1
|
Grosiak M, Koteja P, Hambly C, Speakman JR, Sadowska ET. Limits to sustained energy intake. XXXIV. Can the heat dissipation limit (HDL) theory explain reproductive aging? J Exp Biol 2024; 227:jeb246592. [PMID: 38264846 DOI: 10.1242/jeb.246592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
According to the heat dissipation limit (HDL) theory, reproductive performance is limited by the capacity to dissipate excess heat. We tested the novel hypotheses that (1) the age-related decline in reproductive performance is due to an age-related decrease of heat dissipation capacity and (2) the limiting mechanism is more severe in animals with high metabolic rates. We used bank voles (Myodes glareolus) from lines selected for high swim-induced aerobic metabolic rate, which have also increased basal metabolic rate, and unselected control lines. Adult females from three age classes - young (4 months), middle-aged (9 months) and old (16 months) - were maintained at room temperature (20°C), and half of the lactating females were shaved to increase heat dissipation capacity. Old females from both selection lines had a decreased litter size, mass and growth rate. The peak-lactation average daily metabolic rate was higher in shaved than in unshaved mothers, and this difference was more profound among old than young and middle-aged voles (P=0.02). In females with large litters, milk production tended to be higher in shaved (least squares mean, LSM±s.e.: 73.0±4.74 kJ day-1) than in unshaved voles (61.8±4.78 kJ day-1; P=0.05), but there was no significan"t effect of fur removal on the growth rate [4.47±2.29 g (4 days-1); P=0.45]. The results provide mixed support of the HDL theory and no support for the hypotheses linking the differences in reproductive aging with either a deterioration in thermoregulatory capability or genetically based differences in metabolic rate.
Collapse
Affiliation(s)
- Marta Grosiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
2
|
Brzęk P, Roussel D, Konarzewski M. Mice selected for a high basal metabolic rate evolved larger guts but not more efficient mitochondria. Proc Biol Sci 2022; 289:20220719. [PMID: 35858057 PMCID: PMC9277295 DOI: 10.1098/rspb.2022.0719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intra-specific variation in both the basal metabolic rate (BMR) and mitochondrial efficiency (the amount of ATP produced per unit of oxygen consumed) has profound evolutionary and ecological consequences. However, the functional mechanisms responsible for this variation are not fully understood. Mitochondrial efficiency is negatively correlated with BMR at the interspecific level but it is positively correlated with performance capacity at the intra-specific level. This discrepancy is surprising, as theories explaining the evolution of endothermy assume a positive correlation between BMR and performance capacity. Here, we quantified mitochondrial oxidative phosphorylation activity and efficiency in two lines of laboratory mice divergently selected for either high (H-BMR) or low (L-BMR) levels of BMR. H-BMR mice had larger livers and kidneys (organs that are important predictors of BMR). H-BMR mice also showed higher oxidative phosphorylation activity in liver mitochondria but this difference can be hypothesized to be a direct effect of selection only if the heritability of this trait is low. However, mitochondrial efficiency in all studied organs did not differ between the two lines. We conclude that the rapid evolution of BMR can reflect changes in organ size rather than mitochondrial properties, and does not need to be accompanied obligatorily by changes in mitochondrial efficiency.
Collapse
Affiliation(s)
- Paweł Brzęk
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Damien Roussel
- Univ Lyon, Université Claude Bernard Lyon 1, UMR 5023 LEHNA, CNRS, ENTPE, Villeurbanne, France
| | - Marek Konarzewski
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| |
Collapse
|
3
|
Sadowska J, Gębczyński AK, Konarzewski M. Larger guts and faster growth in mice selected for high basal metabolic rate. Biol Lett 2021; 17:20210244. [PMID: 34637638 DOI: 10.1098/rsbl.2021.0244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Postnatal growth in birds and mammals is the time of highest vulnerability and relatively high energy demands and therefore shapes the organisms' future outcomes. Several different factors might impose limitations on growth in juveniles, one of them being the efficiency of the digestive process and size of the gastrointestinal tract. We tested the gut size-growth rate relationship using a unique experimental model-mice from a selection experiment designed to produce two lines with divergent levels of basal metabolic rate (BMR): the high BMR (H-BMR) and low BMR (L-BMR) line types. These lines differ with respect to not only BMR, but also correlated traits-internal organ size and food intake. Applying a cross-fostering design and a thermoregulatory burden imposed by shaving the mothers, we demonstrated that the mass of intestine strongly affected the growth rate, with the H-BMR pups having larger intestines and growing faster, and with reduced growth rate of pups of both lines nursed by shaved L-BMR mothers. Our study also provides a functional link between high growth rate of neonates and high BMR of adults, partly reflecting metabolic costs of maintenance of their guts.
Collapse
Affiliation(s)
- Julita Sadowska
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Białystok, Białystok, Poland
| | - Andrzej K Gębczyński
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Białystok, Białystok, Poland
| | - Marek Konarzewski
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Białystok, Białystok, Poland
| |
Collapse
|
4
|
Przybylska-Piech AS, Wojciechowski MS, Jefimow M. Polymorphism of winter phenotype in Siberian hamster: consecutive litters do not differ in photoresponsiveness but prolonged acclimation to long photoperiod inhibits winter molt. Front Zool 2021; 18:11. [PMID: 33731152 PMCID: PMC7971963 DOI: 10.1186/s12983-021-00391-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/21/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The theory of delayed life history effects assumes that phenotype of adult individual results from environmental conditions experienced at birth and as juvenile. In seasonal environments, being born late in the reproductive season affects timing of puberty, body condition, longevity, and fitness. We hypothesized that late-born individuals are more prone to respond to short photoperiod (SP) than early born ones. We used Siberian hamsters Phodopus sungorus, a model species characterized by high polymorphism of winter phenotype. We experimentally distinguished the effect of litter order (first or third) from the effect of exposure to long photoperiod (LP) before winter (3 months or 5 months) by manipulating the duration of LP acclimation in both litters. We predicted that, irrespective of the litter order, individuals exposed to long photoperiod for a short time have less time to gather energy resources and consequently are more prone to developing energy-conserving phenotypes. To assess effect of litter order, duration of acclimation to long days, and phenotype on basal cost of living we measured basal metabolic rate (BMR) of hamsters. RESULTS Individuals born in third litters had faster growth rates and were bigger than individuals from first litters, but these differences vanished before transfer to SP. Litter order or duration of LP acclimation had no effects on torpor use or seasonal body mass changes, but prolonged acclimation to LP inhibited winter molting both in first and third litters. Moreover, individuals that did not molt had significantly higher BMR in SP than those which molted to white fur. Although one phenotype usually predominated within a litter, littermates were often heterogeneous. We also found that over 10% of individuals presented late response to short photoperiod. CONCLUSIONS Our data indicate that duration of postnatal exposure to LP may define propensity to photoresponsiveness, regardless of the litter in which animal was born. Existence of littermates presenting different phenotypes suggests a prudent reproductive strategy of investing into offspring of varied phenotypes, that might be favored depending on environmental conditions. This strategy could have evolved in response to living in stochastic environment.
Collapse
Affiliation(s)
- Anna S Przybylska-Piech
- Department of Vertebrate Zoology and Ecology, Nicolaus Copernicus University, Toruń, Poland.
| | - Michał S Wojciechowski
- Department of Vertebrate Zoology and Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Małgorzata Jefimow
- Department of Animal Physiology and Neurobiology, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
5
|
Kozłowski J, Konarzewski M, Czarnoleski M. Coevolution of body size and metabolic rate in vertebrates: a life-history perspective. Biol Rev Camb Philos Soc 2020; 95:1393-1417. [PMID: 32524739 PMCID: PMC7540708 DOI: 10.1111/brv.12615] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Despite many decades of research, the allometric scaling of metabolic rates (MRs) remains poorly understood. Here, we argue that scaling exponents of these allometries do not themselves mirror one universal law of nature but instead statistically approximate the non-linearity of the relationship between MR and body mass. This 'statistical' view must be replaced with the life-history perspective that 'allows' organisms to evolve myriad different life strategies with distinct physiological features. We posit that the hypoallometric allometry of MRs (mass scaling with an exponent smaller than 1) is an indirect outcome of the selective pressure of ecological mortality on allocation 'decisions' that divide resources among growth, reproduction, and the basic metabolic costs of repair and maintenance reflected in the standard or basal metabolic rate (SMR or BMR), which are customarily subjected to allometric analyses. Those 'decisions' form a wealth of life-history variation that can be defined based on the axis dictated by ecological mortality and the axis governed by the efficiency of energy use. We link this variation as well as hypoallometric scaling to the mechanistic determinants of MR, such as metabolically inert component proportions, internal organ relative size and activity, cell size and cell membrane composition, and muscle contributions to dramatic metabolic shifts between the resting and active states. The multitude of mechanisms determining MR leads us to conclude that the quest for a single-cause explanation of the mass scaling of MRs is futile. We argue that an explanation based on the theory of life-history evolution is the best way forward.
Collapse
Affiliation(s)
- Jan Kozłowski
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa7, 30‐387KrakówPoland
| | - Marek Konarzewski
- Institute of BiologyUniversity of BiałystokCiołkowskiego 1J, 15‐245, BiałystokPoland
| | - Marcin Czarnoleski
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa7, 30‐387KrakówPoland
| |
Collapse
|
6
|
Biro PA, Thomas F, Ujvari B, Beckmann C. Can Energetic Capacity Help Explain Why Physical Activity Reduces Cancer Risk? Trends Cancer 2020; 6:829-837. [PMID: 32601046 DOI: 10.1016/j.trecan.2020.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022]
Abstract
Increased physical activity reduces cancer risk in humans, but why this whole-organism attribute reduces cancer remains unclear. Active individuals tend to have high capacity to generate energy on a sustained basis, which in turn can permit greater immune responses crucial for fighting emerging neoplasia. Thus, we suggest energetic capacity as a potential mechanism to explain the activity-cancer link, given that humans are intrinsically (not externally) energy limited. Human and rodent studies show that individuals with high energetic capacity mount greater immune responses and have lower cancer incidence; these trends persist after controlling for actual physical activity, supporting a direct role of energetic capacity. If true, exercise efforts might best target those that increase one's energetic capacity, which may be both individual and exercise specific.
Collapse
Affiliation(s)
- Peter A Biro
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, VIC 3216, Australia.
| | - Frédéric Thomas
- CREEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, VIC 3216, Australia
| | - Christa Beckmann
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, VIC 3216, Australia; School of Science, Western Sydney University, Parramatta, NSW 2116, Australia
| |
Collapse
|
7
|
Downs CJ, Brown JL, Wone BWM, Donovan ER, Hayes JP. Effects of Selection for Mass-Independent Maximal Metabolic Rate on Food Consumption. Physiol Biochem Zool 2019; 93:23-36. [PMID: 31671012 DOI: 10.1086/706206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Metabolic rates potentially regulate the pace of important physiological and life-history traits. Natural selection has shaped the evolution of metabolic rates and the physiology that supports them, including digestibility and the rate of food consumption. Understanding the relationship between metabolic rates and energy internalization is central to understanding how resources are allocated among competing physiological functions. We investigated how artificial selection on mass-independent basal metabolic rate (BMR) and mass-independent aerobic maximal metabolic rate (MMR) affected food consumption and apparent digestibility in mice. Evolved changes in mass-corrected BMR-but not mass-corrected MMR-corresponded with changes in food consumption. This result is consistent with previous work showing that BMR constitutes a large portion of an animal's daily energy budget and thus that BMR might provide a better indicator of daily food requirements than MMR. In contrast, digestive efficiencies did not differ among selection treatments and did not evolve in these mice. This study provides insights into how evolution of metabolic rates may affect food consumption and overall energy use.
Collapse
|
8
|
Przybylska AS, Wojciechowski MS, Jefimow M. Photoresponsiveness affects life history traits but not oxidative status in a seasonal rodent. Front Zool 2019; 16:11. [PMID: 31019542 PMCID: PMC6471882 DOI: 10.1186/s12983-019-0311-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Shortening photoperiod triggers seasonal adjustments like cessation of reproduction, molting and heterothermy. However there is a considerable among-individual variation in photoresponsiveness within one population. Although seasonal adjustments are considered beneficial to winter survival, and natural selection should favor the individuals responding to changes in photoperiod (responders), the phenotype non-responding to changes in day length is maintained in population. Assuming the same resource availability for both phenotypes which differ in strategy of winter survival, we hypothesized that they should differ in life history traits. To test this we compared reproductive traits of two extreme phenotypes of Siberian hamster Phodopus sungorus - responding and non-responding to seasonal changes in photoperiod. We bred individuals of the same phenotype and measured time to first parturition, time interval between litters, offspring body mass 3, 10 and 18 days after birth and their growth rate. We also analyzed nest-building behavior. Additionally, we estimated the correlation between reproduction, and basal metabolic rate (BMR) and oxidative status in both phenotypes to infer about the effect of reproductive output on future investments in somatic maintenance. Results Prior to reproduction responding individuals were smaller than non-responding ones, but this difference disappeared after reproduction. Responding pairs commenced breeding later than non-responding ones but there was no difference in time interval between consecutive litters. Responders delivered smaller offspring than non-responders and more out of responding individuals built the nest during winter than non-responding ones. Reproduction did not affect future investments in somatic maintenance. Phenotypes did not differ in BMR and oxidative status after reproduction. However, concentration of reactive oxygen metabolites (ROM) was highest in responding males, and biological antioxidant potential (BAP) was higher in males of both phenotypes than in females. Conclusions Delayed breeding in responding Siberian hamsters and high ROM concentration in male responders support our hypothesis that differences in adjustment to winter result in different life history characteristics which may explain coexistence of both phenotypes in a population. We propose that polymorphism in photoresponsiveness may be beneficial in stochastic environment, where environmental conditions differ between winters. We suggest that non-responding phenotype may be particularly beneficial during mild winter, whereas responders would be favored under harsh conditions. Therefore, none of the phenotypes is impaired when compared to the other.
Collapse
Affiliation(s)
- Anna S Przybylska
- 1Department of Vertebrate Zoology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Toruń, Poland
| | - Michał S Wojciechowski
- 1Department of Vertebrate Zoology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Toruń, Poland
| | - Małgorzata Jefimow
- 2Department of Animal Physiology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
9
|
Sadowska J, Gębczyński AK, Lewoc M, Konarzewski M. Not that hot after all: no limits to heat dissipation in lactating mice selected for high or low BMR. J Exp Biol 2019; 222:jeb.204669. [DOI: 10.1242/jeb.204669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/09/2019] [Indexed: 01/06/2023]
Abstract
Heat dissipation has been suggested as a limit to sustained metabolic effort, e.g. during lactation, when overheating is a possible risk. We tested this hypothesis using mice artificially selected for high (H-BMR) or low (L-BMR) BMR that also differ with respect to parental effort. We used fixed sized cross-fostered families and recorded litter mass daily until the 14th day of lactation. Midway through the experiment (day 8th) half of randomly chosen mothers from each line type had fur from the dorsal body surface removed to increase their thermal conductance and facilitate heat dissipation. Our results showed that neither of the line types benefited from increasing their thermal conductance at peak lactation. On the contrary, growth of the litters reared by the L-BMR females was compromised. Thus, our results do not support the heat dissipation limitation hypothesis.
Collapse
Affiliation(s)
- Julita Sadowska
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Andrzej K. Gębczyński
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Małgorzata Lewoc
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Marek Konarzewski
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| |
Collapse
|
10
|
Bacigalupe LD, Moore AJ, Nespolo RF, Rezende EL, Bozinovic F. Quantitative Genetic Modeling of the Parental Care Hypothesis for the Evolution of Endothermy. Front Physiol 2017; 8:1005. [PMID: 29311952 PMCID: PMC5732359 DOI: 10.3389/fphys.2017.01005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/21/2017] [Indexed: 11/30/2022] Open
Abstract
There are two heuristic explanations proposed for the evolution of endothermy in vertebrates: a correlated response to selection for stable body temperatures, or as a correlated response to increased activity. Parental care has been suggested as a major driving force in this context given its impact on the parents' activity levels and energy budgets, and in the offspring's growth rates due to food provisioning and controlled incubation temperature. This results in a complex scenario involving multiple traits and transgenerational fitness benefits that can be hard to disentangle, quantify and ultimately test. Here we demonstrate how standard quantitative genetic models of maternal effects can be applied to study the evolution of endothermy, focusing on the interplay between daily energy expenditure (DEE) of the mother and growth rates of the offspring. Our model shows that maternal effects can dramatically exacerbate evolutionary responses to selection in comparison to regular univariate models (breeder's equation). This effect would emerge from indirect selection mediated by maternal effects concomitantly with a positive genetic covariance between DEE and growth rates. The multivariate nature of selection, which could favor a higher DEE, higher growth rates or both, might partly explain how high turnover rates were continuously favored in a self-reinforcing process. Overall, our quantitative genetic analysis provides support for the parental care hypothesis for the evolution of endothermy. We contend that much has to be gained from quantifying maternal and developmental effects on metabolic and thermoregulatory variation during adulthood.
Collapse
Affiliation(s)
- Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Allen J Moore
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Enrico L Rezende
- Departamento de Ecología, Facultad de Ciencias Biológicas, Center of Applied Ecology and Sustainability, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile
| | - Francisco Bozinovic
- Departamento de Ecología, Facultad de Ciencias Biológicas, Center of Applied Ecology and Sustainability, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Downs CJ, Brown JL, Wone BWM, Donovan ER, Hayes JP. Speeding up Growth: Selection for Mass-Independent Maximal Metabolic Rate Alters Growth Rates. Am Nat 2016; 187:295-307. [PMID: 26913943 DOI: 10.1086/684837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Investigations into relationships between life-history traits, such as growth rate and energy metabolism, typically focus on basal metabolic rate (BMR). In contrast, investigators rarely examine maximal metabolic rate (MMR) as a relevant metric of energy metabolism, even though it indicates the maximal capacity to metabolize energy aerobically, and hence it might also be important in trade-offs. We studied the relationship between energy metabolism and growth in mice (Mus musculus domesticus Linnaeus) selected for high mass-independent metabolic rates. Selection for high mass-independent MMR increased maximal growth rate, increased body mass at 20 weeks of age, and generally altered growth patterns in both male and female mice. In contrast, there was little evidence that the correlated response in mass-adjusted BMR altered growth patterns. The relationship between mass-adjusted MMR and growth rate indicates that MMR is an important mediator of life histories. Studies investigating associations between energy metabolism and life histories should consider MMR because it is potentially as important in understanding life history as BMR.
Collapse
|
12
|
Salin K, Auer SK, Rey B, Selman C, Metcalfe NB. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc Biol Sci 2015; 282:20151028. [PMID: 26203001 PMCID: PMC4528520 DOI: 10.1098/rspb.2015.1028] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022] Open
Abstract
It is often assumed that an animal's metabolic rate can be estimated through measuring the whole-organism oxygen consumption rate. However, oxygen consumption alone is unlikely to be a sufficient marker of energy metabolism in many situations. This is due to the inherent variability in the link between oxidation and phosphorylation; that is, the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by mitochondria (P/O ratio). In this article, we describe how the P/O ratio can vary within and among individuals, and in response to a number of environmental parameters, including diet and temperature. As the P/O ratio affects the efficiency of cellular energy production, its variability may have significant consequences for animal performance, such as growth rate and reproductive output. We explore the adaptive significance of such variability and hypothesize that while a reduction in the P/O ratio is energetically costly, it may be associated with advantages in terms of somatic maintenance through reduced production of reactive oxygen species. Finally, we discuss how considering variation in mitochondrial efficiency, together with whole-organism oxygen consumption, can permit a better understanding of the relationship between energy metabolism and life history for studies in evolutionary ecology.
Collapse
Affiliation(s)
- Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sonya K Auer
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon 1, Lyon, France Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Sadowska J, Gębczyński AK, Konarzewski M. Effect of reproduction on the consistency of the between-line type divergence in laboratory mice selected on Basal metabolic rate. Physiol Biochem Zool 2015; 88:328-35. [PMID: 25860830 DOI: 10.1086/680167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Artificial selection experiments are an effective tool for testing evolutionary hypotheses, because they allow one to separate genetic and environmental variances of the phenotype. However, it is unclear whether trait divergence typically selected early in life persists over an animal's life and altered physiological states, such as reproduction. Here we analyzed the long-term consistency of the between-line type divergence in basal metabolic rate (BMR) selected at 12 wk of age in laboratory mice. We measured BMR in nonreproducing and reproducing females at the age of 22 wk and then at 27 wk of age. Our results show that within both the reproducing group and the control group, the between-line type separation in BMR is consistently retained over time and reproductive status. Metabolically active internal organs (heart, liver, kidneys, and small intestine) also consistently differed in size between the two line types with no significant long-term effect of reproduction. The observed consistency of the between-line type divergence in BMR suggests the existence of the persistent effect of the selection on metabolic traits applied early in life. Moreover, BMR variation achieved by means of artificial selection is considerably higher than that found in natural/unmanipulated populations. The latter may therefore be characterized by insufficient variance to statistically resolve correlations involving BMR.
Collapse
Affiliation(s)
- Julita Sadowska
- Institute of Biology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland
| | | | | |
Collapse
|