1
|
Priya A, Mol N, Singh AK, Aditya AK, Ray AK. "Unveiling the impacts of climatic cold events on the cardiovascular health in animal models". THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179028. [PMID: 40073773 DOI: 10.1016/j.scitotenv.2025.179028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/01/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Climate change is increasingly driving extreme weather events, leading to drastic temperature fluctuations worldwide. While overall temperatures rise, many regions are simultaneously experiencing severe cold spells that threaten the health of human populations, especially to vulnerable populations including the elderly and those with pre-existing conditions. Exposure to cold stress triggers significant physiological and biochemical disruptions. As cardiovascular diseases (CVDs) rank among the leading causes of global morbidity and mortality, the exacerbation of these conditions by cold exposure underscores critical public health challenges. The complex pathophysiological processes in cold-induced CVDs require careful analysis at an organ-system level, making animal models an ideal tool for replicating human physiological and molecular responses in a controlled environment. However, a detailed mechanism linking cold exposure and cardiovascular dysfunction remains incompletely understood, particularly in the context of animal models. Therefore, this comprehensive review aims to address and analyze from traditional rodent models to less conventional ruminants, broilers, canines, and primate animal models to understand cold stress-induced CVDs, with an extensive account of the potential molecular mechanisms and pathways such as oxidative stress, inflammation, vasomotor dysfunction, and apoptosis, along with emerging roles of cold shock proteins (CSPs), etc. We also delve into various potential therapeutic approaches and preventive measures in cold stress conditions. In conclusion, this review is the first to comprehensively address the underexplored cardiovascular complications arising from cold stress and their underlying mechanisms, particularly using animal models. Furthermore, it provides a foundation for advancing the development of more effective and targeted therapies through translational research.
Collapse
Affiliation(s)
- Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Nidhi Mol
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Abhishek Kumar Aditya
- Department of Medicine, K.D. Medical College, Hospital and Research Centre, Mathura, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Shaftoe JB, Geddes-McAlister J, Gillis TE. Integrated cellular response of the zebrafish (Danio rerio) heart to temperature change. J Exp Biol 2024; 227:jeb247522. [PMID: 39091230 DOI: 10.1242/jeb.247522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
A decrease in environmental temperature represents a challenge to the cardiovascular system of ectotherms. To gain insight into the cellular changes that occur during cold exposure and cold acclimation we characterized the cardiac phosphoproteome and proteome of zebrafish following 24 h or 1 week exposure to 20°C from 27°C; or at multiple points during 6 weeks of acclimation to 20°C from 27°C. Our results indicate that cold exposure causes an increase in mitogen-activated protein kinase signalling, the activation of stretch-sensitive pathways, cellular remodelling via ubiquitin-dependent pathways and changes to the phosphorylation state of proteins that regulate myofilament structure and function including desmin and troponin T. Cold acclimation (2-6 weeks) led to a decrease in multiple components of the electron transport chain through time, but an increase in proteins for lipid transport, lipid metabolism, the incorporation of polyunsaturated fatty acids into membranes and protein turnover. For example, there was an increase in the levels of apolipoprotein C, prostaglandin reductase-3 and surfeit locus protein 4, involved in lipid transport, lipid metabolism and lipid membrane remodelling. Gill opercular movements suggest that oxygen utilization during cold acclimation is reduced. Neither the amount of food consumed relative to body mass nor body condition was affected by acclimation. These results suggest that while oxygen uptake was reduced, energy homeostasis was maintained. This study highlights that the response of zebrafish to a decrease in temperature is dynamic through time and that investment in the proteomic response increases with the duration of exposure.
Collapse
Affiliation(s)
- Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
3
|
Horowitz M, Hasin Y. Vascular compliance and left ventricular compliance cross talk: Implications for using long-term heat acclimation in cardiac care. Front Physiol 2023; 14:1074391. [PMID: 36960151 PMCID: PMC10027724 DOI: 10.3389/fphys.2023.1074391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
1) The first evidence of the beneficial impact of Long-Term-Heat-Acclimation (LTHA) on cardio-vascular compliance was the positive inotropic response and improved left ventricular (LV) compliance noted when isolated hearts from LTHA rats were studied. Human echo study demonstrates that passive HA affects the right ventricle and the atria as well. 2) There is a cross-talk between vascular and cardiac compliance. Vascular compliance per se is defined by central venous pressure-Blood volume relationship-Global Vascular Compliance (GVC). It is determined by the sum of the vascular compliance of the vessels in every organ in any physiological state, varies with LTHA and thus influences cardiac performance. LTHA improves endothelial function, increases NO (nitric oxide) production, in-turn stimulating alterations in ECM (extracellular matrix) via the TGF β1-SMAD pathway. 3) LTHA is associated with transformation from fast to slow myosin, heat acclimation ischemic/hypoxic cross-tolerance and alterations in the extracellular matrix. 4) A human translational study demonstrated improved LV compliance following bypass surgery in LTHA subjects compared to controls. 5) Diastolic dysfunction and the impact of comorbidities with vascular and non- vascular origins are major contributors to the syndrome of heart failure with preserved ejection function (HFPEF). Unfortunately, there is a paucity of treatment modalities that improve diastolic dysfunction. 6) In the current mini-review we suggest that LTHA may be beneficial to HFPEF patients by remodeling cardiac compliance and vascular response.
Collapse
Affiliation(s)
- Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Michal Horowitz,
| | | |
Collapse
|
4
|
Muir CA, Garner SR, Damjanovski S, Neff BD. Temperature-dependent plasticity mediates heart morphology and thermal performance of cardiac function in juvenile Atlantic salmon (Salmo salar). J Exp Biol 2022; 225:276049. [PMID: 35860948 DOI: 10.1242/jeb.244305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
In many fishes, upper thermal tolerance is thought to be limited in part by the heart's ability to meet increased oxygen demands during periods of high temperature. Temperature-dependent plasticity within the cardiovascular system may help fishes cope with the thermal stress imposed by increasing water temperatures. In this study, we examined plasticity in heart morphology and function in juvenile Atlantic salmon (Salmo salar) reared under control (+0°C) or elevated (+4°C) temperatures. Using noninvasive Doppler echocardiography, we measured the effect of acute warming on maximum heart rate, stroke distance, and derived cardiac output. A 4°C increase in average developmental temperature resulted in a>5°C increase in the Arrhenius breakpoint temperature for maximum heart rate and enabled the hearts of these fish to continue beating rhythmically to temperatures approximately 2°C higher than control fish. However, these differences in thermal performance were not associated with plasticity in maximum cardiovascular capacity, as peak measures of heart rate, stroke distance, and derived cardiac output did not differ between temperature treatments. Histological analysis of the heart revealed that while ventricular roundness and relative ventricle size did not differ between treatments, the proportion of compact myocardium in the ventricular wall was significantly greater in fish raised at elevated temperatures. Our findings contribute to the growing understanding of how the thermal environment can affect phenotypes later in life and identifies a morphological strategy that may help fishes cope with acute thermal stress.
Collapse
Affiliation(s)
- Carlie A Muir
- Department of Biology, Western University, London, ON, Canada
| | - Shawn R Garner
- Department of Biology, Western University, London, ON, Canada
| | | | - Bryan D Neff
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
5
|
Regulation of collagen deposition in the trout heart during thermal acclimation. Curr Res Physiol 2022; 5:99-108. [PMID: 35243359 PMCID: PMC8857596 DOI: 10.1016/j.crphys.2022.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The passive mechanical properties of the vertebrate heart are controlled in part by the composition of the extracellular matrix (ECM). Changes in the ECM, caused by increased blood pressure, injury or disease can affect the capacity of the heart to fill with blood during diastole. In mammalian species, cardiac fibrosis caused by an increase in collagen in the ECM, leads to a loss of heart function and these changes in composition are considered to be permanent. Recent work has demonstrated that the cardiac ventricle of some fish species have the capacity to both increase and decrease collagen content in response to thermal acclimation. It is thought that these changes in collagen content help maintain ventricle function over seasonal changes in environmental temperatures. This current work reviews the cellular mechanisms responsible for regulating collagen deposition in the mammalian heart and proposes a cellular pathway by which a change in temperature can affect the collagen content of the fish ventricle through mechanotransduction. This work specifically focuses on the role of transforming growth factor β1, MAPK signaling pathways, and biomechanical stretch in regulating collagen content in the fish ventricle. It is hoped that this work increases the appreciation of the use of comparative models to gain insight into phenomenon with biomedical relevance.
Collapse
|
6
|
Wang H, Wang Y, Niu M, Hu L, Chen L. Cold Acclimation for Enhancing the Cold Tolerance of Zebrafish Cells. Front Physiol 2022; 12:813451. [PMID: 35153820 PMCID: PMC8832062 DOI: 10.3389/fphys.2021.813451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cold stress is an important threat in the life history of fish. However, current research on the tolerance mechanisms of fish to cold stress is incomplete. To explore the relevant molecular mechanisms enabling cold stress tolerance in fish, here we studied ZF4 cells subjected to short-term (4 days) low temperature stress and long-term (3 months) low temperature acclimation. The results showed that cell viability decreased and the cytoskeleton shrank under short-term (4 days) low temperature stress, while the cell viability and the cytoskeleton became normal after cold acclimation at 18°C for 3 months. Further, when the cells were transferred to the lower temperature (13°C), the survival rate was higher in the acclimated than non-acclimated group. By investigating the oxidative stress pathway, we found that the ROS (reactive oxygen species) content increased under short-term (4 days) cold stress, coupled with changes in glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) enzyme activity levels. In addition, overproduction of ROS disrupted physiological cellular homeostasis that generated apoptosis via the activation of the mitochondrial pathway. However, when compared with the non-domesticated group, both ROS levels and apoptosis were lowered in the long-term (3 months) domesticated cells. Taken together, these findings suggest that cold acclimation can improve the low temperature tolerance of the cells. This exploration of the mechanism by which zebrafish cells tolerate cold stress, thus contributes to laying the foundation for future study of the molecular mechanism of cold adaptation in fish.
Collapse
Affiliation(s)
- Huamin Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Minghui Niu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Linghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- *Correspondence: Liangbiao Chen,
| |
Collapse
|
7
|
Keen AN, Mackrill JJ, Gardner P, Shiels HA. Compliance of the fish outflow tract is altered by thermal acclimation through connective tissue remodelling. J R Soc Interface 2021; 18:20210492. [PMID: 34784777 PMCID: PMC8596013 DOI: 10.1098/rsif.2021.0492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To protect the gill capillaries from high systolic pulse pressure, the fish heart contains a compliant non-contractile chamber called the bulbus arteriosus which is part of the outflow tract (OFT) which extends from the ventricle to the ventral aorta. Thermal acclimation alters the form and function of the fish atria and ventricle to ensure appropriate cardiac output at different temperatures, but its impact on the OFT is unknown. Here we used ex vivo pressure-volume curves to demonstrate remodelling of passive stiffness in the rainbow trout (Oncorhynchus mykiss) bulbus arteriosus following more than eight weeks of thermal acclimation to 5, 10 and 18°C. We then combined novel, non-biased Fourier transform infrared spectroscopy with classic histological staining to show that changes in compliance were achieved by changes in tissue collagen-to-elastin ratio. In situ gelatin zymography and SDS-PAGE zymography revealed that collagen remodelling was underpinned, at least in part, by changes in activity and abundance of collagen degrading matrix metalloproteinases. Collectively, we provide the first indication of bulbus arteriosus thermal remodelling in a fish and suggest this remodelling ensures optimal blood flow and blood pressure in the OFT during temperature change.
Collapse
Affiliation(s)
- Adam N Keen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - John J Mackrill
- Department of Physiology, University College Cork, Cork, County Cork, Ireland
| | - Peter Gardner
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester, UK
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Mitogen-activated protein kinases contribute to temperature-induced cardiac remodelling in rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 2021; 192:61-76. [PMID: 34586481 DOI: 10.1007/s00360-021-01406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) live in environments where water temperatures range between 4 °C and 20 °C. Laboratory studies demonstrate that cold and warm acclimations of male trout can have oppositional effects on cardiac hypertrophy and the collagen content of the heart. The cellular mechanisms behind temperature-induced cardiac remodelling are unclear, as is why this response differs between male and female fish. Studies with cultured trout cardiac fibroblasts suggests that collagen deposition is regulated, at least in part, by mitogen-activated protein kinase (MAPK) cell signalling pathways. We, therefore, hypothesized that temperature-dependent cardiac remodelling is regulated by these signalling pathways. To test this, male and female trout were acclimated to 18 °C (warm) in the summer and to 4 °C (cold) in the winter and the activation of MAPK pathways in the hearts were characterized and compared to that of control fish maintained at 12 °C. In addition, cardiac collagen content, cardiac morphology and the expression of gene transcripts for matrix metalloproteinases (MMP) -9, MMP-2, tissue inhibitor of matrix metalloproteinases and collagen 1α were characterized. p38 MAPK phosphorylation increased in the hearts of female fish with cold acclimation and the phosphorylation of extracellular signal-regulated kinase increased in the hearts of male fish with warm acclimation. However, there was no effect of thermal acclimation on cardiac morphology or collagen content in either male or female fish. These results indicate that thermal acclimation has transient and sex-specific effects on the phosphorylation of MAPKs but also how variable the response of the trout heart is to thermal acclimation.
Collapse
|
9
|
Dong YW, Blanchard TS, Noll A, Vasquez P, Schmitz J, Kelly SP, Wright PA, Whitehead A. Genomic and physiological mechanisms underlying skin plasticity during water to air transition in an amphibious fish. J Exp Biol 2021; 224:jeb235515. [PMID: 33328287 PMCID: PMC7860121 DOI: 10.1242/jeb.235515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
The terrestrial radiation of vertebrates required changes in skin that resolved the dual demands of maintaining a mechanical and physiological barrier while also facilitating ion and gas transport. Using the amphibious killifish Kryptolebias marmoratus, we found that transcriptional regulation of skin morphogenesis was quickly activated upon air exposure (1 h). Rapid regulation of cell-cell adhesion complexes and pathways that regulate stratum corneum formation was consistent with barrier function and mechanical reinforcement. Unique blood vessel architecture and regulation of angiogenesis likely supported cutaneous respiration. Differences in ionoregulatory transcripts and ionocyte morphology were correlated with differences in salinity acclimation and resilience to air exposure. Evolutionary analyses reinforced the adaptive importance of these mechanisms. We conclude that rapid plasticity of barrier, respiratory and ionoregulatory functions in skin evolved to support the amphibious lifestyle of K. marmoratus; similar processes may have facilitated the terrestrial radiation of other contemporary and ancient fishes.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, People's Republic of China
| | - Tessa S Blanchard
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Picasso Vasquez
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| | - Juergen Schmitz
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149 Münster, Germany
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, Canada, M3J 1P3
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Andrew Whitehead
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Rossi GS, Cochrane PV, Wright PA. Fluctuating environments during early development can limit adult phenotypic flexibility: insights from an amphibious fish. J Exp Biol 2020; 223:jeb228304. [PMID: 32616545 DOI: 10.1242/jeb.228304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
The interaction between developmental plasticity and the capacity for reversible acclimation (phenotypic flexibility) is poorly understood, particularly in organisms exposed to fluctuating environments. We used an amphibious killifish (Kryptolebias marmoratus) to test the hypotheses that organisms reared in fluctuating environments (i) will make no developmental changes to suit any one environment because fixing traits to suit one environment could be maladaptive for another, and (ii) will be highly phenotypically flexible as adults because their early life experiences predict high environmental variability in the future. We reared fish under constant (water) or fluctuating (water-air) environments until adulthood and assessed a suite of traits along the oxygen cascade (e.g. neuroepithelial cell density and size, cutaneous capillarity, gill morphology, ventricle size, red muscle morphometrics, terrestrial locomotor performance). To evaluate the capacity for phenotypic flexibility, a subset of adult fish from each rearing condition was then air-exposed for 14 days before the same traits were measured. In support of the developmental plasticity hypothesis, traits involved with O2 sensing and uptake were largely unaffected by water-air fluctuations during early life, but we found marked developmental changes in traits related to O2 transport, utilization and locomotor performance. In contrast, we found no evidence supporting the phenotypic flexibility hypothesis. Adult fish from both rearing conditions exhibited the same degree of phenotypic flexibility in various O2 sensing- and uptake-related traits. In other cases, water-air fluctuations attenuated adult phenotypic flexibility despite the fact that phenotypic flexibility is hypothesized to be favoured when environments fluctuate. Overall, we conclude that exposure to environmental fluctuations during development in K. marmoratus can dramatically alter the constitutive adult phenotype, as well as diminish the scope for phenotypic flexibility in later life.
Collapse
Affiliation(s)
- Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Paige V Cochrane
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
11
|
Ge G, Long Y, Shi L, Ren J, Yan J, Li C, Li Q, Cui Z. Transcriptomic profiling revealed key signaling pathways for cold tolerance and acclimation of two carp species. BMC Genomics 2020; 21:539. [PMID: 32758130 PMCID: PMC7430846 DOI: 10.1186/s12864-020-06946-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Background Closely related species of the carp family (Cyprinidae) have evolved distinctive abilities to survive under cold stress, but molecular mechanisms underlying the generation of cold resistance remain largely unknown. In this study, we compared transcriptomic profiles of two carp species to identify key factors and pathways for cold tolerance and acclimation. Results Larvae of Songpu mirror carp and Barbless carp that were pretreated at 18 °C for 24 h significantly improved their survival rates under lethal cold temperature at 8 °C or 10 °C, indicating that two carp species possess the ability of cold acclimation. However, Songpu mirror carp exhibited stronger abilities of cold tolerance and acclimation than Barbless carp. Transcriptomic profiles of Songpu mirror carp and Barbless carp larvae at 28 °C and 18 °C were compared during cold acclimation through RNA-seq. Differentially expressed genes that are closely associated with the differences in cold acclimation between two carp species were identified through bioinformatics and Venn’s diagram analysis. GO enrichment analysis of these genes indicated that cellular component assembly involved in morphogenesis, secondary alcohol metabolism and drug transport were the most up-regulated biological processes during cold acclimation of Songpu mirror carp. Conversely, positive regulation of macroautophagy, intracellular protein transport, and organonitrogen compound catabolism were the most down-regulated biological processes during cold acclimation of Barbless carp. KEGG enrichment analysis revealed that factors in the FoxO-related signaling pathways are mainly responsible for the development of differences in cold tolerance and acclimation between two carp species since altering the phosphorylation of key proteins in the FoxO-related signaling pathways with inhibitors or an activator significantly decreased the cold tolerance and acclimation of Songpu mirror carp. These data provided key clues for dissection of molecular mechanisms underlying the development of cold tolerance and acclimation in carps. Conclusions These findings indicate that larvae of two carp species possess different abilities of cold tolerance and can build cold acclimation under mild low temperature. Multiple biological processes and FoxO-related signaling pathways are closely associated with the development of differences in cold tolerance and acclimation between two carp species.
Collapse
Affiliation(s)
- Guodong Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Lianyu Shi
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Ha'erbin, 150070, China
| | - Jing Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjun Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chitao Li
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Ha'erbin, 150070, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
12
|
Johnston EF, Gillis TE. Short-term cyclical stretch phosphorylates p38 and ERK1/2 MAPKs in cultured fibroblasts from the hearts of rainbow trout, Oncorhynchus mykiss. Biol Open 2020; 9:bio.049296. [PMID: 31862862 PMCID: PMC6994941 DOI: 10.1242/bio.049296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The form and function of the rainbow trout heart can remodel in response to various stressors including changes in environmental temperature and anemia. Previous studies have hypothesized that changes in biomechanical forces experienced by the trout myocardium as result of such physiological stressors could play a role in triggering the remodeling response. However, there has been no work examining the influence of biomechanical forces on the trout myocardium or of the cellular signals that would translate such a stimuli into a biological response. In this study, we test the hypothesis that the application of biomechanical forces to trout cardiac fibroblasts activate the cell signaling pathways associated with cardiac remodeling. This was done by cyclically stretching cardiac fibroblasts to 10% equibiaxial deformation at 0.33 Hz and quantifying the activation of the p38-JNK-ERK mitogen activated protein kinase (MAPK) pathway. After 20 min, p38 MAPK phosphorylation was elevated by 4.2-fold compared to control cells (P<0.05) and after 24 h of stretch, p38 MAPK phosphorylation remained elevated and extracellular-regulated kinase 1/2 was phosphorylated by 2.4-fold compared to control (P<0.05). Together, these results indicate that mechanotransductive pathways are active in cardiac fibroblasts, and lead to the activation of cell signaling pathways involved in cardiac remodeling.
Collapse
Affiliation(s)
- Elizabeth F Johnston
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
13
|
Bretaud S, Nauroy P, Malbouyres M, Ruggiero F. Fishing for collagen function: About development, regeneration and disease. Semin Cell Dev Biol 2019; 89:100-108. [DOI: 10.1016/j.semcdb.2018.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/06/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
|
14
|
Turko AJ, Maini P, Wright PA, Standen EM. Gill remodelling during terrestrial acclimation in the amphibious fish Polypterus senegalus. J Morphol 2019; 280:329-338. [PMID: 30707482 DOI: 10.1002/jmor.20946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022]
Abstract
Fishes are effectively weightless in water due to the buoyant support of the environment, but amphibious fishes must cope with increased effective weight when on land. Delicate structures such as gills are especially vulnerable to collapse and loss of surface area out of water. We tested the 'structural support' hypothesis that amphibious Polypterus senegalus solve this problem using phenotypically plastic changes that provide mechanical support and increase stiffness at the level of the gill lamellae, the filaments, and the whole arches. After 7 d in terrestrial conditions, enlargement of an inter-lamellar cell mass filled the water channels between gill lamellae, possibly to provide structural support and/or reduce evaporative water loss. Similar gill remodelling has been described in several other actinopterygian fishes, suggesting this may be an ancestral trait. There was no change in the mechanical properties or collagen composition of filaments or arches after 7 days out of water, but 8 months of terrestrial acclimation caused a reduction in gill arch length and mineralized bone volume. Thus, rather than increasing the size and stiffness of the gill skeleton, P. senegalus may instead reduce investment in supportive gill tissue while on land. These results are strikingly similar to the evolutionary trend of gill loss that occurred during the tetrapod invasion of land, raising the possibility that genetic assimilation of gill plasticity was an underlying mechanism.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Priyam Maini
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Emily M Standen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Johnston EF, Gillis TE. Transforming growth factor-β1 induces differentiation of rainbow trout ( Oncorhynchus mykiss) cardiac fibroblasts into myofibroblasts. ACTA ACUST UNITED AC 2018; 221:jeb.189167. [PMID: 30397172 DOI: 10.1242/jeb.189167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/29/2018] [Indexed: 01/07/2023]
Abstract
The collagen content of the rainbow trout heart increases in response to cold acclimation and decreases with acclimation to warm temperatures. This ability to remodel the myocardial extracellular matrix (ECM) makes these fish useful models to study the cellular pathways involved in collagen regulation in the vertebrate heart. Remodelling of the ECM in the mammalian heart is regulated, in part, by myofibroblasts which arise from pre-existing fibroblasts in response to transforming growth factor-β1 (TGF-β1). We have previously demonstrated that treatment of cultured rainbow trout cardiac fibroblasts with human TGF-β1 causes an increase in collagen production. Here, we showed that repetitive treatment of rainbow trout cardiac fibroblasts with a physiologically relevant concentration of human recombinant TGF-β1 results in a ∼29-fold increase in phosphorylated small mothers against decapentaplegic 2 (pSmad2); a 2.9-fold increase in vinculin protein, a 1.2-fold increase in cellular size and a 3-fold increase in filamentous actin (F-actin). These are common markers of the transition of fibroblasts to myofibroblasts. Cells treated with TGF-β1 also had highly organized cytoskeletal α-smooth muscle actin, as well as increased transcript abundances of mmp-9, timp-2 and col1a1 Furthermore, using gelatin zymography, we demonstrated that TGF-β1 treatment causes a 5.3-fold increase in gelatinase activity. Together, these results suggest that trout cardiac fibroblasts have the capacity to differentiate into myofibroblasts and that this cell type can increase extracellular collagen turnover via gelatinase activity. Cardiac myofibroblasts are, therefore, likely involved in the remodelling of the cardiac ECM in the trout heart during thermal acclimation.
Collapse
Affiliation(s)
- Elizabeth F Johnston
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G-2W1, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G-2W1, Canada
| |
Collapse
|
16
|
Turko AJ, Kültz D, Fudge D, Croll RP, Smith FM, Stoyek MR, Wright PA. Skeletal stiffening in an amphibious fish out of water is a response to increased body weight. ACTA ACUST UNITED AC 2018; 220:3621-3631. [PMID: 29046415 DOI: 10.1242/jeb.161638] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023]
Abstract
Terrestrial animals must support their bodies against gravity, while aquatic animals are effectively weightless because of buoyant support from water. Given this evolutionary history of minimal gravitational loading of fishes in water, it has been hypothesized that weight-responsive musculoskeletal systems evolved during the tetrapod invasion of land and are thus absent in fishes. Amphibious fishes, however, experience increased effective weight when out of water - are these fishes responsive to gravitational loading? Contrary to the tetrapod-origin hypothesis, we found that terrestrial acclimation reversibly increased gill arch stiffness (∼60% increase) in the amphibious fish Kryptolebias marmoratus when loaded normally by gravity, but not under simulated microgravity. Quantitative proteomics analysis revealed that this change in mechanical properties occurred via increased abundance of proteins responsible for bone mineralization in other fishes as well as in tetrapods. Type X collagen, associated with endochondral bone growth, increased in abundance almost ninefold after terrestrial acclimation. Collagen isoforms known to promote extracellular matrix cross-linking and cause tissue stiffening, such as types IX and XII collagen, also increased in abundance. Finally, more densely packed collagen fibrils in both gill arches and filaments were observed microscopically in terrestrially acclimated fish. Our results demonstrate that the mechanical properties of the fish musculoskeletal system can be fine-tuned in response to changes in effective body weight using biochemical pathways similar to those in mammals, suggesting that weight sensing is an ancestral vertebrate trait rather than a tetrapod innovation.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, 1 Shields Ave., Meyer Hall, Davis, CA 95616, USA
| | - Douglas Fudge
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1.,Schmid College of Science and Technology, Chapman University, 1 University Dr., Orange, CA 92866, USA
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Frank M Smith
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Matthew R Stoyek
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2.,Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
17
|
Hodgson P, Ireland J, Grunow B. Fish, the better model in human heart research? Zebrafish Heart aggregates as a 3D spontaneously cardiomyogenic in vitro model system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:132-141. [PMID: 29729327 DOI: 10.1016/j.pbiomolbio.2018.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/04/2018] [Accepted: 04/27/2018] [Indexed: 12/25/2022]
Abstract
The zebrafish (ZF) has become an essential model for biomedical, pharmacological and eco-toxicological heart research. Despite the anatomical differences between fish and human hearts, similarities in cellular structure and conservation of genes as well as pathways across vertebrates have led to an increase in the popularity of ZF as a model for human cardiac research. ZF research benefits from an entirely sequenced genome, which allows us to establish and study cardiovascular mutants to better understand cardiovascular diseases. In this review, we will discuss the importance of in vitro model systems for cardiac research and summarise results of in vitro 3D heart-like cell aggregates, consisting of myocardial tissue formed spontaneously from enzymatically digested whole embryonic ZF larvae (Zebrafish Heart Aggregate - ZFHA). We will give an overview of the similarities and differences of ZF versus human hearts and highlight why ZF complement established mammalian models (i.e. murine and large animal models) for cardiac research. At this stage, the ZFHA model system is being refined into a high-throughput (more ZFHA generated than larvae prepared) and stable in vitro test system to accomplish the same longevity of previously successful salmonid models. ZFHA have potential for the use of high-throughput-screenings of different factors like small molecules, nucleic acids, proteins and lipids which is difficult to achieve in the zebrafish in vivo screening models with lethal mutations as well as to explore ion channel disorders and to find appropriate drugs for safety screening.
Collapse
Affiliation(s)
- Patricia Hodgson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK; Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| | - Jake Ireland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK; School of Chemistry, Materials Science, and Engineering, Hilmer Building, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Bianka Grunow
- University Medicine Greifswald, Institute of Physiology, Greifswalder Str. 11C, 17495 Karlsburg, Germany; Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
18
|
Yudin NS, Larkin DM, Ignatieva EV. A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments. BMC Genet 2017; 18:111. [PMID: 29297313 PMCID: PMC5751660 DOI: 10.1186/s12863-017-0580-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals. Results After a search for publications containing keywords: “whole genome”, “transcriptome or exome sequencing data”, and “genome-wide genotyping array data” authors looked for information related to genetic signatures ascribable to positive selection in Arctic or Antarctic mammalian species. Publications related to Human, Arctic fox, Yakut horse, Mammoth, Polar bear, and Minke whale were chosen. The compendium of genes that potentially underwent positive selection in >1 of these six species consisted of 416 genes. Twelve of them showed traces of positive selection in three species. Gene ontology term enrichment analysis of 416 genes from the compendium has revealed 13 terms relevant to the scope of this study. We found that enriched terms were relevant to three major groups: terms associated with collagen proteins and the extracellular matrix; terms associated with the anatomy and physiology of cilium; terms associated with docking. We further revealed that genes from compendium were over-represented in the lists of genes expressed in the lung and liver. Conclusions A compendium combining mammalian genes involved in adaptation to cold environment was designed, based on the intersection of positively selected genes from six Arctic and Antarctic species. The compendium contained 416 genes that have been positively selected in at least two species. However, we did not reveal any positively selected genes that would be related to cold adaptation in all species from our list. But, our work points to several strong candidate genes involved in mechanisms and biochemical pathways related to cold adaptation response in different species. Electronic supplementary material The online version of this article (10.1186/s12863-017-0580-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikolay S Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia. .,Novosibirsk State University, 630090, Novosibirsk, Russia.
| | - Denis M Larkin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.,The Royal Veterinary College, University of London, London, NW1 0TU, UK
| | - Elena V Ignatieva
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.,Novosibirsk State University, 630090, Novosibirsk, Russia
| |
Collapse
|
19
|
Johnston EF, Gillis TE. Transforming growth factor beta-1 (TGF-β1) stimulates collagen synthesis in cultured rainbow trout cardiac fibroblasts. ACTA ACUST UNITED AC 2017; 220:2645-2653. [PMID: 28495868 DOI: 10.1242/jeb.160093] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023]
Abstract
Cold acclimation of rainbow trout, Oncorhynchus mykiss, causes collagen to increase within the extracellular matrix (ECM) of the myocardium, while warm acclimation has the opposite effect. The mechanism responsible for this remodelling response is not known. In mammals, transforming growth factor beta-1 (TGF-β1) stimulates collagen deposition within the myocardial ECM. Therefore, we hypothesized that TGF-β1 regulates trout myocardial ECM turnover and predicted that TGF-β1 would induce collagen deposition in cultured rainbow trout cardiac fibroblasts. We found that treatment of trout cardiac fibroblasts with 15 ng ml-1 human recombinant TGF-β1 caused an increase in total collagen at 48 and 72 h and an increase in collagen type I protein after 7 days. We also found that TGF-β1 treatment caused an increase in the transcript abundance of tissue inhibitor of metalloproteinase 2 (timp-2) and matrix metalloproteinase 9 (mmp-9) at 24 h. Cells treated with TGF-β1 also had lower levels of the gene transcript for mmp-2 after 48 h and higher levels of the gene transcript for collagen type I α1 (col1a1) after 72 h. These changes in gene expression suggest that the increase in collagen deposition is due to a decrease in the activity of matrix metalloproteinases and an increase in collagen synthesis. Together, these results indicate that TGF-β1 is a regulator of ECM composition in cultured trout cardiac fibroblasts and suggest that this cytokine may play a role in regulating collagen content in the trout heart during thermal acclimation.
Collapse
Affiliation(s)
- Elizabeth F Johnston
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
20
|
Novel insights into cardiac remodelling revealed by proteomic analysis of the trout heart during exercise training. J Proteomics 2017; 161:38-46. [DOI: 10.1016/j.jprot.2017.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/27/2017] [Accepted: 03/28/2017] [Indexed: 11/20/2022]
|
21
|
Badr A, Hassinen M, El-Sayed MF, Vornanen M. Effects of seasonal acclimatization on action potentials and sarcolemmal K+ currents in roach (Rutilus rutilus) cardiac myocytes. Comp Biochem Physiol A Mol Integr Physiol 2017; 205:15-27. [DOI: 10.1016/j.cbpa.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
|
22
|
Alderman SL, Lin F, Farrell AP, Kennedy CJ, Gillis TE. Effects of diluted bitumen exposure on juvenile sockeye salmon: From cells to performance. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:354-360. [PMID: 27328800 DOI: 10.1002/etc.3533] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/28/2016] [Accepted: 06/20/2016] [Indexed: 05/25/2023]
Abstract
Diluted bitumen (dilbit; the product of oil sands extraction) is transported through freshwater ecosystems critical to Pacific salmon. This is concerning, because crude oil disrupts cardiac development, morphology, and function in embryonic fish, and cardiac impairment in salmon can have major consequences on migratory success and fitness. The sensitivity of early life-stage salmon to dilbit and its specific cardiotoxic effects are unknown. Sockeye salmon parr were exposed to environmentally relevant concentrations of the water-soluble fraction (WSF) of dilbit for 1 wk and 4 wk, followed by an examination of molecular, morphological, and organismal endpoints related to cardiotoxicity. We show that parr are sensitive to WSF of dilbit, with total polycyclic aromatic hydrocarbon (PAH) concentrations of 3.5 µg/L sufficient to induce a liver biomarker of PAH exposure, and total PAH of 16.4 µg/L and 66.7 µg/L inducing PAH biomarkers in the heart. Furthermore, WSF of dilbit induces concentration-dependent cardiac remodeling coincident with performance effects: fish exposed to 66.7 µg/L total PAH have relatively fewer myocytes and more collagen in the compact myocardium and impaired swimming performance at 4 wk, whereas the opposite changes occur in fish exposed to 3.5 µg/L total PAH. The results demonstrate cardiac sensitivity to dilbit exposure that could directly impact sockeye migratory success. Environ Toxicol Chem 2017;36:354-360. © 2016 SETAC.
Collapse
Affiliation(s)
- Sarah L Alderman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Feng Lin
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
23
|
Wells MW, Turko AJ, Wright PA. Fish embryos on land: terrestrial embryo deposition lowers oxygen uptake without altering growth or survival in the amphibious fish Kryptolebias marmoratus. ACTA ACUST UNITED AC 2017; 218:3249-56. [PMID: 26491194 DOI: 10.1242/jeb.127399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Few teleost fishes incubate embryos out of water, but the oxygen-rich terrestrial environment could provide advantages for early growth and development. We tested the hypothesis that embryonic oxygen uptake is limited in aquatic environments relative to air using the self-fertilizing amphibious mangrove rivulus, Kryptolebias marmoratus, which typically inhabits hypoxic, water-filled crab burrows. We found that adult mangrove rivulus released twice as many embryos in terrestrial versus aquatic environments and that air-reared embryos had accelerated developmental rates. Surprisingly, air-reared embryos consumed 44% less oxygen and possessed larger yolk reserves, but attained the same mass, length and chorion thickness. Water-reared embryos moved their opercula ∼2.5 more times per minute compared with air-reared embryos at 7 days post-release, which probably contributed to the higher rates of oxygen uptake and yolk utilization we observed. Genetically identical air- and water-reared embryos from the same parent were raised to maturity, but the embryonic environment did not affect growth, reproduction or emersion ability in adults. Therefore, although aspects of early development were plastic, these early differences were not sustained into adulthood. Kryptolebias marmoratus embryos hatched out of water when exposed to aerial hypoxia. We conclude that exposure to a terrestrial environment reduces the energetic costs of development partly by reducing the necessity of embryonic movements to dispel stagnant boundary layers. Terrestrial incubation of young would be especially beneficial to amphibious fishes that occupy aquatic habitats of poor water quality, assuming low terrestrial predation and desiccation risks.
Collapse
Affiliation(s)
- Michael W Wells
- Department of Integrative Biology, University of Guelph, 488 Gordon Street, Guelph, ON, Canada N1G 2W1
| | - Andy J Turko
- Department of Integrative Biology, University of Guelph, 488 Gordon Street, Guelph, ON, Canada N1G 2W1
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, 488 Gordon Street, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
24
|
Keen AN, Klaiman JM, Shiels HA, Gillis TE. Temperature-induced cardiac remodelling in fish. ACTA ACUST UNITED AC 2016; 220:147-160. [PMID: 27852752 PMCID: PMC5278617 DOI: 10.1242/jeb.128496] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thermal acclimation causes the heart of some fish species to undergo significant remodelling. This includes changes in electrical activity, energy utilization and structural properties at the gross and molecular level of organization. The purpose of this Review is to summarize the current state of knowledge of temperature-induced structural remodelling in the fish ventricle across different levels of biological organization, and to examine how such changes result in the modification of the functional properties of the heart. The structural remodelling response is thought to be responsible for changes in cardiac stiffness, the Ca2+ sensitivity of force generation and the rate of force generation by the heart. Such changes to both active and passive properties help to compensate for the loss of cardiac function caused by a decrease in physiological temperature. Hence, temperature-induced cardiac remodelling is common in fish that remain active following seasonal decreases in temperature. This Review is organized around the ventricular phases of the cardiac cycle – specifically diastolic filling, isovolumic pressure generation and ejection – so that the consequences of remodelling can be fully described. We also compare the thermal acclimation-associated modifications of the fish ventricle with those seen in the mammalian ventricle in response to cardiac pathologies and exercise. Finally, we consider how the plasticity of the fish heart may be relevant to survival in a climate change context, where seasonal temperature changes could become more extreme and variable. Summary: Thermal acclimation of some temperate fishes causes extensive remodelling of the heart. The resultant changes to the active and passive properties of the heart represent a highly integrated phenotypic response.
Collapse
Affiliation(s)
- Adam N Keen
- Division of Cardiovascular Science, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Jordan M Klaiman
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98109, USA
| | - Holly A Shiels
- Division of Cardiovascular Science, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
25
|
Vornanen M. The temperature dependence of electrical excitability in fish hearts. J Exp Biol 2016; 219:1941-52. [DOI: 10.1242/jeb.128439] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/17/2016] [Indexed: 01/08/2023]
Abstract
ABSTRACT
Environmental temperature has pervasive effects on the rate of life processes in ectothermic animals. Animal performance is affected by temperature, but there are finite thermal limits for vital body functions, including contraction of the heart. This Review discusses the electrical excitation that initiates and controls the rate and rhythm of fish cardiac contraction and is therefore a central factor in the temperature-dependent modulation of fish cardiac function. The control of cardiac electrical excitability should be sensitive enough to respond to temperature changes but simultaneously robust enough to protect against cardiac arrhythmia; therefore, the thermal resilience and plasticity of electrical excitation are physiological qualities that may affect the ability of fishes to adjust to climate change. Acute changes in temperature alter the frequency of the heartbeat and the duration of atrial and ventricular action potentials (APs). Prolonged exposure to new thermal conditions induces compensatory changes in ion channel expression and function, which usually partially alleviate the direct effects of temperature on cardiac APs and heart rate. The most heat-sensitive molecular components contributing to the electrical excitation of the fish heart seem to be Na+ channels, which may set the upper thermal limit for the cardiac excitability by compromising the initiation of the cardiac AP at high temperatures. In cardiac and other excitable cells, the different temperature dependencies of the outward K+ current and inward Na+ current may compromise electrical excitability at temperature extremes, a hypothesis termed the temperature-dependent depression of electrical excitation.
Collapse
Affiliation(s)
- Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, PO Box 111, Joensuu 80101, Finland
| |
Collapse
|
26
|
Keen AN, Fenna AJ, McConnell JC, Sherratt MJ, Gardner P, Shiels HA. The Dynamic Nature of Hypertrophic and Fibrotic Remodeling of the Fish Ventricle. Front Physiol 2016; 6:427. [PMID: 26834645 PMCID: PMC4720793 DOI: 10.3389/fphys.2015.00427] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/27/2015] [Indexed: 11/13/2022] Open
Abstract
Chronic pressure or volume overload can cause the vertebrate heart to remodel. The hearts of fish remodel in response to seasonal temperature change. Here we focus on the passive properties of the fish heart. Building upon our previous work on thermal-remodeling of the rainbow trout ventricle, we hypothesized that chronic cooling would initiate fibrotic cardiac remodeling, with increased myocardial stiffness, similar to that seen with pathological hypertrophy in mammals. We hypothesized that, in contrast to pathological hypertrophy in mammals, the remodeling response in fish would be plastic and the opposite response would occur following chronic warming. Rainbow trout held at 10°C (control group) were chronically (>8 weeks) exposed to cooling (5°C) or warming (18°C). Chronic cold induced hypertrophy in the highly trabeculated inner layer of the fish heart, with a 41% increase in myocyte bundle cross-sectional area, and an up-regulation of hypertrophic marker genes. Cold acclimation also increased collagen deposition by 1.7-fold and caused an up-regulation of collagen promoting genes. In contrast, chronic warming reduced myocyte bundle cross-sectional area, expression of hypertrophic markers and collagen deposition. Functionally, the cold-induced fibrosis and hypertrophy were associated with increased passive stiffness of the whole ventricle and with increased micromechanical stiffness of tissue sections. The opposite occurred with chronic warming. These findings suggest chronic cooling in the trout heart invokes a hypertrophic phenotype with increased cardiac stiffness and fibrosis that are associated with pathological hypertrophy in the mammalian heart. The loss of collagen and increased compliance following warming is particularly interesting as it suggests fibrosis may oscillate seasonally in the fish heart, revealing a more dynamic nature than the fibrosis associated with dysfunction in mammals.
Collapse
Affiliation(s)
- Adam N Keen
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Andrew J Fenna
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | - James C McConnell
- Faculty of Medical and Human Sciences, Centre for Tissue Injury and Repair, University of Manchester Manchester, UK
| | - Michael J Sherratt
- Faculty of Medical and Human Sciences, Centre for Tissue Injury and Repair, University of Manchester Manchester, UK
| | - Peter Gardner
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester Manchester, UK
| | - Holly A Shiels
- Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
27
|
Lee L, Genge CE, Cua M, Sheng X, Rayani K, Beg MF, Sarunic MV, Tibbits GF. Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio) to Acute and Chronic Temperature Change Using High-Resolution Echocardiography. PLoS One 2016; 11:e0145163. [PMID: 26730947 PMCID: PMC4701665 DOI: 10.1371/journal.pone.0145163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/27/2015] [Indexed: 12/21/2022] Open
Abstract
The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA- 18°C; warm acclimated WA- 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling.
Collapse
Affiliation(s)
- Ling Lee
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Child and Family Research Institute, Department of Cardiovascular Science, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Christine E. Genge
- Child and Family Research Institute, Department of Cardiovascular Science, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Michelle Cua
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Xiaoye Sheng
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Child and Family Research Institute, Department of Cardiovascular Science, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Kaveh Rayani
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mirza F. Beg
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Marinko V. Sarunic
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Glen F. Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Child and Family Research Institute, Department of Cardiovascular Science, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
28
|
Genge CE, Lin E, Lee L, Sheng X, Rayani K, Gunawan M, Stevens CM, Li AY, Talab SS, Claydon TW, Hove-Madsen L, Tibbits GF. The Zebrafish Heart as a Model of Mammalian Cardiac Function. Rev Physiol Biochem Pharmacol 2016; 171:99-136. [PMID: 27538987 DOI: 10.1007/112_2016_5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Zebrafish (Danio rerio) are widely used as vertebrate model in developmental genetics and functional genomics as well as in cardiac structure-function studies. The zebrafish heart has been increasingly used as a model of human cardiac function, in part, due to the similarities in heart rate and action potential duration and morphology with respect to humans. The teleostian zebrafish is in many ways a compelling model of human cardiac function due to the clarity afforded by its ease of genetic manipulation, the wealth of developmental biological information, and inherent suitability to a variety of experimental techniques. However, in addition to the numerous advantages of the zebrafish system are also caveats related to gene duplication (resulting in paralogs not present in human or other mammals) and fundamental differences in how zebrafish hearts function. In this review, we discuss the use of zebrafish as a cardiac function model through the use of techniques such as echocardiography, optical mapping, electrocardiography, molecular investigations of excitation-contraction coupling, and their physiological implications relative to that of the human heart. While some of these techniques (e.g., echocardiography) are particularly challenging in the zebrafish because of diminutive size of the heart (~1.5 mm in diameter) critical information can be derived from these approaches and are discussed in detail in this article.
Collapse
Affiliation(s)
- Christine E Genge
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Eric Lin
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Ling Lee
- BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - XiaoYe Sheng
- BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Kaveh Rayani
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Marvin Gunawan
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Charles M Stevens
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.,BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Alison Yueh Li
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Sanam Shafaat Talab
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Thomas W Claydon
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Leif Hove-Madsen
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.,Cardiovascular Research Centre CSIC-ICCC, Hospital de Sant Pau, Barcelona, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6. .,BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4.
| |
Collapse
|
29
|
Grunow B, Mohamet L, Shiels HA. Generating an in vitro 3D cell culture model from zebrafish larvae for heart research. ACTA ACUST UNITED AC 2015; 218:1116-21. [PMID: 25714567 DOI: 10.1242/jeb.118224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/16/2015] [Indexed: 01/12/2023]
Abstract
We describe here a novel, fast and inexpensive method for producing a 3D 'heart' structure that forms spontaneously, in vitro, from larval zebrafish (ZF). We have named these 3D 'heart' structures 'zebrafish heart aggregate(s)' (ZFHAs) and have characterised their basic morphology and structural composition using histology, immunohistochemistry, electron microscopy and mass spectrometry. After 2 days in culture, the ZFHA spontaneously form and become a stable contractile syncytium consisting of cardiac tissue derived by in vitro maturation, which beats rhythmically and consistently for more than 8 days. We propose this model as a platform technology, which can be developed further to study in vitro cardiac maturation, regeneration, tissue engineering and safety pharmacological/toxicology testing.
Collapse
Affiliation(s)
- Bianka Grunow
- Faculty of Life Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Lisa Mohamet
- Stem Cell Research Group, Faculty of Human and Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Holly A Shiels
- Faculty of Life Sciences, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
30
|
Klaiman JM, Pyle WG, Gillis TE. Cold acclimation increases cardiac myofilament function and ventricular pressure generation in trout. ACTA ACUST UNITED AC 2014; 217:4132-40. [PMID: 25278471 DOI: 10.1242/jeb.109041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reducing temperature below the optimum of most vertebrate hearts impairs contractility and reduces organ function. However, a number of fish species, including the rainbow trout, can seasonally acclimate to low temperature. Such ability requires modification of physiological systems to compensate for the thermodynamic effects of temperature on biological processes. The current study tested the hypothesis that rainbow trout compensate for the direct effect of cold temperature by increasing cardiac contractility during cold acclimation. We examined cardiac contractility, following thermal acclimation (4, 11 and 17°C), by measuring the Ca(2+) sensitivity of force generation by chemically skinned cardiac trabeculae as well as ventricular pressure generation using a modified Langendorff preparation. We demonstrate, for the first time, that the Ca(2+) sensitivity of force generation was significantly higher in cardiac trabeculae from 4°C-acclimated trout compared with those acclimated to 11 or 17°C, and that this functional change occurred in parallel with a decrease in the level of cardiac troponin T phosphorylation. In addition, we show that the magnitude and rate of ventricular pressure generation was greater in hearts from trout acclimated to 4°C compared with those from animals acclimated to 11 or 17°C. Taken together, these results suggest that enhanced myofilament function, caused by modification of existing contractile proteins, is at least partially responsible for the observed increase in pressure generation after acclimation to 4°C. In addition, by examining the phenotypic plasticity of a comparative model we have identified a strategy, used in vivo, by which the force-generating capacity of cardiac muscle can be increased.
Collapse
Affiliation(s)
- Jordan M Klaiman
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - W Glen Pyle
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|