1
|
Li J, Luo J, Wang T, Tian X, Xu C, Wang W, Zhang D. DNA methylation associated with the serum alanine aminotransferase concentration: evidence from Chinese monozygotic twins. Clin Epigenetics 2025; 17:65. [PMID: 40296130 PMCID: PMC12039056 DOI: 10.1186/s13148-025-01869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND To identify nongenetic factors influences on DNA methylation (DNAm) variations associated with blood Alanine Aminotransferase (ALT) concentration, this study conducted an epigenome-wide association study (EWAS) on Chinese monozygotic twins. METHODS A total of 61 pairs of Chinese monozygotic twins involved in this study. Whole blood samples were analyzed for DNAm profiling using the Reduced Representation Bisulfite Sequencing (RRBS) technique. We examined the relationship between DNAm levels at each CpG site and serum ALT using a linear mixed-effects model. Enrichment analysis and causal inference analysis was conducted, and differentially methylated regions (DMRs) were further identified. Candidate CpGs were validated in a community sample. Genome-wide significance were calculated by Bonferroni correction (p < 2.14 × 10-7). RESULTS We identified 85 CpGs reaching genome-wide significance (p < 2.14 × 10-7), located in 16 genes including FLT4, ADARB2, MRPS31P2, and RELB. Causal inference suggested that DNAm at 61 out of 85 significant CpGs within 14 genes influenced ALT level. 52 DMRs and 1765 pathways such as low voltage-gated calcium channel activity and focal adhesion were identified having influences on ALT levels. Further validation using community population found four CpGs mapped to FLT4 and three to RELB showing hypomethylation and hypermethylation in cases with abnormal ALT (ALT > 40 U/L), respectively. CONCLUSION This study identified several differentially methylated CpG sites associated with serum ALT in the Chinese population, particularly within FLT4 and RELB. These findings provide new insights into the epigenetic modifications underlying liver function.
Collapse
Affiliation(s)
- Jingxian Li
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Jia Luo
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Tong Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Xiaocao Tian
- Qingdao Municipal Centre for Disease Control and Prevention, No.175 Shandong Road, Qingdao, 266033, Shandong Province, People's Republic of China
| | - Chunsheng Xu
- Qingdao Municipal Centre for Disease Control and Prevention, No.175 Shandong Road, Qingdao, 266033, Shandong Province, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266071, Shandong Province, People's Republic of China.
| |
Collapse
|
2
|
Magri LV, Melchior MDO, da Silva GV, Gherardi-Donato ECDS, Leite-Panissi CRA. Phenotypes of painful TMD in discordant monozygotic twins according to a cognitive-behavioral-emotional model: a case-control study. PLoS One 2025; 20:e0320515. [PMID: 40244989 PMCID: PMC12005551 DOI: 10.1371/journal.pone.0320515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/19/2025] [Indexed: 04/19/2025] Open
Abstract
OBJECTIVES This case-control study aimed to investigate variables based on a cognitive-behavioral-emotional model related to the development of painful temporomandibular disorders (TMD) in a sample of monozygotic twins discordant for the condition. MATERIALS AND METHODS This case-control study investigated 20 monozygotic twins (10 pairs discordant for painful TMD), aged between 18 and 55. Participants were recruited through a comprehensive strategy following ethical approval, with inclusion criteria disseminated via social media, websites, local radio, messaging apps, and physical posters in public and healthcare spaces in Ribeirão Preto.The diagnosis of painful TMD was determined according to the Diagnostic Criteria for Temporomandibular Disorders - Brazilian Portuguese (DC/TMD). The cognitive-behavioral-emotional variables analyzed were a sociodemographic profile, pain sensitivity (pain threshold to pressure, allodynia, and hyperalgesia), oral behaviors, pain vigilance and awareness, pain catastrophizing, central sensitization, stress, anxiety, depression, alexithymia, mindfulness facets, sleep quality, pain control, pain intensity and interference, trigeminal and extra trigeminal pain areas. Bivariate logistic regression models were used to identify factors associated with TMD (p < 0.20), followed by multicollinearity analysis using Spearman's correlation to exclude highly correlated variables. The final multiple logistic regression model included independent predictors to ensure robustness and accurate estimates, with statistical significance set at α = 0.05. RESULTS While the adjusted model did not identify statistically significant associations, variables such as increased pain sensitivity in the masseter muscle (OR = 3.29, 95% CI: 0.17-62.8, p = 0.428), higher levels of pain catastrophizing (OR = 1.08, 95% CI: 0.64-1.8, p = 0.776), difficulty in externalizing feelings (OR = 1.61, 95% CI: 0.13-2.9, p = 0.539), and higher scores on the distraction facet of mindfulness (OR = 4.65, 95% CI: 0.39-55.7, p = 0.225) were included due to their clinical relevance and their significant associations in the bivariate analysis (p < 0.20). CONCLUSIONS Our study highlights the potential clinical relevance of cognitive-behavioral-emotional variables, such as increased pain sensitivity in the masseter muscle, higher levels of pain catastrophizing, difficulty in externalizing feelings, and higher scores on the distraction facet of mindfulness, in understanding painful TMD. While these variables did not show statistical significance in the adjusted model, their inclusion underscores the importance of exploring these factors in clinical practice. Further research is needed to validate these findings and clarify their role in the development and management of painful TMD. CLINICAL RELEVANCE This study underscores the importance of cognitive-behavioral-emotional factors in the context of painful TMD, suggesting that variables like pain sensitivity and emotional regulation may be valuable for clinical assessment and management strategies. Despite the lack of statistically significant associations, these findings provide a foundation for future research to better understand and address the multidimensional nature of TMD in clinical practice.
Collapse
Affiliation(s)
- Laís Valencise Magri
- Departamento de Psicologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
- Departamento de Odontologia Restauradora, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Melissa de Oliveira Melchior
- Departamento de Odontologia Restauradora, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
- Departamento de Enfermagem Psiquiátrica, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, PAHO/WHO Collaborating Centre for Nursing Research Development, Ribeirão Preto, São Paulo, Brasil
| | - Graziela Valle da Silva
- Departamento de Enfermagem Psiquiátrica, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, PAHO/WHO Collaborating Centre for Nursing Research Development, Ribeirão Preto, São Paulo, Brasil
| | - Edilaine Cristina da Silva Gherardi-Donato
- Departamento de Enfermagem Psiquiátrica, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, PAHO/WHO Collaborating Centre for Nursing Research Development, Ribeirão Preto, São Paulo, Brasil
| | - Christie Ramos Andrade Leite-Panissi
- Departamento de Psicologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| |
Collapse
|
3
|
Qi X, Wang J, Wang T, Wang W, Zhang D. Epigenome-wide association study of Chinese monozygotic twins identifies DNA methylation loci associated with estimated glomerular filtration rate. J Transl Med 2025; 23:101. [PMID: 39844292 PMCID: PMC11752939 DOI: 10.1186/s12967-025-06067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND DNA methylation (DNAm) has been shown in multiple studies to be associated with the estimated glomerular filtration rate (eGFR). However, studies focusing on Chinese populations are lacking. We conducted an epigenome-wide association study to investigate the association between DNAm and eGFR in Chinese monozygotic twins. METHODS Genome-wide DNAm level was detected using Reduced Representation Bisulfite Sequencing test. Generalized estimation equation (GEE) was used to examine the association between Cytosine-phosphate-Guanines (CpGs) DNAm and eGFR. Inference about Causation from Examination of FAmiliaL CONfounding was employed to infer the causal relationship. The comb-p was used to identify differentially methylated regions (DMRs). GeneMANIA was used to analyze the gene interaction network. The Genomic Regions Enrichment of Annotations Tool enriched biological functions and pathways. Gene expression profiling sequencing was employed to measure mRNA expression levels, and the GEE model was used to investigate the association between gene expression and eGFR. The candidate gene was validated in a community population by calculating the methylation risk score (MRS). RESULTS A total of 80 CpGs and 28 DMRs, located at genes such as OLIG2, SYNGR3, LONP1, CDCP1, and SHANK1, achieved genome-wide significance level (FDR < 0.05). The causal effect of DNAm on eGFR was supported by 12 CpGs located at genes such as SYNGR3 and C9orf3. In contrast, the causal effect of eGFR on DNAm is proved by 13 CpGs located at genes such as EPHB3 and MLLT1. Enrichment analysis revealed several important biological functions and pathways related to eGFR, including alpha-2A adrenergic receptor binding pathway and corticotropin-releasing hormone receptor activity pathway. GeneMANIA results showed that SYNGR3 was co-expressed with MLLT1 and had genetic interactions with AFF4 and EDIL3. Gene expression analysis found that SYNGR3 expression was negatively associated with eGFR. Validation analysis showed that the MRS of SYNGR3 was positively associated with low eGFR levels. CONCLUSIONS We identified a set of CpGs, DMRs, and pathways potentially associated with eGFR, particularly in the SYNGR3 gene. These findings provided new insights into the epigenetic modifications related to the decline in eGFR and chronic kidney disease.
Collapse
Affiliation(s)
- Xueting Qi
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Jingjing Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Tong Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Xing F, Han F, Wu Y, Lv B, Tian H, Wang W, Tian X, Xu C, Duan H, Zhang D, Wu Y. An epigenome-wide association study of waist circumference in Chinese monozygotic twins. Int J Obes (Lond) 2024; 48:1148-1156. [PMID: 38773251 DOI: 10.1038/s41366-024-01538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVES Central obesity poses significant health risks because it increases susceptibility to multiple chronic diseases. Epigenetic features such as DNA methylation may be associated with specific obesity traits, which could help us understand how genetic and environmental factors interact to influence the development of obesity. This study aims to identify DNA methylation sites associated with the waist circumference (WC) in Northern Han Chinese population, and to elucidate potential causal relationships. METHODS A total of 59 pairs of WC discordant monozygotic twins (ΔWC >0) were selected from the Qingdao Twin Registry in China. Generalized estimated equation model was employed to estimate the methylation levels of CpG sites on WC. Causal relationships between methylation and WC were assessed through the examination of family confounding factors using FAmiliaL CONfounding (ICE FALCON). Additionally, the findings of the epigenome-wide analysis were corroborated in the validation stage. RESULTS We identified 26 CpG sites with differential methylation reached false discovery rate (FDR) < 0.05 and 22 differentially methylated regions (slk-corrected p < 0.05) strongly linked to WC. These findings provided annotations for 26 genes, with notable emphasis on MMP17, ITGA11, COL23A1, TFPI, A2ML1-AS1, MRGPRE, C2orf82, and NINJ2. ICE FALCON analysis indicated the DNA methylation of ITGA11 and TFPI had a causal effect on WC and vice versa (p < 0.05). Subsequent validation analysis successfully replicated 10 (p < 0.05) out of the 26 identified sites. CONCLUSIONS Our research has ascertained an association between specific epigenetic variations and WC in the Northern Han Chinese population. These DNA methylation features can offer fresh insights into the epigenetic regulation of obesity and WC as well as hints to plausible biological mechanisms.
Collapse
Affiliation(s)
- Fangjie Xing
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Fulei Han
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Yan Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Bosen Lv
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Huimin Tian
- Zhonglou District Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Liu J, Wang W, Luo J, Duan H, Xu C, Tian X, Chen S, Ge L, Zhang D. Mediation role of DNA methylation in association between handgrip strength and cognitive function in monozygotic twins. J Hum Genet 2024; 69:357-363. [PMID: 38649436 DOI: 10.1038/s10038-024-01247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Handgrip strength is a crucial indicator to monitor the change of cognitive function over time, but its mechanism still needs to be further explored. We sampled 59 monozygotic twin pairs to explore the potential mediating effect of DNA methylation (DNAm) on the association between handgrip strength and cognitive function. The initial step was the implementation of an epigenome-wide association analysis (EWAS) in the study participants, with the aim of identifying DNAm variations that are associated with handgrip strength. Following that, we conducted an assessment of the mediated effect of DNAm by the use of mediation analysis. In order to do an ontology enrichment study for CpGs, the GREAT program was used. There was a significant positive association between handgrip strength and cognitive function (β = 0.194, P < 0.001). The association between handgrip strength and DNAm of 124 CpGs was found to be statistically significant at a significance level of P < 1 × 10-4. Fifteen differentially methylated regions (DMRs) related to handgrip strength were found in genes such as SNTG2, KLB, CDH11, and PANX2. Of the 124 CpGs, 4 within KRBA1, and TRAK1 mediated the association between handgrip strength and cognitive function: each 1 kg increase in handgrip strength was associated with a potential decrease of 0.050 points in cognitive function scores, mediated by modifications in DNAm. The parallel mediating effect of these 4 CpGs was -0.081. The presence of DNAm variation associated with handgrip strength may play a mediated role in the association between handgrip strength and cognitive function.
Collapse
Affiliation(s)
- Jin Liu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| | - Jia Luo
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Shumin Chen
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| | - Lin Ge
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Luo J, Wang W, Li J, Duan H, Xu C, Tian X, Zhang D. Epigenome-wide association study identifies DNA methylation loci associated with handgrip strength in Chinese monozygotic twins. Front Cell Dev Biol 2024; 12:1378680. [PMID: 38633108 PMCID: PMC11021642 DOI: 10.3389/fcell.2024.1378680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Background: The decline in muscle strength and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report the epigenetic relationship between genome-wide DNA methylation and handgrip strength (HGS) among Chinese monozygotic (MZ) twins. Methods: DNA methylation (DNAm) profiling was conducted in whole blood samples through Reduced Representation Bisulfite Sequencing method. Generalized estimating equation was applied to regress the DNAm of each CpG with HGS. The Genomic Regions Enrichment of Annotations Tool was used to perform enrichment analysis. Differentially methylated regions (DMRs) were detected using comb-p. Causal inference was performed using Inference about Causation through Examination of Familial Confounding method. Finally, we validated candidate CpGs in community residents. Results: We identified 25 CpGs reaching genome-wide significance level. These CpGs located in 9 genes, especially FBLN1, RXRA, and ABHD14B. Many enriched terms highlighted calcium channels, neuromuscular junctions, and skeletal muscle organ development. We identified 21 DMRs of HGS, with several DMRs within FBLN1, SLC30A8, CST3, and SOCS3. Causal inference indicated that the DNAm of 16 top CpGs within FBLN1, RXRA, ABHD14B, MFSD6, and TYW1B might influence HGS, while HGS influenced DNAm at two CpGs within FBLN1 and RXRA. In validation analysis, methylation levels of six CpGs mapped to FLBN1 and one CpG mapped to ABHD14B were negatively associated with HGS weakness in community population. Conclusion: Our study identified multiple DNAm variants potentially related to HGS, especially CpGs within FBLN1 and ABHD14B. These findings provide new clues to the epigenetic modification underlying muscle strength decline.
Collapse
Affiliation(s)
- Jia Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jingxian Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, Shandong, China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, Shandong, China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Xiaocao Tian
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, Shandong, China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Yao J, Ning F, Wang W, Zhang D. DNA Methylation Mediated the Association of Body Mass Index With Blood Pressure in Chinese Monozygotic Twins. Twin Res Hum Genet 2024; 27:18-29. [PMID: 38291711 DOI: 10.1017/thg.2024.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Obesity is an established risk factor for hypertension, but the mechanisms are only partially understood. We examined whether body mass index (BMI)-related DNA methylation (DNAm) variation would mediate the association of BMI with blood pressure (BP). We first conducted a genomewide DNA methylation analysis in monozygotic twin pairs to detect BMI-related DNAm variation and then evaluated the mediating effect of DNAm on the relationship between BMI and BP levels using the causal inference test (CIT) method and mediation analysis. Ontology enrichment analysis was performed for CpGs using the GREAT tool. A total of 60 twin pairs for BMI and systolic blood pressure (SBP) and 58 twin pairs for BMI and diastolic blood pressure (DBP) were included. BMI was positively associated with SBP (β = 1.86, p = .0004). The association between BMI and DNAm of 85 CpGs reached p < 1×10-4 level. Eleven BMI-related differentially methylated regions (DMRs) within LNCPRESS1, OGDHL, RNU1-44P, NPHS1, ECEL1P2, LLGL2, RNY4P15, MOGAT3, PHACTR3, and BAI2 were found. Of the 85 CpGs, 9 mapped to C10orf71-AS1, NDUFB5P1, KRT80, BAI2, ABCA2, PEX11G and FGF4 were significantly associated with SBP levels. Of the 9 CpGs, 2 within ABCA2 negatively mediated the association between BMI and SBP, with a mediating effect of -0.24 (95% CI [-0.65, -0.01]). BMI was also positively associated with DBP (β = 0.60, p = .0495). The association between BMI and DNAm of 193 CpGs reached p < 1×10-4 level. Twenty-five BMI-related DMRs within OGDHL, POU4F2, ECEL1P2, TTC6, SMPD4, EP400, TUBA1C and AGAP2 were found. Of the 193 CpGs, 33 mapped to ABCA2, ADORA2B, CTNNBIP1, KDM4B, NAA60, RSPH6A, SLC25A19 and STIL were significantly associated with DBP levels. Of the 33 CpGs, 12 within ABCA2, SLC25A19, KDM4B, PTPRN2, DNASE1, TFCP2L1, LMNB2 and C10orf71-AS1 negatively mediated the association between BMI and DBP, with a total mediation effect of -0.66 (95% CI [-1.07, -0.30]). Interestingly, BMI might also negatively mediate the association between the DNAm of most CpG mediators mentioned above and BP. The mediating effect of DNAm was also found when stratified by sex. In conclusion, DNAm variation may partially negatively mediate the association of BMI with BP. Our findings may provide new clues to further elucidate the pathogenesis of obesity to hypertension and identify new diagnostic biomarkers and therapeutic targets for hypertension.
Collapse
Affiliation(s)
- Jie Yao
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
- Jiangsu Health Development Research Center, Nanjing, Jiangsu Province, China
| | - Feng Ning
- Qingdao Centers for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Yang C, Xiao Y, Wang X, Wei X, Wang J, Gao Y, Jiang Q, Ju Z, Zhang Y, Liu W, Huang N, Li Y, Gao Y, Wang L, Huang J. Coordinated alternation of DNA methylation and alternative splicing of PBRM1 affect bovine sperm structure and motility. Epigenetics 2023; 18:2183339. [PMID: 36866611 PMCID: PMC9988346 DOI: 10.1080/15592294.2023.2183339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
DNA methylation and gene alternative splicing drive spermatogenesis. In screening DNA methylation markers and transcripts related to sperm motility, semen from three pairs of full-sibling Holstein bulls with high and low motility was subjected to reduced representation bisulphite sequencing. A total of 948 DMRs were found in 874 genes (gDMRs). Approximately 89% of gDMR-related genes harboured alternative splicing events, including SMAD2, KIF17, and PBRM1. One DMR in exon 29 of PBRM1 with the highest 5mC ratio was found, and hypermethylation in this region was related to bull sperm motility. Furthermore, alternative splicing events at exon 29 of PBRM1 were found in bull testis, including PBRM1-complete, PBRM1-SV1 (exon 28 deletion), and PBRM1-SV2 (exons 28-29 deletion). PBRM1-SV2 exhibited significantly higher expression in adult bull testes than in newborn bull testes. In addition, PBRM1 was localized to the redundant nuclear membrane of bull sperm, which might be related to sperm motility caused by sperm tail breakage. Therefore, the hypermethylation of exon 29 may be associated with the production of PBRM1-SV2 in spermatogenesis. These findings indicated that DNA methylation alteration at specific loci could regulate gene splicing and expression and synergistically alter sperm structure and motility.
Collapse
Affiliation(s)
- Chunhong Yang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Xiuge Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Xiaochao Wei
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Jinpeng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Yaping Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Qiang Jiang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Zhihua Ju
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China.,College of Life Sciences, Shandong Normal University, Jinan, P. R. China
| | - Yaran Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Wenhao Liu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Ning Huang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Yanqin Li
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Yundong Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Lingling Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Jinming Huang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China.,College of Life Sciences, Shandong Normal University, Jinan, P. R. China
| |
Collapse
|
9
|
Wang W, Yao W, Tan Q, Li S, Duan H, Tian X, Xu C, Zhang D. Identification of key DNA methylation changes on fasting plasma glucose: a genome-wide DNA methylation analysis in Chinese monozygotic twins. Diabetol Metab Syndr 2023; 15:159. [PMID: 37461060 PMCID: PMC10351111 DOI: 10.1186/s13098-023-01136-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Elevated fasting plasma glucose (FPG) levels can increase morbidity and mortality even when it is below the diagnostic threshold of type 2 diabetes mellitus (T2DM). We conducted a genome-wide DNA methylation analysis to detect DNA methylation (DNAm) variants potentially related to FPG in Chinese monozygotic twins. METHODS Genome-wide DNA methylation profiling in whole blood of twins was performed using Reduced Representation Bisulfite Sequencing (RRBS), yielding 551,447 raw CpGs. Association between DNAm of single CpG and FPG was tested using a generalized estimation equation. Differentially methylated regions (DMRs) were identified using comb-P approach. ICE FALCON method was utilized to perform the causal inference. Candidate CpGs were quantified and validated using Sequenom MassARRAY platform in a community population. Weighted gene co-expression network analysis (WGCNA) was conducted using gene expression data from twins. RESULTS The mean age of 52 twin pairs was 52 years (SD: 7). The relationship between DNAm of 142 CpGs and FPG reached the genome-wide significance level. Thirty-two DMRs within 24 genes were identified, including TLCD1, MRPS31P5, CASZ1, and CXADRP3. The causal relationship of top CpGs mapped to TLCD1, MZF1, PTPRN2, SLC6A18, ASTN2, IQCA1, GRIN1, and PDE2A genes with FPG were further identified using ICE FALCON method. Pathways potentially related to FPG were also identified, such as phospholipid-hydroperoxide glutathione peroxidase activity and mitogen-activated protein kinase p38 binding. Three CpGs mapped to SLC6A18 gene were validated in a community population, with a hypermethylated direction in diabetic patients. The expression levels of 18 genes (including SLC6A18 and TLCD1) were positively correlated with FPG levels. CONCLUSIONS We detect many DNAm variants that may be associated with FPG in whole blood, particularly the loci within SLC6A18 gene. Our findings provide important reference for the epigenetic regulation of elevated FPG levels and diabetes.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071 Shandong Province China
| | - Wenqin Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071 Shandong Province China
- Shandong Province Center for Disease Control and Prevention, Shandong, China
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Shuxia Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071 Shandong Province China
| |
Collapse
|
10
|
Yazar V, Ruf WP, Knehr A, Günther K, Ammerpohl O, Danzer KM, Ludolph AC. DNA Methylation Analysis in Monozygotic Twins Discordant for ALS in Blood Cells. Epigenet Insights 2023; 16:25168657231172159. [PMID: 37152709 PMCID: PMC10161312 DOI: 10.1177/25168657231172159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023] Open
Abstract
ALS is a fatal motor neuron disease that displays a broad variety of phenotypes ranging from early fatal courses to slowly progressing and rather benign courses. Such divergence can also be seen in genetic ALS cases with varying phenotypes bearing specific mutations, suggesting epigenetic mechanisms like DNA methylation act as disease modifiers. However, the epigenotype dictated by, in addition to other mechanisms, DNA methylation is also strongly influenced by the individual's genotype. Hence, we performed a DNA methylation study using EPIC arrays on 7 monozygotic (MZ) twin pairs discordant for ALS in whole blood, which serves as an ideal model for eliminating the effects of the genetic-epigenetic interplay to a large extent. We found one CpG site showing intra-pair hypermethylation in the affected co-twins, which maps to the Glutamate Ionotropic Receptor Kainate Type Subunit 1 gene (GRIK1). Additionally, we found 4 DMPs which were subsequently confirmed using 2 different statistical approaches. Differentially methylated regions or blocks could not be detected within the scope of this work. In conclusion, we revealed that despite a low sample size, monozygotic twin studies discordant for the disease can bring new insights into epigenetic processes in ALS, pointing to new target loci for further investigations.
Collapse
Affiliation(s)
- Volkan Yazar
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Wolfgang P Ruf
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Antje Knehr
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Kornelia Günther
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Karin M Danzer
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Albert C Ludolph
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
11
|
Wang W, Yao J, Li W, Wu Y, Duan H, Xu C, Tian X, Li S, Tan Q, Zhang D. Epigenome-wide association study in Chinese monozygotic twins identifies DNA methylation loci associated with blood pressure. Clin Epigenetics 2023; 15:38. [PMID: 36869404 PMCID: PMC9985232 DOI: 10.1186/s13148-023-01457-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Hypertension is a crucial risk factor for developing cardiovascular disease and reducing life expectancy. We aimed to detect DNA methylation (DNAm) variants potentially related to systolic blood pressure (SBP) and diastolic blood pressure (DBP) by conducting epigenome-wide association studies in 60 and 59 Chinese monozygotic twin pairs, respectively. METHODS Genome-wide DNA methylation profiling in whole blood of twins was performed using Reduced Representation Bisulfite Sequencing, yielding 551,447 raw CpGs. Association between DNAm of single CpG and blood pressure was tested by applying generalized estimation equation. Differentially methylated regions (DMRs) were identified by comb-P approach. Inference about Causation through Examination of Familial Confounding was utilized to perform the causal inference. Ontology enrichment analysis was performed using Genomic Regions Enrichment of Annotations Tool. Candidate CpGs were quantified using Sequenom MassARRAY platform in a community population. Weighted gene co-expression network analysis (WGCNA) was conducted using gene expression data. RESULTS The median age of twins was 52 years (95% range 40, 66). For SBP, 31 top CpGs (p < 1 × 10-4) and 8 DMRs were identified, with several DMRs within NFATC1, CADM2, IRX1, COL5A1, and LRAT. For DBP, 43 top CpGs (p < 1 × 10-4) and 12 DMRs were identified, with several DMRs within WNT3A, CNOT10, and DAB2IP. Important pathways, such as Notch signaling pathway, p53 pathway by glucose deprivation, and Wnt signaling pathway, were significantly enriched for SBP and DBP. Causal inference analysis suggested that DNAm at top CpGs within NDE1, MYH11, SRRM1P2, and SMPD4 influenced SBP, while SBP influenced DNAm at CpGs within TNK2. DNAm at top CpGs within WNT3A influenced DBP, while DBP influenced DNAm at CpGs within GNA14. Three CpGs mapped to WNT3A and one CpG mapped to COL5A1 were validated in a community population, with a hypermethylated and hypomethylated direction in hypertension cases, respectively. Gene expression analysis by WGCNA further identified some common genes and enrichment terms. CONCLUSION We detect many DNAm variants that may be associated with blood pressure in whole blood, particularly the loci within WNT3A and COL5A1. Our findings provide new clues to the epigenetic modification underlying hypertension pathogenesis.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, Shandong, China
| | - Jie Yao
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, Shandong, China
- Jiangsu Health Development Research Center, Nanjing, Jiangsu, China
| | - Weilong Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Shuxia Li
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Qihua Tan
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, Shandong, China.
| |
Collapse
|
12
|
Wang W, Li W, Duan H, Xu C, Tian X, Li S, Tan Q, Zhang D. Mediation by DNA methylation on the association of BMI and serum uric acid in Chinese monozygotic twins. Gene 2023; 850:146957. [PMID: 36243213 DOI: 10.1016/j.gene.2022.146957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 02/13/2023]
Abstract
Obesity is an established risk factor for hyperuricemia, but the mechanisms are only partially understood. We examined whether BMI-related DNA methylation (DNAm) variation would mediate the association of BMI with serum uric acid (SUA). We first conducted an epigenome-wide association analysis (EWAS) in 64 monozygotic twin pairs to detect BMI-related DNAm variation and then evaluated the mediated effect of DNAm using mediation analysis. Ontology enrichments analysis was performed for CpGs using GREAT tool. The genes where the candidate CpG mediators mapped were validated using gene expression data. BMI was positively associated with log10 transformed SUA level (β = 0.01, P < 0.001). The association between BMI and DNAm of 138 CpGs reached P < 1 × 10-4 level. Twenty BMI-related differentially methylated regions within MAP2K2, POU4F2, AGAP2, MRGPRE, ADM5, and NKX1-1 were found. Of the 138 CpGs, 4 within VENTX (involved in cellular responses to stress pathway), SMOC2 (enable calcium ion binding), and FSCN2 (a member of fascin protein family) mediated the association between BMI and SUA, with a mediating effect of 0.002-μmol/L lower log10 transformed SUA levels and a proportion of 18.89 %-24.92 % negative mediating effect. BMI × DNAm interactions on SUA were observed for 2 CpGs within VENTX. The gene expression level of VENTX was also negatively associated with SUA level. BMI-related DNAm variation may partially mediate the association of BMI with SUA.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China.
| | - Weilong Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Finland.
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Shuxia Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Suseelan S, Pinna G. Heterogeneity in major depressive disorder: The need for biomarker-based personalized treatments. Adv Clin Chem 2022; 112:1-67. [PMID: 36642481 DOI: 10.1016/bs.acc.2022.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major Depressive Disorder (MDD) or depression is a pathological mental condition affecting millions of people worldwide. Identification of objective biological markers of depression can provide for a better diagnostic and intervention criteria; ultimately aiding to reduce its socioeconomic health burden. This review provides a comprehensive insight into the major biomarker candidates that have been implicated in depression neurobiology. The key biomarker categories are covered across all the "omics" levels. At the epigenomic level, DNA-methylation, non-coding RNA and histone-modifications have been discussed in relation to depression. The proteomics system shows great promise with inflammatory markers as well as growth factors and neurobiological alterations within the endocannabinoid system. Characteristic lipids implicated in depression together with the endocrine system are reviewed under the metabolomics section. The chapter also examines the novel biomarkers for depression that have been proposed by studies in the microbiome. Depression affects individuals differentially and explicit biomarkers identified by robust research criteria may pave the way for better diagnosis, intervention, treatment, and prediction of treatment response.
Collapse
Affiliation(s)
- Shayam Suseelan
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
14
|
Wu Y, Tian H, Wang W, Li W, Duan H, Zhang D. DNA methylation and waist-to-hip ratio: an epigenome-wide association study in Chinese monozygotic twins. J Endocrinol Invest 2022; 45:2365-2376. [PMID: 35882828 DOI: 10.1007/s40618-022-01878-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Epigenetic signatures such as DNA methylation may be associated with specific obesity traits. We performed an epigenome-wide association study (EWAS) by combining with the waist-to-hip ratio (WHR)-discordant monozygotic (MZ) twin design in an attempt to identify genetically independent DNA methylation marks associated with abdominal obesity in Northern Han Chinese and to determine the causation underlying. METHODS A total of 60 WHR discordant MZ twin pairs were selected from the Qingdao Twin Registry, China. Generalized estimated equation (GEE) model was used to regress the methylation level of CpG sites on WHR. The Inference about Causation through Examination of FAmiliaL CONfounding (ICE FALCON) was used to assess the temporal relationship between methylation and WHR. Gene expression analysis was conducted to validate the results of differentially methylated analyses. RESULTS EWAS identified 92 CpG sites with the level of P < 10 - 4 which were annotated to 32 genes, especially CADPS2, TUSC5, ZCCHC14, CORO7, COL23A1, CACNA1C, CYP26B1, and BCAT1. ICE FALCON showed significant causality between DNA methylation of several genes and WHR (P < 0.05). In region-based analysis, 14 differentially methylated regions (DMRs) located at 15 genes (slk-corrected P < 0.05) were detected. The gene expression analysis identified the significant correlation between expression levels of 5 differentially methylated genes and WHR (P < 0.05). CONCLUSIONS Our study identifies the associations between specific epigenetic variations and WHR in Northern Han Chinese. These DNA methylation signatures may have value as diagnostic biomarkers and provide novel insights into the molecular mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Y Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, NO. 308 Ningxia Road, 266071, Qingdao, Shandong, China.
| | - H Tian
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, NO. 308 Ningxia Road, 266071, Qingdao, Shandong, China
| | - W Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, NO. 308 Ningxia Road, 266071, Qingdao, Shandong, China
| | - W Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - H Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - D Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, NO. 308 Ningxia Road, 266071, Qingdao, Shandong, China
| |
Collapse
|
15
|
Guo L, Wang W, Song W, Cao H, Tian H, Wang Z, Ren J, Ning F, Zhang D, Duan H. Genome-wide DNA methylation analysis of middle-aged and elderly monozygotic twins with age-related hearing loss in Qingdao, China. Gene 2022; 849:146918. [PMID: 36179964 DOI: 10.1016/j.gene.2022.146918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the differences in DNA methylation associated with age-related hearing loss in a study of 57 twin pairs from China. DESIGN Monozygotic twins were identified through the Qingdao Twin Registration system. The median age of participants was >50 years. Their hearing thresholds were measured using a multilevel pure-tone audiometry assessment. The pure-tone audiometry was calculated at low frequencies (0.5, 1.0, and 2.0 kHz), speech frequencies (0.5, 1.0, 2.0, and 4.0kHz), and high frequencies (4.0 and 8 kHz). The CpG sites were tested using a linear mixed-effects model, and the function of the cis-regulatory regions and ontological enrichments were predicted using the online Genomic Regions Enrichment of Annotations Tool. The differentially methylated regions were identified using a comb-p python library approach. RESULTS In each of the PTA categories (low-, speech-, high-frequency), age-related hearing loss was detected in 25.9%, 19.3%, and 52.8% of participants. In the low-, speech- and high-frequency categories we identified 18, 42, and 12 individual CpG sites and 6, 11, and 6 differentially methylated regions. The CpG site located near DUSP4 had the strongest association with low- and speech-frequency, while the strongest association with high-frequency was near C21orf58. We identified associations of ALG10 with high-frequency hearing, C3 and LCK with low- and speech-frequency hearing, and GBX2 with low-frequency hearing. Top pathways that may be related to hearing, such as the Notch signaling pathway, were also identified. CONCLUSION Our study is the first of its kind to identify these genes and their associated with DNA methylation may play essential roles in the hearing process. The results of our epigenome-wide association study on twins clarify the complex mechanisms underlying age-related hearing loss.
Collapse
Affiliation(s)
- Longzi Guo
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Wanxue Song
- Qingdao Maternal and Child Health and Family Planning Service Center, Qingdao, China
| | - Hainan Cao
- Department of Otorhinolaryngology, Qingdao Municipal Hospital, Qingdao, China
| | - Huimin Tian
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Zhaoguo Wang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Jifeng Ren
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Feng Ning
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China.
| |
Collapse
|
16
|
Lee JS, Jaini PA, Papa F. An Epigenetic Perspective on Lifestyle Medicine for Depression: Implications for Primary Care Practice. Am J Lifestyle Med 2022; 16:76-88. [PMID: 35185430 PMCID: PMC8848122 DOI: 10.1177/1559827620954779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 06/16/2024] Open
Abstract
Depression is the most common presenting mental health disorder in primary care. It is also a major contributor to somatic complaints, worsening of chronic medical conditions, poor quality of life, and suicide. Current pharmacologic and psychotherapeutic approaches avert less than half of depression's cumulative burden on society. However, there is a growing body of research describing both how maladaptive lifestyle choices contribute to the development and worsening of depression and how lifestyle-oriented medical interventions can reduce the incidence and severity of depression. This research, largely derived from an emerging field called epigenetics, elucidates the interactions between our lifestyle choices and those epigenetic factors which mediate our tendencies toward either health, or the onset, if not worsening of disease. The present review highlights how lifestyle choices involving diet, physical activity, sleep, social relationships, and stress influence epigenetic processes positively or negatively, and thereby play a significant role in determining whether one does or does not suffer from depression. The authors propose that medical training programs consider and adopt lifestyle medicine oriented instructional initiatives that will enable tomorrow's primary care providers to more effectively identify and therapeutically intervene in the maladaptive choices contributing to their patients' depression.
Collapse
Affiliation(s)
- Jenny Sunghyun Lee
- Jenny Sunghyun Lee, Department of Preventive Medicine, Loma Linda University Medical School, 24785 Stewart Street, Loma Linda, CA 92350; e-mail:
| | - Paresh Atu Jaini
- Department of Preventive Medicine, Loma Linda University Medical School, Loma Linda, California (JSL)
- Department of Psychiatry, John Peter Smith Hospital, Fort Worth, Texas (PAJ)
- Department of Medical Education, University of North Texas Health Science Center, Fort Worth, Texas (FP)
| | - Frank Papa
- Department of Preventive Medicine, Loma Linda University Medical School, Loma Linda, California (JSL)
- Department of Psychiatry, John Peter Smith Hospital, Fort Worth, Texas (PAJ)
- Department of Medical Education, University of North Texas Health Science Center, Fort Worth, Texas (FP)
| |
Collapse
|
17
|
Zou Y, Li JJ, Xue W, Kong X, Duan H, Li Y, Wei L. Epigenetic Modifications and Therapy in Uveitis. Front Cell Dev Biol 2021; 9:758240. [PMID: 34869347 PMCID: PMC8636745 DOI: 10.3389/fcell.2021.758240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Uveitis is a sight-threatening intraocular inflammation, and the exact pathogenesis of uveitis is not yet clear. Recent studies, including multiple genome-wide association studies (GWASs), have identified genetic variations associated with the onset and progression of different types of uveitis, such as Vogt–Koyanagi–Harada (VKH) disease and Behcet’s disease (BD). However, epigenetic regulation has been shown to play key roles in the immunoregulation of uveitis, and epigenetic therapies are promising treatments for intraocular inflammation. In this review, we summarize recent advances in identifying epigenetic programs that cooperate with the physiology of intraocular immune responses and the pathology of intraocular inflammation. These attempts to understand the epigenetic mechanisms of uveitis may provide hope for the future development of epigenetic therapies for these devastating intraocular inflammatory conditions.
Collapse
Affiliation(s)
- Yanli Zou
- Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China.,State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Wei Xue
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Xiangbin Kong
- Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Hucheng Duan
- Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Yiqun Li
- Department of Orthopaedics, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Campagna MP, Xavier A, Lechner-Scott J, Maltby V, Scott RJ, Butzkueven H, Jokubaitis VG, Lea RA. Epigenome-wide association studies: current knowledge, strategies and recommendations. Clin Epigenetics 2021; 13:214. [PMID: 34863305 PMCID: PMC8645110 DOI: 10.1186/s13148-021-01200-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
The aetiology and pathophysiology of complex diseases are driven by the interaction between genetic and environmental factors. The variability in risk and outcomes in these diseases are incompletely explained by genetics or environmental risk factors individually. Therefore, researchers are now exploring the epigenome, a biological interface at which genetics and the environment can interact. There is a growing body of evidence supporting the role of epigenetic mechanisms in complex disease pathophysiology. Epigenome-wide association studies (EWASes) investigate the association between a phenotype and epigenetic variants, most commonly DNA methylation. The decreasing cost of measuring epigenome-wide methylation and the increasing accessibility of bioinformatic pipelines have contributed to the rise in EWASes published in recent years. Here, we review the current literature on these EWASes and provide further recommendations and strategies for successfully conducting them. We have constrained our review to studies using methylation data as this is the most studied epigenetic mechanism; microarray-based data as whole-genome bisulphite sequencing remains prohibitively expensive for most laboratories; and blood-based studies due to the non-invasiveness of peripheral blood collection and availability of archived DNA, as well as the accessibility of publicly available blood-cell-based methylation data. Further, we address multiple novel areas of EWAS analysis that have not been covered in previous reviews: (1) longitudinal study designs, (2) the chip analysis methylation pipeline (ChAMP), (3) differentially methylated region (DMR) identification paradigms, (4) methylation quantitative trait loci (methQTL) analysis, (5) methylation age analysis and (6) identifying cell-specific differential methylation from mixed cell data using statistical deconvolution.
Collapse
Affiliation(s)
- Maria Pia Campagna
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexandre Xavier
- Centre for Information Based Medicine, Hunter Medical Research Institute, Newcastle, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Jeannette Lechner-Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Department of Neurology, Division of Medicine, John Hunter Hospital, Newcastle, Australia
| | - Vicky Maltby
- Centre for Information Based Medicine, Hunter Medical Research Institute, Newcastle, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Rodney J Scott
- Centre for Information Based Medicine, Hunter Medical Research Institute, Newcastle, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Division of Molecular Medicine, New South Wales Health Pathology North, Newcastle, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Rodney A Lea
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
19
|
A Critical Review of Statistical Methods for Twin Studies Relating Exposure to Early Life Health Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312696. [PMID: 34886424 PMCID: PMC8657152 DOI: 10.3390/ijerph182312696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022]
Abstract
When investigating disease etiology, twin data provide a unique opportunity to control for confounding and disentangling the role of the human genome and exposome. However, using appropriate statistical methods is fundamental for exploiting such potential. We aimed to critically review the statistical approaches used in twin studies relating exposure to early life health conditions. We searched PubMed, Scopus, Web of Science, and Embase (2011–2021). We identified 32 studies and nine classes of methods. Five were conditional approaches (within-pair analyses): additive-common-erratic (ACE) models (11 studies), generalized linear mixed models (GLMMs, five studies), generalized linear models (GLMs) with fixed pair effects (four studies), within-pair difference analyses (three studies), and paired-sample tests (two studies). Four were marginal approaches (unpaired analyses): generalized estimating equations (GEE) models (five studies), GLMs with cluster-robust standard errors (six studies), GLMs (one study), and independent-sample tests (one study). ACE models are suitable for assessing heritability but require adaptations for binary outcomes and repeated measurements. Conditional models can adjust by design for shared confounders, and GLMMs are suitable for repeated measurements. Marginal models may lead to invalid inference. By highlighting the strengths and limitations of commonly applied statistical methods, this review may be helpful for researchers using twin designs.
Collapse
|
20
|
Sun S, Kuja‐Halkola R, Chang Z, Cortese S, Almqvist C, Larsson H. Familial liability to asthma and ADHD: A Swedish national register-based study. JCPP ADVANCES 2021; 1:e12044. [PMID: 37431403 PMCID: PMC10242819 DOI: 10.1002/jcv2.12044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
Background Studies have reported significant associations between asthma and attention-deficit/hyperactivity disorder (ADHD), but whether the association is due to shared etiology such as shared genetic risk factors remains unclear. We aimed to investigate patterns of familial co-aggregation of asthma and ADHD and also to quantify the relative contribution of genetic and environmental influences. Methods Through Swedish register linkages, we obtained a cohort of 927,956 individuals born 1992-2001 and identified monozygotic twins (MZ), dizygotic twins (DZ), full- and half-siblings, and full- and half-cousins. Clinical diagnosis of asthma and ADHD were identified from the Swedish national registers. We used logistic regressions to investigate the within-individual association and familial co-aggregation between asthma and ADHD. We then used bivariate twin modeling to quantify the genetic and environmental correlations and their contributions to the familial liability. Results Individuals with asthma had significantly higher risk of ADHD (odds ratio [OR], 1.50; 95% confidence interval [CI], 1.47-1.54). Relatives of individuals with asthma had an increased risk of ADHD compared to relatives of individuals without asthma; in familial co-aggregation analysis, the association was strongest in MZ twins (OR, 1.67; 95% CI, 0.99-2.84) and attenuated with degree of genetic relatedness. In the twin modeling, the phenotypic and genetic correlations between asthma and ADHD estimated from the ACE model were 0.09 (95% CI, 0.05-0.14) and 0.12 (95% CI, 0.02-0.21), respectively. The bivariate heritability was 0.88 (95% CI, 0.30-1.46). Estimates for contributions from shared and non-shared environment factors were not statistically significant. Conclusions Asthma and ADHD co-aggregate in families primarily due to shared genetic risk factors. Within-individual and family history of either disorder should prompt clinical assessment of the other condition. Future studies should further investigate genetic variants underlying the co-occurrence of ADHD and asthma.
Collapse
Affiliation(s)
- Shihua Sun
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Ralf Kuja‐Halkola
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Zheng Chang
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Samuele Cortese
- Center for Innovation in Mental HealthAcademic Unit of PsychologyUniversity of SouthamptonSouthamptonUK
| | - Catarina Almqvist
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Henrik Larsson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- School of Medical SciencesÖrebro UniversityÖrebroSweden
| |
Collapse
|
21
|
Wang T, Wang W, Li W, Duan H, Xu C, Tian X, Zhang D. Genome-wide DNA methylation analysis of pulmonary function in middle and old-aged Chinese monozygotic twins. Respir Res 2021; 22:300. [PMID: 34809630 PMCID: PMC8609861 DOI: 10.1186/s12931-021-01896-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Previous studies have determined the epigenetic association between DNA methylation and pulmonary function among various ethnics, whereas this association is largely unknown in Chinese adults. Thus, we aimed to explore epigenetic relationships between genome-wide DNA methylation levels and pulmonary function among middle-aged Chinese monozygotic twins. METHODS The monozygotic twin sample was drawn from the Qingdao Twin Registry. Pulmonary function was measured by three parameters including forced expiratory volume the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio. Linear mixed effect model was used to regress the methylation level of CpG sites on pulmonary function. After that, we applied Genomic Regions Enrichment of Annotations Tool (GREAT) to predict the genomic regions enrichment, and used comb-p python library to detect differentially methylated regions (DMRs). Gene expression analysis was conducted to validate the results of differentially methylated analyses. RESULTS We identified 112 CpG sites with the level of P < 1 × 10-4 which were annotated to 40 genes. We identified 12 common enriched pathways of three pulmonary function parameters. We detected 39 DMRs located at 23 genes, of which PRDM1 was related to decreased pulmonary function, and MPL, LTB4R2, and EPHB3 were related to increased pulmonary function. The gene expression analyses validated DIP2C, ASB2, SLC6A5, and GAS6 related to decreased pulmonary function. CONCLUSION Our DNA methylation sequencing analysis on identical twins provides new references for the epigenetic regulation on pulmonary function. Several CpG sites, genes, biological pathways and DMRs are considered as possible crucial to pulmonary function.
Collapse
Affiliation(s)
- Tong Wang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Weilong Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People's Republic of China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People's Republic of China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People's Republic of China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People's Republic of China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People's Republic of China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao, 266071, Shandong Province, People's Republic of China.
| |
Collapse
|
22
|
Yu J, Jin H, Wen L, Zhang W, Saffery R, Tong C, Qi H, Kilby MD, Baker PN. Insufficient sleep during infancy is correlated with excessive weight gain in childhood: a longitudinal twin cohort study. J Clin Sleep Med 2021; 17:2147-2154. [PMID: 34666881 DOI: 10.5664/jcsm.9350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES To examine total sleep duration in infancy and the associations of insufficient sleep duration with later weight gain and the risk of overweight in a longitudinal twin cohort study. METHODS The data for this study are from the Longitudinal Twin Study (LoTiS), a twin-pregnancy birth cohort study that was carried out in China (n = 186 pairs). The sleep data were collected at 6 months using the Brief Infant Sleep Questionnaire that was completed by parents with the assistance of a research assistant. Anthropometric data were obtained from the children's health clinic records at 6, 12, 18, and 24 months. RESULTS There were no significant differences between infants with insufficient sleep and those with sufficient sleep in terms of height, weight, body mass index, incidence of overweight, and body fat mass, while infants with insufficient sleep duration were predisposed to gain excessive weight from 6 to 12 and 6 to 18 months of age (all P < .05). After adjusting for confounding variables, insufficient sleep duration was found to be correlated with excessive weight gain from 6 to 18 months of age (odds ratio: 3.47; 95% confidence interval, 1.23-9.78). The relationship was more pronounced in monozygotic twins than in dizygotic twins. CONCLUSIONS Insufficient total sleep duration at the age of 6 months is correlated with the risk of excessive weight gain at 18 months of age in twins, particularly in monozygotic twins. CLINICAL TRIAL REGISTRATION Registry: Chinese Clinical Trial Register; Name: Unraveling the complex interplay between genes and environment in specifying early life determinants of illness in infancy: a longitudinal prenatal study of Chinese Twins. URL: http://www.chictr.org.cn/showproj.aspx?proj=13839; Identifier: ChiCTR-OOC-16008203. CITATION Yu J, Jin H, Wen L, et al. Insufficient sleep during infancy is correlated with excessive weight gain in childhood: a longitudinal twin cohort study. J Clin Sleep Med. 2021;17(11):2147-2154.
Collapse
Affiliation(s)
- Jiaxiao Yu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huili Jin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjin Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Richard Saffery
- Cancer, Disease, and Developmental Epigenetics, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Mark D Kilby
- Centre for Women's and Newborn Health, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
23
|
Li S, Wang W, Zhang D, Li W, Lund J, Kruse T, Mengel-From J, Christensen K, Tan Q. Differential regulation of the DNA methylome in adults born during the Great Chinese Famine in 1959-1961. Genomics 2021; 113:3907-3918. [PMID: 34600028 DOI: 10.1016/j.ygeno.2021.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/24/2021] [Accepted: 09/25/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Extensive epidemiological studies have established the association between exposure to early-life adversity and health status and diseases in adults. Epigenetic regulation is considered as a key mediator for this phenomenon but analysis on humans is sparse. The Great Chinese Famine lasting from 1958 to 1961 is a natural string of disasters offering a precious opportunity for elucidating the underlying epigenetic mechanism of the long-term effect of early adversity. METHODS Using a high-throughput array platform for DNA methylome profiling, we conducted a case-control epigenome-wide association study on early-life exposure to Chinese famine in 79 adults born during 1959-1961 and compared to 105 unexposed subjects born 1963-1964. RESULTS The single CpG site analysis of whole epigenome revealed a predominant pattern of decreased DNA methylation levels associated with fetal exposure to famine. Four CpG sites were detected with p < 1e-06 (linked to EHMT1, CNR1, UBXN7 and ESM1 genes), 16 CpGs detected with 1e-06 < p < 1e-05 and 157 CpGs with 1e-05 < p < 1e-04, with a predominant pattern of hypomethylation. Functional annotation to genes and their enriched biological pathways mainly involved neurodevelopment, neuropsychological disorders and metabolism. Multiple sites analysis detected two top-rank differentially methylated regions harboring RNF39 on chromosome 6 and PTPRN2 on chromosome 7, both showing epigenetic association with stress-related conditions. CONCLUSION Early-life exposure to famine could mediate DNA methylation regulations that persist into adulthood with broad impacts in the activities of genes and biological pathways. Results from this study provide new clues to the epigenetic embedding of early-life adversity and its impacts on adult health.
Collapse
Affiliation(s)
- Shuxia Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Weijing Wang
- Qingdao University School of Public Health, Qingdao, China
| | - Dongfeng Zhang
- Qingdao University School of Public Health, Qingdao, China
| | - Weilong Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark; Population Research Unit, Faculty of Social Sciences, University of Helsinki, Finland.
| | - Jesper Lund
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark; Digital Health & Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany.
| | - Torben Kruse
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Jonas Mengel-From
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Kaare Christensen
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
24
|
EWAS of Monozygotic Twins Implicate a Role of mTOR Pathway in Pathogenesis of Tic Spectrum Disorder. Genes (Basel) 2021; 12:genes12101510. [PMID: 34680906 PMCID: PMC8535383 DOI: 10.3390/genes12101510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Tic spectrum disorder (TSD) is an umbrella term which includes Gilles de la Tourette syndrome (GTS) and chronic tic disorder (CTD). They are considered highly heritable, yet the genetic components remain largely unknown. In this study we aimed to investigate disease-associated DNA methylation differences to identify genes and pathways which may be implicated in TSD aetiology. For this purpose, we performed an exploratory analysis of the genome-wide DNA methylation patterns in whole blood samples of 16 monozygotic twin pairs, of which eight were discordant and six concordant for TSD, while two pairs were asymptomatic. Although no sites reached genome-wide significance, we identified several sites and regions with a suggestive significance, which were located within or in the vicinity of genes with biological functions associated with neuropsychiatric disorders. The two top genes identified (TSC1 and CRYZ/TYW3) and the enriched pathways and components (phosphoinosides and PTEN pathways, and insulin receptor substrate binding) are related to, or have been associated with, the PI3K/AKT/mTOR pathway. Genes in this pathway have previously been associated with GTS, and mTOR signalling has been implicated in a range of neuropsychiatric disorders. It is thus possible that altered mTOR signalling plays a role in the complex pathogenesis of TSD.
Collapse
|
25
|
Schamschula E, Lahnsteiner A, Assenov Y, Hagmann W, Zaborsky N, Wiederstein M, Strobl A, Stanke F, Muley T, Plass C, Tümmler B, Risch A. Disease-related blood-based differential methylation in cystic fibrosis and its representation in lung cancer revealed a regulatory locus in PKP3 in lung epithelial cells. Epigenetics 2021; 17:837-860. [PMID: 34415821 PMCID: PMC9423854 DOI: 10.1080/15592294.2021.1959976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease, characterized by massive chronic lung inflammation. The observed variability in clinical phenotypes in monozygotic CF twins is likely associated with the extent of inflammation. This study sought to investigate inflammation-related aberrant DNA methylation in CF twins and to determine to what extent acquired methylation changes may be associated with lung cancer. Blood-based genome-wide DNA methylation analysis was performed to compare the DNA methylomes of monozygotic twins, from the European CF Twin and Sibling Study with various degrees of disease severity. Putatively inflammation-related and differentially methylated positions were selected from a large lung cancer case-control study and investigated in blood by targeted bisulphite next-generation-sequencing. An inflammation-related locus located in the Plakophilin-3 (PKP3) gene was functionally analysed regarding promoter and enhancer activity in presence and absence of methylation using luciferase reporter assays. We confirmed in a unique cohort that monozygotic twins, even if clinically discordant, have only minor differences in global DNA methylation patterns and blood cell composition. Further, we determined the most differentially methylated positions, a high proportion of which are blood cell-type-specific, whereas others may be acquired and thus have potential relevance in the context of inflammation as lung cancer risk factors. We identified a sequence in the gene body of PKP3 which is hypermethylated in blood from CF twins with severe phenotype and highly variably methylated in lung cancer patients and controls, independent of known clinical parameters, and showed that this region exhibits methylation-dependent promoter activity in lung epithelial cells.
Collapse
Affiliation(s)
| | | | - Yassen Assenov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Hagmann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Anna Strobl
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Frauke Stanke
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik Heidelberg, University of Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Burkhard Tümmler
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Angela Risch
- Department of Biosciences, University of Salzburg, Salzburg, Austria.,Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Cluster Salzburg, Salzburg, Austria.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
26
|
Capparelli R, Iannelli D. Role of Epigenetics in Type 2 Diabetes and Obesity. Biomedicines 2021; 9:977. [PMID: 34440181 PMCID: PMC8393970 DOI: 10.3390/biomedicines9080977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022] Open
Abstract
Epigenetic marks the genome by DNA methylation, histone modification or non-coding RNAs. Epigenetic marks instruct cells to respond reversibly to environmental cues and keep the specific gene expression stable throughout life. In this review, we concentrate on DNA methylation, the mechanism often associated with transgenerational persistence and for this reason frequently used in the clinic. A large study that included data from 10,000 blood samples detected 187 methylated sites associated with body mass index (BMI). The same study demonstrates that altered methylation results from obesity (OB). In another study the combined genetic and epigenetic analysis allowed us to understand the mechanism associating hepatic insulin resistance and non-alcoholic disease in Type 2 Diabetes (T2D) patients. The study underlines the therapeutic potential of epigenetic studies. We also account for seemingly contradictory results associated with epigenetics.
Collapse
Affiliation(s)
- Rosanna Capparelli
- Department of Agriculture Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055 Naples, Italy
| | - Domenico Iannelli
- Department of Agriculture Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055 Naples, Italy
| |
Collapse
|
27
|
Genome-wide DNA methylation and gene expression analyses in monozygotic twins identify potential biomarkers of depression. Transl Psychiatry 2021; 11:416. [PMID: 34341332 PMCID: PMC8329295 DOI: 10.1038/s41398-021-01536-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Depression is currently the leading cause of disability around the world. We conducted an epigenome-wide association study (EWAS) in a sample of 58 depression score-discordant monozygotic twin pairs, aiming to detect specific epigenetic variants potentially related to depression and further integrate with gene expression profile data. Association between the methylation level of each CpG site and depression score was tested by applying a linear mixed effect model. Weighted gene co-expression network analysis (WGCNA) was performed for gene expression data. The association of DNA methylation levels of 66 CpG sites with depression score reached the level of P < 1 × 10-4. These top CpG sites were located at 34 genes, especially PTPRN2, HES5, GATA2, PRDM7, and KCNIP1. Many ontology enrichments were highlighted, including Notch signaling pathway, Huntington disease, p53 pathway by glucose deprivation, hedgehog signaling pathway, DNA binding, and nucleic acid metabolic process. We detected 19 differentially methylated regions (DMRs), some of which were located at GRIK2, DGKA, and NIPA2. While integrating with gene expression data, HELZ2, PTPRN2, GATA2, and ZNF624 were differentially expressed. In WGCNA, one specific module was positively correlated with depression score (r = 0.62, P = 0.002). Some common genes (including BMP2, PRDM7, KCNIP1, and GRIK2) and enrichment terms (including complement and coagulation cascades pathway, DNA binding, neuron fate specification, glial cell differentiation, and thyroid gland development) were both identified in methylation analysis and WGCNA. Our study identifies specific epigenetic variations which are significantly involved in regions, functional genes, biological function, and pathways that mediate depression disorder.
Collapse
|
28
|
Mohammadnejad A, Baumbach J, Li W, Lund J, Larsen MJ, Li S, Mengel-From J, Michel TM, Christiansen L, Christensen K, Hjelmborg J, Tan Q. Differential lncRNA expression profiling of cognitive function in middle and old aged monozygotic twins using generalized association analysis. J Psychiatr Res 2021; 140:197-204. [PMID: 34118637 DOI: 10.1016/j.jpsychires.2021.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022]
Abstract
Cognitive impairment is the most prominent symptom in neurodegenerative disorders affecting quality of life and mortality. However, despite years of research, the molecular mechanism underlying the regulation of cognitive function and its impairment is poorly understood. This study aims to elucidate the role of long non-coding RNAs (lncRNAs) expression and lncRNA-mRNA interaction networks, by analyzing lncRNA expression in whole blood samples of 400 middle and old aged monozygotic twins in association with cognitive function using both linear models and a generalized correlation coefficient (GCC) to capture the diverse patterns of correlation. We detected 13 probes (p < 1e-03) displaying nonlinear and 7 probes (p < 1e-03) showing linear correlations. After combining the results, we identified 20 lncRNA probes with p < 1e-03. The top lncRNA probes were annotated to genes, along with the non-coding MALAT1, that play roles in neurodegenerative diseases. The top lncRNAs were linked to functional clusters including peptidyl-glycine modification, vascular smooth muscle cells, mitotic spindle organization and protein tyrosine phosphatase. In addition, mapping of the top significant lncRNAs to the lncRNA-mRNA interaction network detected significantly enriched biological pathways involving neuroactive ligand-receptor interaction, proteasome and chemokines. We show that GCC served as a complementary approach in detecting lncRNAs missed by the conventional linear models. A combination of GCC and linear models identified lncRNAs of diverse patterns of association enriched for GO biological and molecular functions meaningful in cognitive performance and cognitive decline. The novel lncRNA regulatory network further contributed to detect significant pathways implicated in cognition.
Collapse
Affiliation(s)
- Afsaneh Mohammadnejad
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark.
| | - Jan Baumbach
- Computational Biomedicine, Department of Mathematics and Computer Science, University of Southern Denmark, Denmark; Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany.
| | - Weilong Li
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark.
| | - Jesper Lund
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark.
| | - Martin J Larsen
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| | - Shuxia Li
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark.
| | - Jonas Mengel-From
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Denmark.
| | - Tanja Maria Michel
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark; Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Lene Christiansen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark; Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Denmark.
| | - Jacob Hjelmborg
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark.
| | - Qihua Tan
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Denmark.
| |
Collapse
|
29
|
Hassan S, Jahanfar S, Inungu J, Craig JM. Low birth weight as a predictor of adverse health outcomes during adulthood in twins: a systematic review and meta-analysis. Syst Rev 2021; 10:186. [PMID: 34167585 PMCID: PMC8228924 DOI: 10.1186/s13643-021-01730-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Low birth weight might affect adverse health outcomes during a lifetime. Our study analyzes the association between low birth weight and negative health outcomes during adulthood in twin populations. METHODS Searches were conducted using databases inclusive of MEDLINE, CINAHL, Web of Science, and EBSCO. Observational studies on twins with low birth weight and adverse health outcomes during adulthood were included. Two reviewers independently screened the papers, and a third reviewer resolved the conflicts between the two reviewers. Following abstract and title screening, full-texts were screened to obtain eligibility. Eligible full-text articles were then assessed for quality using a modified Downs and Black checklist. Studies with a score within one standard deviation of the mean were included in the analysis. A fixed-effect model was used for analysis. RESULTS 3987 studies were screened describing low birth weight as a risk factor for adverse health outcomes during adulthood for all twelve-body systems (circulatory, digestive, endocrine, lymphatic, muscular, nervous, reproductive, respiratory, skeletal, urinary, and integumentary systems). One hundred fourteen articles made it through full-text screening, and 14 of those articles were assessed for quality. Five papers were selected to perform two meta-analyses for two outcomes: asthma and cerebral palsy. For asthma, the meta-analyses of three studies suggested a higher odds of low birth weight twins developing asthma (OR 1.33, 95% CI 1.24-1.44, I2 = 77%). Meta-analysis for cerebral palsy included two studies and suggested a 4.88 times higher odds of low birth weight twins developing cerebral palsy compared to normal birth weight twins (OR 4.88, 95% CI 2.34-10.19, I2 = 79%). We could not find enough studies for other adverse health outcomes to pool data for a Forest plot. CONCLUSIONS The odds of low birth weight were found to be high in both asthma and cerebral palsy. There are not enough studies of similar nature (study types, similar body systems) to ensure a meaningful meta-analysis. We recommend that future research considers following up on twins to obtain data about adverse health outcomes during their adult lives.
Collapse
Affiliation(s)
- Sapha Hassan
- Central Michigan University, Mount Pleasant, USA
| | - Shayesteh Jahanfar
- Department of Public Health and Community Medicine, Tufts School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA.
| | | | - Jeffrey M Craig
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| |
Collapse
|
30
|
Bainomugisa CK, Sutherland HG, Parker R, Mcrae AF, Haupt LM, Griffiths LR, Heath A, Nelson EC, Wright MJ, Hickie IB, Martin NG, Nyholt DR, Mehta D. Using Monozygotic Twins to Dissect Common Genes in Posttraumatic Stress Disorder and Migraine. Front Neurosci 2021; 15:678350. [PMID: 34239411 PMCID: PMC8258453 DOI: 10.3389/fnins.2021.678350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
Epigenetic mechanisms have been associated with genes involved in Posttraumatic stress disorder (PTSD). PTSD often co-occurs with other health conditions such as depression, cardiovascular disorder and respiratory illnesses. PTSD and migraine have previously been reported to be symptomatically positively correlated with each other, but little is known about the genes involved. The aim of this study was to understand the comorbidity between PTSD and migraine using a monozygotic twin disease discordant study design in six pairs of monozygotic twins discordant for PTSD and 15 pairs of monozygotic twins discordant for migraine. DNA from peripheral blood was run on Illumina EPIC arrays and analyzed. Multiple testing correction was performed using the Bonferroni method and 10% false discovery rate (FDR). We validated 11 candidate genes previously associated with PTSD including DOCK2, DICER1, and ADCYAP1. In the epigenome-wide scan, seven novel CpGs were significantly associated with PTSD within/near IL37, WNT3, ADNP2, HTT, SLFN11, and NQO2, with all CpGs except the IL37 CpG hypermethylated in PTSD. These results were significantly enriched for genes whose DNA methylation was previously associated with migraine (p-value = 0.036). At 10% FDR, 132 CpGs in 99 genes associated with PTSD were also associated with migraine in the migraine twin samples. Genes associated with PTSD were overrepresented in vascular smooth muscle, axon guidance and oxytocin signaling pathways, while genes associated with both PTSD and migraine were enriched for AMPK signaling and longevity regulating pathways. In conclusion, these results suggest that common genes and pathways are likely involved in PTSD and migraine, explaining at least in part the co-morbidity between the two disorders.
Collapse
Affiliation(s)
- Charlotte K Bainomugisa
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Allan F Mcrae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Andrew Heath
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Ian B Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Dale R Nyholt
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Divya Mehta
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
31
|
Lu M, Xueying Q, Hexiang P, Wenjing G, Hägg S, Weihua C, Chunxiao L, Canqing Y, Jun L, Zengchang P, Liming C, Hua W, Xianping W, Yunzhang W, Liming L. Genome-wide associations between alcohol consumption and blood DNA methylation: evidence from twin study. Epigenomics 2021; 13:939-951. [PMID: 33993705 DOI: 10.2217/epi-2021-0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Alcohol intake alters DNA methylation profiles and methylation might mediate the association between alcohol and disease, but limited number of positive CpG sites repeatedly replicated. Materials & methods: In total, 57 monozygotic (MZ) twin pairs discordant for alcohol drinking from the Chinese National Twin Registry and 158 MZ and dizygotic twin pairs in the Swedish Adoption/Twin Study of Aging were evaluated. DNA methylation was detected using the Infinium HumanMethylation450 BeadChip. Results: Among candidate CpG sites, cg07326074 was significantly correlated with drinking after adjusting for covariates in MZ twins in both datasets but not in the entire sample or dizygotic twins. Conclusion: The hypermethylation of cg07326074, located in the tumor-promoting gene C16orf59, was associated with alcohol consumption.
Collapse
Affiliation(s)
- Meng Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Qin Xueying
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China.,Department of Medical Epidemiology & Biostatistics, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Peng Hexiang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Gao Wenjing
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Sara Hägg
- Department of Medical Epidemiology & Biostatistics, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Cao Weihua
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Li Chunxiao
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Yu Canqing
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Lv Jun
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Pang Zengchang
- Qingdao Center for Disease Control & Prevention, Qingdao 266033, PR China
| | - Cong Liming
- Zhejiang Center for Disease Control & Prevention, Hangzhou 310051, PR China
| | - Wang Hua
- Jiangsu Center for Disease Control & Prevention, Nanjing 210009, PR China
| | - Wu Xianping
- Sichuan Center for Disease Control & Prevention, Chengdu 610041, PR China
| | - Wang Yunzhang
- Department of Medical Epidemiology & Biostatistics, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Li Liming
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
32
|
Wang W, Li W, Jiang W, Lin H, Wu Y, Wen Y, Xu C, Tian X, Li S, Tan Q, Zhang D. Genome-wide DNA methylation analysis of cognitive function in middle and old-aged Chinese monozygotic twins. J Psychiatr Res 2021; 136:571-580. [PMID: 33131831 DOI: 10.1016/j.jpsychires.2020.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/13/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Cognitive ability plays an important role in mental and physical well-beings in the increasingly ageing populations. Here, based on a sample of 30 cognitive function-discordant monozygotic twin pairs, we aimed to detect specific epigenetic variants potentially related to cognitive function by conducting an epigenome-wide association study (EWAS). Association between methylation level of single CpG site with cognitive function score was tested by linear mixed effect model. Functions of cis-regulatory regions and ontology enrichments were predicted by Genomic Regions Enrichment of Annotations Tool (GREAT). Differentially methylated regions (DMRs) were detected by comb-p python library. A list of 28 CpG sites were identified to reach the level of P < 1 × 10-4, and the strongest association (cor = 0.138, P = 2.549 × 10-6) was detected for DNA CpG site (Chr17: 40,700,490 bp) located at HSD17B1P1. The identified 14,065 genomic CpG sites (P < 0.05) were mapped to 2646 genes, especially HSD17B1P1, CUL4A, INTS8, GFI1B, ZNF467, CDH15, and PSMA1. GREAT ontology enrichments mainly highlighted nicotine pharmacodynamics pathway, GABA-B receptor II/nicotinic acetylcholine receptor/hedgehog/endothelin/Wnt signaling pathways, Parkinson disease, Huntington disease, glycolysis, neuronal system, and toll-like receptor binding. We detected 15 DMRs located at/near 16 genes, especially LINC01551, LINC02282, and FAM32A. And 32 cognitive function-associated differentially methylated genes could be replicated, such as SHANK2, ABCA2, PRDM16, NCOR2, and INPP5A. Our EWAS in monozygotic twins identify specific epigenetic variations which are significantly involved in functional genes, biological function and pathways that mediate cognitive function. The findings provide clues to further identify new diagnostic biomarkers and therapeutic targets for cognitive dysfunction.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, 266021, Shandong Province, China.
| | - Weilong Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, DK-5000, Odense C, Denmark.
| | - Wenjie Jiang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, 266021, Shandong Province, China.
| | - Haijun Lin
- Biomarker Technologies orporation, Beijing, 100000, China.
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, 266021, Shandong Province, China.
| | - Yanhua Wen
- Biomarker Technologies orporation, Beijing, 100000, China.
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, Shandong Province, China; Qingdao Institute of Preventive Medicine, Qingdao, 266033, Shandong Province, China.
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, Shandong Province, China; Qingdao Institute of Preventive Medicine, Qingdao, 266033, Shandong Province, China.
| | - Shuxia Li
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark.
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, DK-5000, Odense C, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark.
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, 266021, Shandong Province, China.
| |
Collapse
|
33
|
Drawing development of identical and non-identical twins: A case study of triplets. Heliyon 2021; 7:e06431. [PMID: 33768171 PMCID: PMC7980074 DOI: 10.1016/j.heliyon.2021.e06431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/24/2020] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
Differences in drawing development are conditioned by genetics, environment and individuality of children. Therefore, it is exciting to observe the drawing development in children, who are raised in the same environment and have a similar genetic basis, that is in twins, triplets, and so forth. In the study, we were interested in the similarities and differences in the drawing development of the triplets, two of which were identical twins (B1 and B2) and one was non-identical (A), and whether the characteristics of the drawing appear more congruently between B1 and B2 than with A. We proposed two hypotheses: H1: There are more similarities in drawings between identical twins (B1 vs B2) than between identical and non-identical one (A vs B1 and A vs B2); H2: The differences between non-identical and identical triplets are less pronounced at the beginning of the drawing development (in doodle phase) and become more distinctive in later development, in drawing of figure and space. We analysed 123 drawings that the triplets (41 drawings of each triplet) drew from 1 to 12 years of age at the same time and on the same topic. The results of our research have shown that both hypotheses can be confirmed. On the general level, there are more similarities in drawing between identical twins compared to non-identical ones; and the differences and similarities become more distinctive throughout the development, especially in figure drawing and in the depiction of space.
Collapse
|
34
|
Differences and Correlation Analysis of Birth Weight and Overweight/Obesity in Shanghai Twin Cohort. Twin Res Hum Genet 2021; 24:29-36. [PMID: 33645497 DOI: 10.1017/thg.2021.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objective of this study was to analyze differences in birth weight and overweight/obesity in a Shanghai twin cohort. We also wanted to study their association and explore possible risk factors for the discordance of overweight/obesity within twins. This was an internal case-control study designed for twins. The 2012 Shanghai Twin Registration System baseline survey data of a total of 3417 twin pairs were statistically analyzed using SPSS22 software. Results show that the body mass index (BMI) of the Shanghai twin population increased with age. Twins with a high birth weight had a higher BMI and a higher rate of overweight and obesity; 0- to 6-year-old twins, male twins and dizygotic (DZ) twins had higher rates of overweight/obesity than other groups. The greater the discordant birth weight rate of twins, the more obvious the difference in BMI (p < .05). There was a significant difference in overweight/obesity between twins with a relative difference of birth weight ≥15% in DZ twins (p < .05). DZ twins, male twins and 0- to 6-year-old twins were more likely to be discordant in overweight/obese than others. The discordant birth weight within twins was not a risk factor for discordant overweight/obesity. However, attention should be paid to childhood obesity, and appropriate interventions should be made at the appropriate time. Genetics may play an important role in the occurrence and development of overweight/obesity. In conclusion, discordant growth and development in the uterus early in life may not lead to discordant weight development in the future.
Collapse
|
35
|
Wang L, Mohammadnejad A, Li W, Lund J, Li S, Clemmensen S, Timofeeva M, Soerensen M, Mengel-From J, Christensen K, Hjelmborg J, Tan Q. Genetic and environmental determinants of O 6-methylguanine DNA-methyltransferase (MGMT) gene methylation: a 10-year longitudinal study of Danish twins. Clin Epigenetics 2021; 13:35. [PMID: 33588926 PMCID: PMC7885436 DOI: 10.1186/s13148-021-01009-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epigenetic inactivation of O6-methylguanine DNA-methyltransferase (MGMT) is associated with increased sensitivity to alkylating chemotherapeutic agents in glioblastoma patients. The genetic background underlying MGMT gene methylation may explain individual differences in treatment response and provide a clue to a personalized treatment strategy. Making use of the longitudinal twin design, we aimed, for the first time, to estimate the genetic contributions to MGMT methylation in a Danish twin cohort. METHODS DNA-methylation from whole blood (18 monozygotic (MZ) and 25 dizygotic (DZ) twin pairs) repeated 10 years apart from the Longitudinal Study of Aging Danish Twins (LSADT) were used to search for genetic and environmental contributions to DNA-methylation at 170 CpG sites of across the MGMT gene. Both univariate and bivariate twin models were applied. The intraclass correlations, performed on cross-sectional data (246 MZ twin pairs) from an independent study population, the Middle-Aged Danish Twins (MADT), were used to assess the genetic influence at each CpG site of MGMT for replication. RESULTS Univariate twin model revealed twelve CpG sites showing significantly high heritability at intake (wave 1, h2 > 0.43), and seven CpG sites with significant heritability estimates at end of follow-up (wave 2, h2 > 0.5). There were six significant CpG sites, located at the gene body region, that overlapped among the two waves (h2 > 0.5), of which five remained significant in the bivariate twin model, which was applied to both waves. Within MZ pair correlation in these six CpGs from MADT demarks top level of genetic influence. There were 11 CpGs constantly have substantial common environmental component over the 10 years. CONCLUSIONS We have identified 6 CpG sites linked to the MGMT gene with strong and persistent genetic control based on their DNA methylation levels. The genetic basis of MGMT gene methylation could help to explain individual differences in glioblastoma treatment response and most importantly, provide references for mapping the methylation Quantitative Trait Loci (meQTL) underlying the genetic regulation.
Collapse
Affiliation(s)
- Lijie Wang
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark.,Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Afsaneh Mohammadnejad
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Weilong Li
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark.,Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Jesper Lund
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark.,Digital Health and Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany
| | - Shuxia Li
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Signe Clemmensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Maria Timofeeva
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jacob Hjelmborg
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark. .,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
36
|
Frkatovic A, Zaytseva OO, Klaric L. Genetic Regulation of Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:259-287. [PMID: 34687013 DOI: 10.1007/978-3-030-76912-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Defining the genetic components that control glycosylation of the human immunoglobulin G (IgG) is an ongoing effort, which has so far been addressed by means of heritability, linkage and genome-wide association studies (GWAS). Unlike the synthesis of proteins, N-glycosylation biosynthesis is not a template-driven process, but rather a complex process regulated by both genetic and environmental factors. Current heritability studies have shown that while up to 75% of the variation in levels of some IgG glycan traits can be explained by genetics, some glycan traits are completely defined by environmental influences. Advances in both high-throughput genotyping and glycan quantification methods have enabled genome-wide association studies that are increasingly used to estimate associations of millions of single-nucleotide polymorphisms and glycosylation traits. Using this method, 18 genomic regions have so far been robustly associated with IgG N-glycosylation, discovering associations with genes encoding glycosyltransferases, but also transcription factors, co-factors, membrane transporters and other genes with no apparent role in IgG glycosylation. Further computational analyses have shown that IgG glycosylation is likely to be regulated through the expression of glycosyltransferases, but have also for the first time suggested which transcription factors are involved in the process. Moreover, it was also shown that IgG glycosylation and inflammatory diseases share common underlying causal genetic variants, suggesting that studying genetic regulation of IgG glycosylation helps not only to better understand this complex process but can also contribute to understanding why glycans are changed in disease. However, further studies are needed to unravel whether changes in IgG glycosylation are causing these diseases or the changes in the glycome are caused by the disease.
Collapse
Affiliation(s)
- Azra Frkatovic
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Olga O Zaytseva
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
37
|
Skinner MK, Nilsson EE. Role of environmentally induced epigenetic transgenerational inheritance in evolutionary biology: Unified Evolution Theory. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab012. [PMID: 34729214 PMCID: PMC8557805 DOI: 10.1093/eep/dvab012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 05/15/2023]
Abstract
The current evolutionary biology theory primarily involves genetic alterations and random DNA sequence mutations to generate the phenotypic variation required for Darwinian natural selection to act. This neo-Darwinian evolution is termed the Modern Evolution Synthesis and has been the primary paradigm for nearly 100 years. Although environmental factors have a role in neo-Darwinian natural selection, Modern Evolution Synthesis does not consider environment to impact the basic molecular processes involved in evolution. An Extended Evolutionary Synthesis has recently developed that extends the modern synthesis to consider non-genetic processes. Over the past few decades, environmental epigenetics research has been demonstrated to regulate genetic processes and directly generate phenotypic variation independent of genetic sequence alterations. Therefore, the environment can on a molecular level through non-genetic (i.e. epigenetic) mechanisms directly influence phenotypic variation, genetic variation, inheritance and adaptation. This direct action of the environment to alter phenotype that is heritable is a neo-Lamarckian concept that can facilitate neo-Darwinian (i.e. Modern Synthesis) evolution. The integration of genetics, epigenetics, Darwinian theory, Lamarckian concepts, environment, and epigenetic inheritance provides a paradigm shift in evolution theory. The role of environmental-induced epigenetic transgenerational inheritance in evolution is presented to describe a more unified theory of evolutionary biology.
Collapse
Affiliation(s)
- Michael K Skinner
- **Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1 509-335-1524; E-mail:
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
38
|
Omonkhua AA, Okonofua FE, Ntoimo LFC, Aruomaren AI, Adebayo AM, Nwuba R. Community perceptions on causes of high dizygotic twinning rate in Igbo-Ora, South-west Nigeria: A qualitative study. PLoS One 2020; 15:e0243169. [PMID: 33270723 PMCID: PMC7714157 DOI: 10.1371/journal.pone.0243169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/09/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dizygotic (DZ, non-identical) twinning rates vary widely across different regions in the world. With a DZ twinning rate of 45 per 1000 live births, Igbo-Ora Community in South-west Nigeria has the highest dizygotic (DZ) twinning rate in the world. Although several postulations exist on the causes of high DZ twinning rates in Igbo-Ora, no study has yet been conclusive on a definite causative agent. OBJECTIVE Using qualitative methods, this study explored the perceptions and beliefs of Igbo-Ora residents about the causes of high DZ twinning rates. METHODS Focus group discussion sessions and key informant interviews were organized among fathers and mothers of twins, those without twins, and health care providers. Key informant interviews were also held with persons considered to be custodians of culture who may have knowledge relevant to twinning such as traditional rulers, and traditional birth attendants; as well as health care providers, mothers and fathers of twins, and adult twins. RESULTS The results showed three factors featuring as the leading perceived causes of twinning in the community. These included twinning being an act of God, hereditary, and being due to certain foods consumed in the community. Contrary to reports that the consumption of a species of yam (Dioscorea rotundata) may be responsible for the DZ twinning in this Community; yam was not prioritized by the respondents as associated with twinning. In contrast, participants repeatedly mentioned the consumption of "ilasa" a soup prepared with okra leaves (Abelmoschus esculenta) with water that is obtained from the community, and "amala" a local delicacy produced from cassava (Manihot esculenta) as the most likely dietary factors responsible for twinning in the community. CONCLUSION Since the same foods are consumed in neighboring communities that have lower rates of twinning, we conjecture that nutritional and other environmental factors may produce epigenetic modifications that influence high DZ twinning rates in Igbo-Ora community. We conclude that more directed scientific studies based on these findings are required to further elucidate the etiology of the high rate of DZ twinning in Igbo-Ora.
Collapse
Affiliation(s)
- Akhere A. Omonkhua
- Department of Medical Biochemistry, School of Basic Medical Sciences, University of Benin, Benin City, Nigeria
- Centre of Excellence in Reproductive Health Innovation (CERHI), University of Benin, Benin City, Nigeria
| | - Friday E. Okonofua
- Centre of Excellence in Reproductive Health Innovation (CERHI), University of Benin, Benin City, Nigeria
- Department of Obstetrics and Gynaecology, School of Medicine, University of Benin, Benin City, Nigeria
- Women’s Health and Action Research Centre (WHARC), Benin City, Nigeria
- * E-mail:
| | - Lorretta F. C. Ntoimo
- Faculty of Social Sciences, Department of Demography and Social Statistics, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | - Austin I. Aruomaren
- Department of Medical Laboratory Sciences, School of Basic Medical Sciences, University of Benin, Benin City, Nigeria
| | - Ayodeji M. Adebayo
- Ibarapa Programme, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Roseangela Nwuba
- Department of Biological Sciences, University of Medical Sciences, Ondo, Nigeria
| |
Collapse
|
39
|
Ahrenfeldt LJ, Möller S, Wensink M, Jensen TK, Christensen K, Lindahl-Jacobsen R. Heritability of subfertility among Danish twins. Fertil Steril 2020; 114:618-627. [DOI: 10.1016/j.fertnstert.2020.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
|
40
|
Reynolds CA, Tan Q, Munoz E, Jylhävä J, Hjelmborg J, Christiansen L, Hägg S, Pedersen NL. A decade of epigenetic change in aging twins: Genetic and environmental contributions to longitudinal DNA methylation. Aging Cell 2020; 19:e13197. [PMID: 32710526 PMCID: PMC7431820 DOI: 10.1111/acel.13197] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/07/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Epigenetic changes may result from the interplay of environmental exposures and genetic influences and contribute to differences in age-related disease, disability, and mortality risk. However, the etiologies contributing to stability and change in DNA methylation have rarely been examined longitudinally. METHODS We considered DNA methylation in whole blood leukocyte DNA across a 10-year span in two samples of same-sex aging twins: (a) Swedish Adoption Twin Study of Aging (SATSA; N = 53 pairs, 53% female; 62.9 and 72.5 years, SD = 7.2 years); (b) Longitudinal Study of Aging Danish Twins (LSADT; N = 43 pairs, 72% female, 76.2 and 86.1 years, SD=1.8 years). Joint biometrical analyses were conducted on 358,836 methylation probes in common. Bivariate twin models were fitted, adjusting for age, sex, and country. RESULTS Overall, results suggest genetic contributions to DNA methylation across 358,836 sites tended to be small and lessen across 10 years (broad heritability M = 23.8% and 18.0%) but contributed to stability across time while person-specific factors explained emergent influences across the decade. Aging-specific sites identified from prior EWAS and methylation age clocks were more heritable than background sites. The 5037 sites that showed the greatest heritable/familial-environmental influences (p < 1E-07) were enriched for immune and inflammation pathways while 2020 low stability sites showed enrichment in stress-related pathways. CONCLUSIONS Across time, stability in methylation is primarily due to genetic contributions, while novel experiences and exposures contribute to methylation differences. Elevated genetic contributions at age-related methylation sites suggest that adaptions to aging and senescence may be differentially impacted by genetic background.
Collapse
Affiliation(s)
| | - Qihua Tan
- University of Southern DenmarkOdenseDenmark
| | - Elizabeth Munoz
- University of California ‐ RiversideRiversideCAUSA
- Present address:
University of Texas at AustinAustinTXUSA
| | | | | | - Lene Christiansen
- University of Southern DenmarkOdenseDenmark
- Copenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Sara Hägg
- Karolinska InstitutetStockholmSweden
| | | |
Collapse
|
41
|
Topart C, Werner E, Arimondo PB. Wandering along the epigenetic timeline. Clin Epigenetics 2020; 12:97. [PMID: 32616071 PMCID: PMC7330981 DOI: 10.1186/s13148-020-00893-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing life expectancy but also healthspan seems inaccessible as of yet but it may become a reality in the foreseeable future. To extend lifespan, it is essential to unveil molecular mechanisms involved in ageing. As for healthspan, a better understanding of the mechanisms involved in age-related pathologies is crucial. MAIN BODY We focus on the epigenetic side of ageing as ageing is traced by specific epigenetic patterns and can be measured by epigenetic clocks. We discuss to what extent exposure to environmental factor, such as alcohol use, unhealthy diet, tobacco and stress, promotes age-related conditions. We focused on inflammation, cancer and Alzheimer's disease. Finally, we discuss strategies to reverse time based on epigenetic reprogramming. CONCLUSIONS Reversibility of the epigenetic marks makes them promising targets for rejuvenation. For this purpose, a better understanding of the epigenetic mechanisms underlying ageing is essential. Epigenetic clocks were successfully designed to monitor these mechanisms and the influence of environmental factors. Further studies on age-related diseases should be conducted to determine their epigenetic signature, but also to pinpoint the defect in the epigenetic machinery and thereby identify potential therapeutic targets. As for rejuvenation, epigenetic reprogramming is still at an early stage.
Collapse
Affiliation(s)
- Clémence Topart
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
- PSL Research University, 60 Rue Mazarine, 75006, Paris, France
| | - Emilie Werner
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
- PSL Research University, 60 Rue Mazarine, 75006, Paris, France
| | - Paola B Arimondo
- EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR n°3523, 28 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
42
|
Wang ZN, Gao WJ, Wang BQ, Cao WH, Lv J, Yu CQ, Pang ZC, Cong LM, Wang H, Wu XP, Liu Y, Li LM. [Correlation between fasting plasma glucose, HbA1c and DNA methylation in adult twins]. JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:425-431. [PMID: 32541973 DOI: 10.19723/j.issn.1671-167x.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To explore the cytidine-phosphate-guanosine (CPG) sites associated with fas-ting plasma glucose (FPG) and glycated haemoglobin (HbA1c) in twins. METHODS In the study, 169 pairs of monozygotic twins were recruited in Qingdao, Zhejiang, Jiangsu, Sichuan and Heilongjiang in June to December of 2013 and June 2017 to October 2018. The methylation was detected by Illumina Infinium HumanMethylation450 BeadChip and Illumina Infinium MethylationEPIC BeadChip. According to the Linear Mixed Effect model (LME model), fasting plasma glucose and HbA1c were taken as the main effects, the methylation level (β value) was taken as the dependent variable, continuous variables, such as age, body mass index (BMI), blood pressure, components of blood cells, surrogate variables generated by SVA, and categorical variables, such as gender, smoking and drinking status, hypoglycemic drugs taking, were included in the fixed effect model as covariates, and the identity numbers (ID) of the twins was included in the random effect model. The intercept was set as a random. Regression analysis was carried out to find out the CpG sites related to fasting blood glucose or HbA1c, respectively. RESULTS In this study, 338 monozygotic twins (169 pairs) were included, with 412 459 CpG loci. Among them, 114 pairs were male, and 55 pairs were female, with an average age of (48.2±11.9) years. After adjustment of age, gender, BMI, blood pressure, smoking, drinking, blood cell composition, and other covariates, and multiple comparison test, 7 CpG sites (cg19693031, cg01538969, cg08501915, cg04816311, ch.8.1820050F, cg06721411, cg26608667) were found related to fasting blood glucose, 3 of which (cg08501915, ch.8.1820050f, cg26608667) were the newly found sites in this study; whereas 10 CpG sites (cg19693031, cg04816311, cg01538969, cg01339781, cg01676795, cg24667115, cg09029192, cg20697417, ch.4.1528651F, cg16097041) were found related to HbA1c, and 4 of which(cg01339781, cg24667115, cg20697417, and ch.4.1528651f) were new. We found that cg19693031 in TXNIP gene was the lowest P-value site in the association analysis between DNA methylation and fas-ting plasma glucose and HbA1c (PFPG=2.42×10-19, FDRFPG<0.001; PHbA1c=1.72×10-19, FDRHbA1c<0.001). CONCLUSION In this twin study, we found new CpG sites related to fasting blood glucose and HbA1c, and provided some clues that partly revealed the potential mechanism of blood glucose metabolism in terms of DNA methylation, but it needed further verification in external larger samples.
Collapse
Affiliation(s)
- Z N Wang
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - W J Gao
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - B Q Wang
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - W H Cao
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - J Lv
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - C Q Yu
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - Z C Pang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao 266033, Shandong, China
| | - L M Cong
- Zhejiang Center for Disease Control and Prevention, Hangzhou 310051, China
| | - H Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing 210009, China
| | - X P Wu
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Y Liu
- Center for Disease Control and prevention, Heilongjiang Agricultural Reclamation Bureau, Harbin 150090, China
| | - L M Li
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
43
|
Twin Research in the Post-Genomic Era: Dissecting the Pathophysiological Effects of Adversity and the Social Environment. Int J Mol Sci 2020; 21:ijms21093142. [PMID: 32365612 PMCID: PMC7247668 DOI: 10.3390/ijms21093142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/29/2022] Open
Abstract
The role of twins in research is evolving as we move further into the post-genomic era. With the re-definition of what a gene is, it is becoming clear that biological family members who share a specific genetic variant may well not have a similar risk for future disease. This has somewhat invalidated the prior rationale for twin studies. Case co-twin study designs, however, are slowly emerging as the ideal tool to identify both environmentally induced epigenetic marks and epigenetic disease-associated processes. Here, we propose that twin lives are not as identical as commonly assumed and that the case co-twin study design can be used to investigate the effects of the adult social environment. We present the elements in the (social) environment that are likely to affect the epigenome and measures in which twins may diverge. Using data from the German TwinLife registry, we confirm divergence in both the events that occur and the salience for the individual start as early as age 11. Case co-twin studies allow for the exploitation of these divergences, permitting the investigation of the role of not only the adult social environment, but also the salience of an event or environment for the individual, in determining lifelong health trajectories. In cases like social adversity where it is clearly not possible to perform a randomised-controlled trial, we propose that the case co-twin study design is the most rigorous manner with which to investigate epigenetic mechanisms encoding environmental exposure. The role of the case co-twin design will continue to evolve, as we argue that it will permit causal inference from observational data.
Collapse
|
44
|
Soerensen M, Hozakowska-Roszkowska DM, Nygaard M, Larsen MJ, Schwämmle V, Christensen K, Christiansen L, Tan Q. A Genome-Wide Integrative Association Study of DNA Methylation and Gene Expression Data and Later Life Cognitive Functioning in Monozygotic Twins. Front Neurosci 2020; 14:233. [PMID: 32327964 PMCID: PMC7160301 DOI: 10.3389/fnins.2020.00233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/02/2020] [Indexed: 12/02/2022] Open
Abstract
Monozygotic twins are genetically identical but rarely phenotypically identical. Epigenetic and transcriptional variation could influence this phenotypic discordance. Investigation of intra-pair differences in molecular markers and a given phenotype in monozygotic twins controls most of the genetic contribution, enabling studies of the molecular features of the phenotype. This study aimed to identify genes associated with cognition in later life using integrated enrichment analyses of the results of blood-derived intra-pair epigenome-wide and transcriptome-wide association analyses of cognition in 452 middle-aged and old-aged monozygotic twins (56–80 years). Integrated analyses were performed with an unsupervised approach using KeyPathwayMiner, and a supervised approach using the KEGG and Reactome databases. The supervised approach identified several enriched gene sets, including “neuroactive ligand receptor interaction” (p-value = 1.62∗10-2), “Neurotrophin signaling” (p-value = 2.52∗10-3), “Alzheimer’s disease” (p-value = 1.20∗10-2), and “long-term depression” (p-value = 1.62∗10-2). The unsupervised approach resulted in a 238 gene network, including the Alzheimer’s disease gene APP (Amyloid Beta Precursor Protein) as an exception node, and several novel candidate genes. The strength of the unsupervised method is that it can reveal previously uncharacterized sub-pathways and detect interplay between biological processes, which remain undetected by the current supervised methods. In conclusion, this study identified several previously reported cognition genes and pathways and, additionally, puts forward novel candidates for further verification and validation.
Collapse
Affiliation(s)
- Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Dominika Marzena Hozakowska-Roszkowska
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Lene Christiansen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
45
|
Tan Q. Harnessing the power of twins in epigenetic association studies: causal inference and more. Epigenomics 2019; 12:1-3. [PMID: 31833395 DOI: 10.2217/epi-2019-0359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Qihua Tan
- Epidemiology & Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
46
|
Abu-Halima M, Weidinger J, Poryo M, Henn D, Keller A, Meese E, Abdul-Khaliq H. Micro-RNA signatures in monozygotic twins discordant for congenital heart defects. PLoS One 2019; 14:e0226164. [PMID: 31805172 PMCID: PMC6894838 DOI: 10.1371/journal.pone.0226164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small RNAs regulating gene expression post-transcriptionally. Recent studies demonstrated that miRNAs are involved in the development of congenital heart defects (CHD). In this study, we aimed at identifying the specific patterns of miRNAs in blood of monozygotic twin pairs discordant for CHD and to assess whether miRNAs might be involved in the development or reflect the consequences of CHD. Methods miRNA microarray analysis and Real-Time Quantitative PCR (RT-qPCR) were employed to determine the miRNA abundance level from 12 monozygotic twins discordant for CHD and their non-CHD co-twins (n = 12). Enrichment analyses of altered miRNAs were performed using bioinformatics tools. Results Compared with non-CHD co-twins, profiling analysis indicated 34 miRNAs with a significant difference in abundance level (p<0.05, fold change ≥ 1.3), of which 11 miRNAs were up-regulated and 23 miRNAs were down-regulated. Seven miRNAs were validated with RT-qPCR including miR-511-3p, miR-1306-5p, miR-421, miR-4707-3p, miR-4732-3p, miR-5189-3p, and miR-890, and the results were consistent with microarray analysis. Five miRNAs namely miR-511-3p, miR-1306-5p, miR-4732-3p, miR-5189-3p, and miR-890 were found to be significantly up-regulated in twins < 10 years old. Bioinformatics analysis showed that the 7 validated miRNAs were involved in phosphatidylinositol signaling, gap junction signaling, and adrenergic signaling in cardiomyocytes. Conclusions Our data show deregulated miRNA abundance levels in the peripheral blood of monozygotic twins discordant for CHD, and identify new candidates for further analysis, which may contribute to understanding the development of CHD in the future. Bioinformatics analysis indicated that the target genes of these miRNAs are likely involved in signaling and communication of cardiomyocytes.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Josephin Weidinger
- Department of Pediatric Cardiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Martin Poryo
- Department of Pediatric Cardiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Dominic Henn
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
47
|
Li W, Christiansen L, Hjelmborg J, Baumbach J, Tan Q. On the power of epigenome-wide association studies using a disease-discordant twin design. Bioinformatics 2019; 34:4073-4078. [PMID: 29982314 DOI: 10.1093/bioinformatics/bty532] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/27/2018] [Indexed: 01/16/2023] Open
Abstract
Motivation Many studies have investigated the association between DNA methylation alterations and disease occurrences using two design paradigms, traditional case-control and disease-discordant twins. In the disease-discordant twin design, the affected twin serves as the case and the unaffected twin serves as the control. Theoretically the twin design takes advantage of controlling for the shared genetic make-up, but it is still highly debatable if and how much researchers may benefit from such a design over the traditional case-control design. Results In this study, we investigate and compare the power of both designs with simulations. A liability threshold model was used assuming that identical twins share the same genetic contribution with respect to the liability of complex human diseases. Varying ranges of parameters have been used to ensure that the simulation is close to real-world scenarios. Our results reveal that the disease-discordant twin design implies greater statistical power over the traditional case-control design. For diseases with moderate and high heritability (>0.3), the disease-discordant twin design allows for large sample size reductions compared to the ordinary case-control design. Our simulation results indicate that the discordant twin design is indeed a powerful tool for epigenetic association studies. Availability and implementation Computer scripts are available at https://github.com/zickyls/EWAS-Twin-Simulation. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Weilong Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Lene Christiansen
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Jacob Hjelmborg
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Chair of Experimental Bioinformatics, TUM School of Life Science, Technical University of Munich, Munich, Germany
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
48
|
Nygaard M, Larsen MJ, Thomassen M, McGue M, Christensen K, Tan Q, Christiansen L. Global expression profiling of cognitive level and decline in middle-aged monozygotic twins. Neurobiol Aging 2019; 84:141-147. [PMID: 31585296 DOI: 10.1016/j.neurobiolaging.2019.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/18/2019] [Accepted: 08/18/2019] [Indexed: 11/18/2022]
Abstract
Only few studies have investigated the genomewide transcriptome of normative cognitive aging. We therefore aimed at investigating blood gene expression patterns associated with cognitive aging using a population-based sample of 235 middle-aged monozygotic twin pairs with longitudinal data on cognitive function. This unique setup enabled examination of gene expression differences associated with individual and intrapair differences in cognitive level and change while controlling for underlying genetic variation and shared early environment. Overall, increased expression of several gene sets was found to strongly correlate with a lower cognitive level and cognitive decline. The most significantly correlated gene sets were related to protein metabolism, translation, RNA metabolism, infectious disease, and the immune system, which are all processes previously linked to transcription signatures of pathological and normal brain aging, and aging in blood. The results of our study thus suggest that gene expression patterns of cognitive level and decline in our sample mirror those seen in cognitively impaired individuals, which could point toward a more generic response to cognitive aging and aging in general.
Collapse
Affiliation(s)
- Marianne Nygaard
- The Danish Twin Registry and The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense C, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| | - Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark; Department of Clinical Research, Human Genetics, University of Southern Denmark, Odense C, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark; Department of Clinical Research, Human Genetics, University of Southern Denmark, Odense C, Denmark
| | - Matt McGue
- The Danish Twin Registry and The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense C, Denmark; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Kaare Christensen
- The Danish Twin Registry and The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense C, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark; Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Qihua Tan
- The Danish Twin Registry and The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense C, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Lene Christiansen
- The Danish Twin Registry and The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense C, Denmark; Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen OE, Denmark
| |
Collapse
|
49
|
Mengel-From J, Rønne ME, Carlsen AL, Skogstrand K, Larsen LA, Tan Q, Christiansen L, Christensen K, Heegaard NHH. Circulating, Cell-Free Micro-RNA Profiles Reflect Discordant Development of Dementia in Monozygotic Twins. J Alzheimers Dis 2019; 63:591-601. [PMID: 29660943 DOI: 10.3233/jad-171163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We aim to examine if circulating micro-RNA and cytokine levels associate with dementia diagnosis and cognitive scores. To test our hypothesis, we use plasma donated from 48 monozygotic twin pairs in 1997 and 46 micro-RNAs and 10 cytokines were quantified using microfluidic RT-qPCR and multiplex solid-phase immunoassays, respectively. Micro-RNA and cytokine profiling were examined for associations with dementia diagnoses in a longitudinal registry study or with cognitive scores at baseline. Thirty-six micro-RNAs and all cytokines were detected consistently. Micro-RNA profiles associate with diagnoses and cognitive scores at statistically significant levels while cytokine only showed trends pointing at chronic inflammation in twins having or developing dementia. The most notable findings were decreased miR-106a and miR-210, and increased miR-106b expression in twins with a dementia diagnosis. This pioneering evaluation of micro-RNA and cytokine and dementia diagnosis suggests micro-RNA targets in vasculogenesis, lipoprotein transport, and amyloid precursor protein genes.
Collapse
Affiliation(s)
- Jonas Mengel-From
- Department of Public Health, The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mette E Rønne
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - Anting L Carlsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - Kristin Skogstrand
- Department of Congenital Disorders, Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Lisbeth A Larsen
- Department of Public Health, The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, University of Southern Denmark, Odense, Denmark
| | - Qihua Tan
- Department of Public Health, The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lene Christiansen
- Department of Public Health, The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, University of Southern Denmark, Odense, Denmark
| | - Kaare Christensen
- Department of Public Health, The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Niels H H Heegaard
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
50
|
Li W, Zhang D, Wang W, Wu Y, Mohammadnejad A, Lund J, Baumbach J, Christiansen L, Tan Q. DNA methylome profiling in identical twin pairs discordant for body mass index. Int J Obes (Lond) 2019; 43:2491-2499. [PMID: 31152155 DOI: 10.1038/s41366-019-0382-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Body mass index (BMI) serves as an important measurement of obesity and adiposity, which are highly correlated with cardiometabolic diseases. Although high heritability has been estimated, the identified genetic variants by genetic association studies only explain a small proportion of BMI variation. As an active effort for further exploring the molecular basis of BMI variation, large-scale epigenome-wide association studies have been conducted but with limited number of loci reported, perhaps due to poorly controlled confounding factors, including genetic factors. Being genetically identical, monozygotic twins discordant for BMI are ideal subjects for analyzing the epigenetic association between DNA methylation and BMI, providing perfect control on their genetic makeups largely responsible for BMI variation. SUBJECTS We performed an epigenome-wide association study on BMI using 30 identical twin pairs (15 male and 15 female pairs) with age ranging from 39 to 72 years and degree of BMI discordance ranging from 3-7.5 kg/m2. Methylation data from whole blood samples were collected using the reduced representation bisulfite sequencing technique. RESULTS After adjusting for blood cell composition and clinical variables, we identified 136 CpGs with p-value < 1e-4, 30 CpGs with p < 1e-05 but no CpGs reached genome-wide significance. Genomic region-based analysis found 11 differentially methylated regions harboring coding and non-coding genes some of which were validated by gene expression analysis on independent samples. CONCLUSIONS Our DNA methylation sequencing analysis on identical twins provides new references for the epigenetic regulation on BMI and obesity.
Collapse
Affiliation(s)
- Weilong Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Dongfeng Zhang
- Division of Epidemiology and Health Statistics, Qingdao University Medical College, Qingdao, China
| | - Weijing Wang
- Division of Epidemiology and Health Statistics, Qingdao University Medical College, Qingdao, China
| | - Yili Wu
- Division of Epidemiology and Health Statistics, Qingdao University Medical College, Qingdao, China
| | - Afsaneh Mohammadnejad
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Jesper Lund
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.,Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Lene Christiansen
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark. .,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|