1
|
Wilson L, Constantine R, Pine MK, Farcas A, Radford CA. Impact of small boat sound on the listening space of Pempheris adspersa, Forsterygion lapillum, Alpheus richardsoni and Ovalipes catharus. Sci Rep 2023; 13:7007. [PMID: 37117196 PMCID: PMC10147705 DOI: 10.1038/s41598-023-33684-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Anthropogenic stressors, such as plastics and fishing, are putting coastal habitats under immense pressure. However, sound pollution from small boats has received little attention given the importance of sound in the various life history strategies of many marine animals. By combining passive acoustic monitoring, propagation modelling, and hearing threshold data, the impact of small-boat sound on the listening spaces of four coastal species was determined. Listening space reductions (LSR) were greater for fishes compared to crustaceans, for which LSR varied by day and night, due to their greater hearing abilities. Listening space also varied by sound modality for the two fish species, highlighting the importance of considering both sound pressure and particle motion. The theoretical results demonstrate that boat sound hinders the ability of fishes to perceive acoustic cues, advocating for future field-based research on acoustic cues, and highlighting the need for effective mitigation and management of small-boat sound within coastal areas worldwide.
Collapse
Affiliation(s)
- Louise Wilson
- Leigh Marine Laboratory, Institute of Marine Science, Waipapa Taumata Rau The University of Auckland, 160 Goat Island Road, Leigh, 0985, New Zealand.
| | - Rochelle Constantine
- Leigh Marine Laboratory, Institute of Marine Science, Waipapa Taumata Rau The University of Auckland, 160 Goat Island Road, Leigh, 0985, New Zealand
- School of Biological Sciences, Waipapa Taumata Rau The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Matthew K Pine
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Adrian Farcas
- Centre for Environment, Fisheries & Aquaculture Science (CEFAS), Lowestoft, Suffolk, UK
| | - Craig A Radford
- Leigh Marine Laboratory, Institute of Marine Science, Waipapa Taumata Rau The University of Auckland, 160 Goat Island Road, Leigh, 0985, New Zealand
| |
Collapse
|
2
|
Underwater Chatter for the Win: A First Assessment of Underwater Soundscapes in Two Bays along the Eastern Cape Coast of South Africa. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In 2014, the South African government launched ‘Operation Phakisa’ under which port developments play a significant role in supporting ocean economic growth. These developments will likely increase vessel traffic to and from South African ports, making it imperative to monitor for changes in underwater sound budgets with potential negative effects on marine life. However, no soundscape studies have been conducted around South Africa, resulting in an absence of baseline measurements. This study provides a first description of the underwater soundscape in St. Francis Bay and Algoa Bay, Eastern Cape. Soundscape measurements identified major soundscape contributors, temporal patterns in broadband sound levels, and underlying environmental drivers. Applicability of modelled vessel noise and wind noise maps to predict large-scale spatial variation in sound budgets was assessed. Our study shows that sounds from biological sources and wind dominated at all recording sites, with fish choruses driving temporal patterns as a function of time of year and position of the sun. Sound from vessels was present at all sites but most notable in long-term spectral levels measured in Algoa Bay. Sound propagation models predicted a further increase in the contribution of vessel noise towards shipping lanes and east Algoa Bay. Our study provides a building block to monitor for shifts in sound budgets and temporal patterns in these two bays under a developing ocean economy. Furthermore, our study raises concerns that vessel noise is likely a significant contributor in shallow waters elsewhere along the South African coast where vessel density is known to be higher (i.e., Durban and Cape Town).
Collapse
|
3
|
Wilson L, Pine MK, Radford CA. Small recreational boats: a ubiquitous source of sound pollution in shallow coastal habitats. MARINE POLLUTION BULLETIN 2022; 174:113295. [PMID: 35090280 DOI: 10.1016/j.marpolbul.2021.113295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Sound from small recreational boats spans a wide range of frequencies and source levels, but the degree to which this impacts the soundscapes of shallow coastal habitats is poorly understood. Here, long-term passive acoustic recordings at five shallow coastal sites, including two MPAs, were used to quantify spatio-temporal variation in small boat sound and its effect on the soundscape. Boats were detected almost every day at each site, irrespective of protection status, significantly elevating the low-frequency (100-800 Hz) component of the soundscape. This frequency band is used by many species for communication, orientation, and predator avoidance. Therefore, highlighting the potential for small boat sound to alter soundscapes and mask cues. Existing tools for monitoring sound pollution are targeted at sound from shipping. These data highlight that the broadband and highly variable sound emitted by small boats must be considered when evaluating anthropogenic impacts on coastal marine ecosystems worldwide.
Collapse
Affiliation(s)
- Louise Wilson
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, PO Box 349, Warkworth 0941, New Zealand.
| | - Matthew K Pine
- Department of Biology, University of Victoria, BC, Canada
| | - Craig A Radford
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, PO Box 349, Warkworth 0941, New Zealand
| |
Collapse
|
4
|
Pine MK, Wilson L, Jeffs AG, McWhinnie L, Juanes F, Scuderi A, Radford CA. A Gulf in lockdown: How an enforced ban on recreational vessels increased dolphin and fish communication ranges. GLOBAL CHANGE BIOLOGY 2021; 27:4839-4848. [PMID: 34254409 DOI: 10.1111/gcb.15798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
From midnight of 26 March 2020, New Zealand became one of the first countries to enter a strict lockdown to combat the spread of COVID-19. The lockdown banned all non-essential services and travel both on land and sea. Overnight, the country's busiest coastal waterway, the Hauraki Gulf Marine Park, became devoid of almost all recreational and non-essential commercial vessels. An almost instant change in the marine soundscape ensued, with ambient sound levels in busy channels dropping nearly threefold the first 12 h. This sudden drop led fish and dolphins to experience an immediate increase in their communication ranges by up to an estimated 65%. Very low vessel activity during the lockdown (indicated by the presence of vessel noise over the day) revealed new insights into cumulative noise effects from vessels on auditory masking. For example, at sites nearer Auckland City, communication ranges increased approximately 18 m (22%) or 50 m (11%) for every 10% decrease in vessel activity for fish and dolphins, respectively. However, further from the city and in deeper water, these communication ranges were increased by approximately 13 m (31%) or 510 m (20%). These new data demonstrate how noise from small vessels can impact underwater soundscapes and how marine animals will have to adapt to ever-growing noise pollution.
Collapse
Affiliation(s)
- Matthew K Pine
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Louise Wilson
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Andrew G Jeffs
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Lauren McWhinnie
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
- Department of Geography, University of Victoria, Victoria, BC, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Alessia Scuderi
- Marine and Environmental Science Faculty, University of Cádiz, Cádiz, Spain
- Association Nereide, Cádiz, Spain
| | - Craig A Radford
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Alves D, Vieira M, Amorim MCP, Fonseca PJ. Boat noise interferes with Lusitanian toadfish acoustic communication. J Exp Biol 2021; 224:269006. [PMID: 34102670 DOI: 10.1242/jeb.234849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
Anthropogenic noise is considered a major underwater pollutant as increasing ocean background noise due to human activities is impacting aquatic organisms. One of the most prevalent anthropogenic sounds is boat noise. Although motorboat traffic has increased in the past few decades, its impact on the communication of fish is still poorly known. The highly vocal Lusitanian toadfish (Halobatrachus didactylus) is an excellent model to test the impact of this anthropogenic stressor as it relies on acoustic communication to attract mates. Here, we performed two experiments to test the impact of boat noise on the acoustic communication of the Lusitanian toadfish. Using the auditory evoked potential (AEP) technique, we first compared the maximum distance a fish can perceive a boatwhistle (BW), the mate attraction acoustic signal, before and after embedding it in boat noise. Noises from a small motorboat and from a ferryboat reduced the active space from a control value of 6.4-10.4 m to 2.0-2.5 m and 6.3-6.7 m, respectively. In the second experiment we monitored the acoustic behaviour of breeding males exposed to boat noise playbacks and we observed an increase in the inter-onset interval of BWs and a disruption of the usual vocal interactions between singing males. These results demonstrate that boat noise can severely reduce the acoustic active space and affect the chorusing behaviour in this species, which may have consequences in breeding success for individuals and could thus affect fitness.
Collapse
Affiliation(s)
- Daniel Alves
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Bloco C2. Campo Grande, 1749-016 Lisboa, Portugal
| | - Manuel Vieira
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Bloco C2. Campo Grande, 1749-016 Lisboa, Portugal
| | - M Clara P Amorim
- MARE - Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Lisbon, Portugal
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Bloco C2. Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
The Use of Soundscapes to Monitor Fish Communities: Meaningful Graphical Representations Differ with Acoustic Environment. ACOUSTICS 2020. [DOI: 10.3390/acoustics2020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many marine animals produce sounds in several phases of their life cycles, either actively or as a byproduct of their activities, such as during mate attraction or when moving. Recent studies of underwater soundscapes have proved passive acoustic monitoring to be a cost-effective, non-invasive tool to understand ecological processes, especially when sampling in adverse conditions or at great depth. Four days of sound recordings at three seamounts from the Azorean archipelago were examined to assess the suitability of different sound graphical representations to characterize different acoustic environments that contrast in the contribution of vocal fish communities. Long-term spectrograms, sound pressure level, spectral probability densities and the Acoustic Complexity Index (ACI) were computed for two shallow seamounts (Formigas and Princesa Alice, c. 35 m) and one deep seamount (Condor, 190 m) using graphics with different time spans. Only in Formigas, which presented the highest occurrence of fish sounds, was it possible to observe temporal patterns of fish vocal activity in the graphical representations. We highlight that habitats with a higher diversity and abundance of sounds are the most suitable targets for these methods, while in locations with a low prevalence of fish sounds a combination of several methods would be recommended.
Collapse
|
7
|
Carriço R, Silva MA, Menezes GM, Fonseca PJ, Amorim MCP. Characterization of the acoustic community of vocal fishes in the Azores. PeerJ 2019; 7:e7772. [PMID: 31720098 PMCID: PMC6836754 DOI: 10.7717/peerj.7772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
Sounds produced by teleost fishes are an important component of marine soundscapes, making passive acoustic monitoring (PAM) an effective way to map the presence of vocal fishes with a minimal impact on ecosystems. Based on a literature review, we list the known soniferous fish species occurring in Azorean waters and compile their sounds. We also describe new fish sounds recorded in Azores seamounts. From the literature, we identified 20 vocal fish species present in Azores. We analysed long-term acoustic recordings carried out since 2008 in Condor and Princesa Alice seamounts and describe 20 new putative fish sound sequences. Although we propose candidates as the source of some vocalizations, this study puts into evidence the myriad of fish sounds lacking species identification. In addition to identifying new sound sequences, we provide the first marine fish sound library for Azores. Our acoustic library will allow to monitor soniferous fish species for conservation and management purposes.
Collapse
Affiliation(s)
- Rita Carriço
- Okeanos-UAc R&D Center, University of the Azores, Horta, Portugal; MARE - Marine and Environmental Sciences Centre and IMAR - Institute of Marine Research, Horta, Açores, Portugal
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Lisboa, Portugal
| | - Mónica A. Silva
- Okeanos-UAc R&D Center, University of the Azores, Horta, Portugal; MARE - Marine and Environmental Sciences Centre and IMAR - Institute of Marine Research, Horta, Açores, Portugal
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole Oceanographic Institution, Barnstable County, MA, United States of America
| | - Gui M. Menezes
- Okeanos-UAc R&D Center, University of the Azores, Horta, Portugal; MARE - Marine and Environmental Sciences Centre and IMAR - Institute of Marine Research, Horta, Açores, Portugal
| | - Paulo J. Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Clara P. Amorim
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Ibrahim AK, Zhuang H, Chérubin LM, Schärer Umpierre MT, Ali AM, Nemeth RS, Erdol N. Classification of red hind grouper call types using random ensemble of stacked autoencoders. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:2155. [PMID: 31671953 DOI: 10.1121/1.5126861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a method is introduced for the classification of call types of red hind grouper, an important fishery resource in the Caribbean that produces sounds associated with reproductive behaviors during yearly spawning aggregations. For the undertaken task, two distinct call types of red hind are analyzed. An ensemble of stacked autoencoders (SAEs) is then designed by randomly selecting the hyperparameters of SAEs in the network. These hyperparameters include a number of hidden layers in each SAE and a number of nodes in each hidden layer. Spectrograms of red hind calls are used to train this randomly generated ensemble of SAEs one at a time. Once all individual SAEs are trained, this ensemble is used as a whole to classify call types of red hind. More specifically, the outputs of individual SAEs are combined with a fusion mechanism to produce a final decision on the call type of the input red hind sound. Experimental results show that the innovative approach produces superior results in comparison with those obtained by non-ensemble methods. The algorithm reliably classified red hind call types with over 90% accuracy and successfully detected some calls missed by human observers.
Collapse
Affiliation(s)
- Ali K Ibrahim
- Department Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Hanqi Zhuang
- Department Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Laurent M Chérubin
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US1 North, Fort Pierce, Florida 34946, USA
| | | | - Ali Muhamed Ali
- Department Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Richard S Nemeth
- Center for Marine and Environmental Studies, University of Virgin Islands, Saint Thomas, United States Virgin Islands
| | - Nurgun Erdol
- Department Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida 33431, USA
| |
Collapse
|
9
|
Amorim MCP, Vasconcelos RO, Bolgan M, Pedroso SS, Fonseca PJ. Acoustic communication in marine shallow waters: testing the acoustic adaptive hypothesis in sand gobies. ACTA ACUST UNITED AC 2018; 221:jeb.183681. [PMID: 30171096 DOI: 10.1242/jeb.183681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/27/2018] [Indexed: 01/31/2023]
Abstract
Acoustic communication is an important part of social behaviour of fish species that live or breed in shallow noisy waters. Previous studies have shown that some fish species exploit a quiet window in the background noise for communication. However, it remains to be examined whether hearing abilities and sound production of fish are adapted to marine habitats presenting high hydrodynamism. Here, we investigated whether the communication system of the painted (Pomatoschistus pictus) and the marbled (Pomatoschistus marmoratus) gobies is adapted to enhance sound transmission and reception in Atlantic shallow water environments. We recorded and measured the sound pressure levels of social vocalisations of both species, as well as snapshots of ambient noise of habitats characterised by different hydrodynamics. Hearing thresholds (in terms of both sound pressure and particle acceleration) and responses to conspecific signals were determined using the auditory evoked potential recording technique. We found that the peak frequency range (100-300 Hz) of acoustic signals matched the best hearing sensitivity in both species and appeared well adapted for short-range communication in Atlantic habitats. Sandy/rocky exposed beaches presented a quiet window, observable even during the breaking of moderate waves, coincident with the main sound frequencies and best hearing sensitivities of both species. Our data demonstrate that the hearing abilities of these gobies are well suited to detect conspecific sounds within typical interacting distances (a few body lengths) in Atlantic shallow waters. These findings lend support to the acoustic adaptive hypothesis, under the sensory drive framework, proposing that signals and perception systems coevolve to be effective within local environment constraints.
Collapse
Affiliation(s)
- Maria Clara P Amorim
- MARE (Marine and Environmental Sciences Centre), ISPA - Instituto Universitário, 1149-041 Lisboa, Portugal
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao SAR, China
| | - Marta Bolgan
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Institut de Chimie - B6C, Université de Liège, 4000 Liège, Belgium
| | - Silvia S Pedroso
- MARE (Marine and Environmental Sciences Centre), ISPA - Instituto Universitário, 1149-041 Lisboa, Portugal.,Departamento de Biologia Animal and cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Putland RL, Merchant ND, Farcas A, Radford CA. Vessel noise cuts down communication space for vocalizing fish and marine mammals. GLOBAL CHANGE BIOLOGY 2018; 24:1708-1721. [PMID: 29194854 DOI: 10.1111/gcb.13996] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Anthropogenic noise across the world's oceans threatens the ability of vocalizing marine species to communicate. Some species vocalize at key life stages or whilst foraging, and disruption to the acoustic habitat at these times could lead to adverse consequences at the population level. To investigate the risk of these impacts, we investigated the effect of vessel noise on the communication space of the Bryde's whale Balaenoptera edeni, an endangered species which vocalizes at low frequencies, and bigeye Pempheris adspersa, a nocturnal fish species which uses contact calls to maintain group cohesion while foraging. By combining long-term acoustic monitoring data with AIS vessel-tracking data and acoustic propagation modelling, the impact of vessel noise on their communication space was determined. Routine vessel passages cut down communication space by up to 61.5% for bigeyes and 87.4% for Bryde's whales. This influence of vessel noise on communication space exceeded natural variability for between 3.9 and 18.9% of the monitoring period. Additionally, during the closest point of approach of a large commercial vessel, <10 km from the listening station, the communication space of both species was reduced by a maximum of 99% compared to the ambient soundscape. These results suggest that vessel noise reduces communication space beyond the evolutionary context of these species and may have chronic effects on these populations. To combat this risk, we propose the application or extension of ship speed restrictions in ecologically significant areas, since our results indicate a reduction in sound source levels for vessels transiting at lower speeds.
Collapse
Affiliation(s)
- Rosalyn L Putland
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, New Zealand
| | - Nathan D Merchant
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
| | - Adrian Farcas
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
| | - Craig A Radford
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, New Zealand
| |
Collapse
|
11
|
Patterns of biophonic periodicity on coral reefs in the Great Barrier Reef. Sci Rep 2017; 7:17459. [PMID: 29234024 PMCID: PMC5727085 DOI: 10.1038/s41598-017-15838-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/27/2017] [Indexed: 12/19/2022] Open
Abstract
The coral reefs surrounding Lizard Island in the Great Barrier Reef have a diverse soundscape that contains an array of bioacoustic phenomena, notably choruses produced by fishes. Six fish choruses identified around Lizard Island exhibited distinctive spatial and temporal patterns from 2014 to 2016. Several choruses displayed site fidelity, indicating that particular sites may represent important habitat for fish species, such as fish spawning aggregations sites. The choruses displayed a broad range of periodicities, from diel to annual, which provides new insights into the ecology of vocalising reef fish species and the surrounding ecosystem. All choruses were affected by one or more environmental variables including temperature and moonlight, the latter of which had a significant influence on the timing and received sound levels. These findings highlight the utility of passive acoustic tools for long-term monitoring and management of coral reefs, which is highly relevant in light of recent global disturbance events, particularly coral bleaching.
Collapse
|
12
|
Stanley JA, Van Parijs SM, Hatch LT. Underwater sound from vessel traffic reduces the effective communication range in Atlantic cod and haddock. Sci Rep 2017; 7:14633. [PMID: 29116094 PMCID: PMC5676770 DOI: 10.1038/s41598-017-14743-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/13/2017] [Indexed: 11/13/2022] Open
Abstract
Stellwagen Bank National Marine Sanctuary is located in Massachusetts Bay off the densely populated northeast coast of the United States; subsequently, the marine inhabitants of the area are exposed to elevated levels of anthropogenic underwater sound, particularly due to commercial shipping. The current study investigated the alteration of estimated effective communication spaces at three spawning locations for populations of the commercially and ecologically important fishes, Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). Both the ambient sound pressure levels and the estimated effective vocalization radii, estimated through spherical spreading models, fluctuated dramatically during the three-month recording periods. Increases in sound pressure level appeared to be largely driven by large vessel activity, and accordingly exhibited a significant positive correlation with the number of Automatic Identification System tracked vessels at the two of the three sites. The near constant high levels of low frequency sound and consequential reduction in the communication space observed at these recording sites during times of high vocalization activity raises significant concerns that communication between conspecifics may be compromised during critical biological periods. This study takes the first steps in evaluating these animals’ communication spaces and alteration of these spaces due to anthropogenic underwater sound.
Collapse
Affiliation(s)
- Jenni A Stanley
- National Oceanic and Atmospheric Administration, Northeast Fisheries Science Center, National Marine Fisheries Science Center, Protected Species Branch, Woods Hole, MA, USA. .,National Oceanic and Atmospheric Administration, National Ocean Service, Office of National Marine Sanctuaries, Stellwagen Bank National Marine Sanctuary, Scituate, MA, USA.
| | - Sofie M Van Parijs
- National Oceanic and Atmospheric Administration, Northeast Fisheries Science Center, National Marine Fisheries Science Center, Protected Species Branch, Woods Hole, MA, USA
| | - Leila T Hatch
- National Oceanic and Atmospheric Administration, National Ocean Service, Office of National Marine Sanctuaries, Stellwagen Bank National Marine Sanctuary, Scituate, MA, USA
| |
Collapse
|
13
|
Putland RL, Constantine R, Radford CA. Exploring spatial and temporal trends in the soundscape of an ecologically significant embayment. Sci Rep 2017; 7:5713. [PMID: 28720760 PMCID: PMC5516011 DOI: 10.1038/s41598-017-06347-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/13/2017] [Indexed: 11/20/2022] Open
Abstract
The Hauraki Gulf, a shallow embayment in north-eastern New Zealand, provides an interesting environment for ecological soundscape research. It is situated on a tectonic plate boundary, contains one of the busiest ports in the southern hemisphere and is home to a diverse range of soniferous animals. The underwater soundscape was monitored for spatial and temporal trends at six different listening stations using passive acoustic recorders. The RMS sound pressure level of ambient sound (50–24,000 Hz) at the six listening stations was similar, ranging from 90–110 dB re 1 μPa throughout the recording period. Biophony had distinct temporal patterns and biological choruses of urchins were significantly correlated to temperature. Geophony and biophony followed the acoustic niche hypothesis, where each sound exhibited both temporal and frequency partitioning. Vessel passage sound were identified in 1.9–35.2% of recordings from the different listening stations. Vessel sound recorded in the Hauraki Gulf has the potential to mask concurrent geophony and biophony, sounds that may be important to marine life. This study provides a baseline of ambient sound, useful for future management strategies in shallow embayments where anthropogenic pressure is likewise increasing.
Collapse
Affiliation(s)
- R L Putland
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, PO Box 349, Warkworth, 0941, New Zealand.
| | - R Constantine
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - C A Radford
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, PO Box 349, Warkworth, 0941, New Zealand
| |
Collapse
|
14
|
McWilliam JN, McCauley RD, Erbe C, Parsons MJG. Soundscape diversity in the Great Barrier Reef: Lizard Island, a case study. BIOACOUSTICS 2017. [DOI: 10.1080/09524622.2017.1344930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jamie N. McWilliam
- Centre for Marine Science and Technology, Curtin University, Perth, Australia
| | - Rob D. McCauley
- Centre for Marine Science and Technology, Curtin University, Perth, Australia
| | - Christine Erbe
- Centre for Marine Science and Technology, Curtin University, Perth, Australia
| | - Miles J. G. Parsons
- Centre for Marine Science and Technology, Curtin University, Perth, Australia
| |
Collapse
|
15
|
Coral reef soundscapes may not be detectable far from the reef. Sci Rep 2016; 6:31862. [PMID: 27550394 PMCID: PMC4994009 DOI: 10.1038/srep31862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/28/2016] [Indexed: 11/23/2022] Open
Abstract
Biological sounds produced on coral reefs may provide settlement cues to marine larvae. Sound fields are composed of pressure and particle motion, which is the back and forth movement of acoustic particles. Particle motion (i.e., not pressure) is the relevant acoustic stimulus for many, if not most, marine animals. However, there have been no field measurements of reef particle motion. To address this deficiency, both pressure and particle motion were recorded at a range of distances from one Hawaiian coral reef at dawn and mid-morning on three separate days. Sound pressure attenuated with distance from the reef at dawn. Similar trends were apparent for particle velocity but with considerable variability. In general, average sound levels were low and perhaps too faint to be used as an orientation cue except very close to the reef. However, individual transient sounds that exceeded the mean values, sometimes by up to an order of magnitude, might be detectable far from the reef, depending on the hearing abilities of the larva. If sound is not being used as a long-range cue, it might still be useful for habitat selection or other biological activities within a reef.
Collapse
|
16
|
Parmentier E, Fine ML, Mok HK. Sound production by a recoiling system in the pempheridae and terapontidae. J Morphol 2016; 277:717-24. [DOI: 10.1002/jmor.20529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/06/2016] [Accepted: 02/14/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Eric Parmentier
- Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH-RC; Institut de Chimie, Bât. B6c, Université de Liège; Liège B-4000 Belgium
| | - Michael L. Fine
- Department of Biology; Virginia Commonwealth University; Richmond Virginia 23284-2012
| | - Hin-Kiu Mok
- Department of Oceanography and Asia-Pacific Ocean Research Center; National Sun Yat-sen University; Kaohsiung 80424 Taiwan
- National Museum of Marine Biology and Aquarium; Checheng Pingtung 944 Taiwan
| |
Collapse
|
17
|
Alves D, Amorim MCP, Fonseca PJ. Assessing acoustic communication active space in the Lusitanian toadfish. ACTA ACUST UNITED AC 2016; 219:1122-9. [PMID: 26896547 DOI: 10.1242/jeb.134981] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/04/2016] [Indexed: 11/20/2022]
Abstract
The active space of a signal is an important concept in acoustic communication as it has implications for the function and evolution of acoustic signals. However, it remains mostly unknown for fish as it has been measured in only a restricted number of species. We combined physiological and sound propagation approaches to estimate the communication range of the Lusitanian toadfish's ( ITALIC! Halobatrachus didactylus) advertisement sound, the boatwhistle (BW). We recorded BWs at different distances from vocalizing fish in a natural nesting site at ca. 2-3 m depth. We measured the representation of these increasingly attenuated BWs in the auditory pathway through the auditory evoked potential (AEP) technique. These measurements point to a communication range of between 6 and 13 m, depending on the spectral characteristics of the BW. A similar communication range (ca. 8 m) was derived from comparing sound attenuation at selected frequencies with auditory sensitivity. This is one of the few studies to combine auditory measurements with sound propagation to estimate the active space of acoustic signals in fish. We emphasize the need in future studies for estimates of active space to take informational masking into account.
Collapse
Affiliation(s)
- Daniel Alves
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
| | - M Clara P Amorim
- MARE - Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Lisbon 1149-041, Portugal
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
| |
Collapse
|
18
|
Evidence for contact calls in fish: conspecific vocalisations and ambient soundscape influence group cohesion in a nocturnal species. Sci Rep 2016; 6:19098. [PMID: 26750559 PMCID: PMC4707522 DOI: 10.1038/srep19098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/01/2015] [Indexed: 12/03/2022] Open
Abstract
Soundscapes provide a new tool for the study of fish communities. Bigeyes (Pempheris adspersa) are nocturnal planktivorous reef fish, feed in loose shoals and are soniferous. These vocalisations have been suggested to be contact calls to maintain group cohesion, however direct evidence for this is absent, despite the fact that contact calls are well documented for many other vertebrates, including marine mammals. For fish, direct evidence for group cohesion signals is restricted to the use of visual and hydrodynamic cues. In support of adding vocalisation as a contributing cue, our laboratory experiments show that bigeyes significantly increased group cohesion when exposed to recordings of ambient reef sound at higher sound levels while also decreasing vocalisations. These patterns of behaviour are consistent with acoustic masking. When exposed to playback of conspecific vocalisations, the group cohesion and vocalisation rates of bigeyes both significantly increased. These results provide the first direct experimental support for the hypotheses that vocalisations are used as contact calls to maintain group cohesion in fishes, making fish the evolutionarily oldest vertebrate group in which this phenomenon has been observed, and adding a new dimension to the interpretation of nocturnal reef soundscapes.
Collapse
|
19
|
Reichard DG, Anderson RC. Why signal softly? The structure, function and evolutionary significance of low-amplitude signals. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|