442-014-3190-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/10/2014] [Indexed: 11/27/2022]
Abstract
The rate of change in resting metabolic rate (RMR) as a result of a temperature increase of 10 °C is termed the temperature coefficient (Q10), which is often used to predict how an organism's total MR will change with temperature. However, this method neglects a potentially key component of MR; changes in activity level (and thus activity MR; AMR) with temperature may significantly alter the relationship between MR and temperature. The present study seeks to describe how thermal effects on total MR estimated from RMR-temperature measurements can be misleading when the contribution of activity to total MR is neglected. A simple conceptual framework illustrates that since the relationship between activity levels and temperature can be different to the relationship between RMR and temperature, a consistent relationship between RMR and total MR cannot be assumed. Thus the thermal effect on total MR can be considerably different to the thermal effect on RMR. Simultaneously measured MR and activity from three ectotherm species with differing behavioural and physiological ecologies were used to empirically examine how changes in temperature drive changes in RMR, activity level, AMR and the Q10 of MR. These species exhibited varied activity- and MR-temperature relationships, underlining the difficulty in predicting thermal influences on activity levels and total MR. These data support a model showing that thermal effects on total MR will deviate from predictions based solely on RMR; this deviation will depend upon the difference in Q10 between AMR and RMR, and the relative contribution of AMR to total MR. To develop mechanistic, predictive models for species' metabolic responses to temperature changes, empirical information about the relationships between activity levels, MR and temperature, such as reported here, is required. This will supersede predictions based on RMR alone.
Collapse
Affiliation(s)
- L G Halsey
- Department of Life Sciences, Centre for Research in Ecology, University of Roehampton, Holybourne Avenue, London, SW15 4JD, UK,
| | | | | | | | | |
Collapse
|
15
|
Regional thermal specialisation in a mammal: temperature affects power output of core muscle more than that of peripheral muscle in adult mice (Mus musculus). J Comp Physiol B 2014; 185:135-42. [DOI: 10.1007/s00360-014-0872-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022]
|
16
|
Embryonic developmental temperatures modulate thermal acclimation of performance curves in tadpoles of the frog Limnodynastes peronii. PLoS One 2014; 9:e106492. [PMID: 25181291 PMCID: PMC4152266 DOI: 10.1371/journal.pone.0106492] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/30/2014] [Indexed: 12/31/2022] Open
Abstract
Performance curves of physiological rates are not fixed, and determining the extent to which thermal performance curves can change in response to environmental signals is essential to understand the effect of climate variability on populations. The aim of this study was to determine whether and how temperatures experienced during early embryonic development affect thermal performance curves of later life history stages in the frog Limnodynastes peronii. We tested the hypotheses that a) the embryonic environment affects mean trait values only; b) temperature at which performance of tadpoles is maximal shifts with egg incubation temperatures so that performance is maximised at the incubation temperatures, and c) incubation temperatures modulate the capacity for reversible acclimation in tadpoles. Growth rates were greater in warm (25°C) compared to cold (15°C) acclimated (6 weeks) tadpoles regardless of egg developmental temperatures (15°C or 25°C, representing seasonal means). The breadth of the performance curve of burst locomotor performance (measured at 10, 15, 20, 25, and 30°C, representing annual range) is greatest when egg developmental and acclimation temperatures coincide. The mode of the performance curves shifted with acclimation conditions and maximum performance was always at higher temperatures than acclimation conditions. Performance curves of glycolytic (lactate dehydrogenase activities) and mitochondrial (citrate synthase and cytochrome c oxidase) enzymes were modulated by interactions between egg incubation and acclimation temperatures. Lactate dehydrogenase activity paralleled patterns seen in burst locomotor performance, but oxygen consumption rates and mitochondrial enzyme activities did not mirror growth or locomotor performance. We show that embryonic developmental conditions can modulate performance curves of later life-history stages, thereby conferring flexibilty to respond to environmental conditions later in life.
Collapse
|