1
|
Volaric MP, Stine EM, Burtner M, Andrews SS, Berg P, Reidenbach MA. The turbulent soundscape of intertidal oyster reefs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608049. [PMID: 39229043 PMCID: PMC11370429 DOI: 10.1101/2024.08.15.608049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Turbulence and sound are important cues for oyster reef larval recruitment. Numerous studies have found a relationship between turbulence intensity and swimming behaviors of marine larvae, while others have documented the importance of sounds in enhancing larval recruitment to oyster reefs. However, the relationship between turbulence and the reef soundscape is not well understood. In this study we made side-by-side acoustic Doppler velocimeter turbulence measurements and hydrophone soundscape recordings over 2 intertidal oyster reefs (1 natural and 1 restored) and 1 adjacent bare mudflat as a reference. Sound pressure levels (SPL) were similar across all three sites, although SPL > 2000 Hz was highest at the restored reef, likely due to its larger area that contained a greater number of sound-producing organisms. Flow noise (FN), defined as the mean of pressure fluctuations recorded by the hydrophone at f < 100 Hz, was significantly related to mean flow speed, turbulent kinetic energy, and turbulence dissipation rate (ε), agreeing with theoretical calculations for turbulence. Our results also show a similar relationship between ε and FN to what has been previously reported for ε vs. downward larval swimming velocity (w b ), with both FN and w b demonstrating rapid growth at ε > 0.1 cm2 s-3. These results suggest that reef turbulence and sounds may attract oyster larvae in complementary and synergistic ways.
Collapse
Affiliation(s)
- Martin P. Volaric
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, USA
- Current Location: San Francisco Estuary Institute, Richmond, CA 94804, USA
| | - Eli M. Stine
- McIntire Department of Music, University of Virginia, Charlottesville, Virginia 22904, USA
- Current location: Department of Technology in Music and Related Arts, Oberlin Conservatory, Oberlin, OH 44074
| | - Matthew Burtner
- McIntire Department of Music, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Steven S. Andrews
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Peter Berg
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Matthew A. Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
2
|
Liu R, Ding Y, Xie G. Real-time position and pose prediction for a self-propelled undulatory swimmer in 3D space with artificial lateral line system. BIOINSPIRATION & BIOMIMETICS 2024; 19:046014. [PMID: 38722349 DOI: 10.1088/1748-3190/ad493b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
This study aims to investigate the feasibility of using an artificial lateral line (ALL) system for predicting the real-time position and pose of an undulating swimmer with Carangiform swimming patterns. We established a 3D computational fluid dynamics simulation to replicate the swimming dynamics of a freely swimming mackerel under various motion parameters, calculating the corresponding pressure fields. Using the simulated lateral line data, we trained an artificial neural network to predict the centroid coordinates and orientation of the swimmer. A comprehensive analysis was further conducted to explore the impact of sensor quantity, distribution, noise amplitude and sampling intervals of the ALL array on predicting performance. Additionally, to quantitatively assess the reliability of the localization network, we trained another neural network to evaluate error magnitudes for different input signals. These findings provide valuable insights for guiding future research on mutual sensing and schooling in underwater robotic fish.
Collapse
Affiliation(s)
- Ruosi Liu
- State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Yang Ding
- Beijing Computational Science Research Center, Haidian District, Beijing, People's Republic of China
- Beijing Normal University, Haidian District, Beijing, People's Republic of China
| | - Guangming Xie
- State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China
- Institute of Ocean Research, Peking University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Wood LE, Silva TAM, Heal R, Kennerley A, Stebbing P, Fernand L, Tidbury HJ. Unaided dispersal risk of Magallana gigas into and around the UK: combining particle tracking modelling and environmental suitability scoring. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02467-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractMarine non-indigenous species are a significant threat to marine ecosystems with prevention of introduction and early detection considered to be the only effective management strategy. Knowledge of the unaided pathway has received relatively little attention, despite being integral to the implementation of robust monitoring and surveillance. Here, particle tracking modelling is combined with spatial analysis of environmental suitability, to highlight UK coastal areas at risk of introduction and spread of Magallana gigas by the unaided pathway. ‘Introduction into UK’ scenarios were based on spawning from the continental coast, Republic of Ireland, Channel Islands and Isle of Man and ‘spread within UK’ scenarios were based on spawning from known UK wild populations and aquaculture sites. Artificial structures were included as spawning sites in an introduction scenario. The UK coast was scored, based on parameters influencing larval settlement, to reflect environmental suitability. Risk maps were produced to highlight areas of the UK coast at elevated risk of introduction and spread of M. gigas by the unaided pathway. This study highlights that introduction of M. gigas into UK waters via the unaided pathway is possible, with offshore structures increasing the potential geographical extent of introduction. Further, there is potential for substantial secondary spread from aquaculture sites and wild populations in the UK. The results of the study are considered in the context of national M. gigas management, whilst the approach is contextualised more broadly as a tool to further understanding of a little-known, yet significant pathway.
Collapse
|
4
|
Guillam M, Bessin C, Blanchet-Aurigny A, Cugier P, Nicolle A, Thiébaut É, Comtet T. Vertical distribution of brittle star larvae in two contrasting coastal embayments: implications for larval transport. Sci Rep 2020; 10:12033. [PMID: 32694630 PMCID: PMC7374168 DOI: 10.1038/s41598-020-68750-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/22/2020] [Indexed: 11/28/2022] Open
Abstract
The ability of marine invertebrate larvae to control their vertical position shapes their dispersal pattern. In species characterized by large variations in population density, like many echinoderm species, larval dispersal may contribute to outbreak and die-off phenomena. A proliferation of the ophiuroid Ophiocomina nigra was observed for several years in western Brittany (France), inducing drastic changes on the benthic communities. We here studied the larval vertical distribution in this species and two co-occurring ophiuroid species, Ophiothrix fragilis and Amphiura filiformis, in two contrasting hydrodynamic environments: stratified in the bay of Douarnenez and well-mixed in the bay of Brest. Larvae were collected at 3 depths during 25 h within each bay. In the bay of Brest, all larvae were evenly distributed in the water column due to the intense vertical mixing. Conversely, in the bay of Douarnenez, a diel vertical migration was observed for O. nigra, with a night ascent of young larvae, and ontogenetic differences. These different patterns in the two bays mediate the effects of tidal currents on larval fluxes. O. fragilis larvae were mainly distributed above the thermocline which may favour larval retention within the bay, while A. filiformis larvae, mostly concentrated near the bottom, were preferentially exported. This study highlighted the complex interactions between coastal hydrodynamics and specific larval traits, e.g. larval morphology, in the control of larval vertical distribution and larval dispersal.
Collapse
Affiliation(s)
- Morgane Guillam
- Sorbonne Université, CNRS, Station Biologique de Roscoff, Laboratoire Adaptation Et Diversité en Milieu Marin, ADMM, CS90074, 29688, Roscoff Cedex, France.
| | - Claire Bessin
- Sorbonne Université, CNRS, Station Biologique de Roscoff, Laboratoire Adaptation Et Diversité en Milieu Marin, ADMM, CS90074, 29688, Roscoff Cedex, France
| | - Aline Blanchet-Aurigny
- Ifremer, Centre de Bretagne, Département Dynamiques des Ecosystèmes Côtiers (DYNECO), Laboratoire d'Ecologie Benthique Côtière (LEBCO), Technopole Brest Iroise, CS 10070, 29280, Plouzané, France
| | - Philippe Cugier
- Ifremer, Centre de Bretagne, Département Dynamiques des Ecosystèmes Côtiers (DYNECO), Laboratoire d'Ecologie Benthique Côtière (LEBCO), Technopole Brest Iroise, CS 10070, 29280, Plouzané, France
| | - Amandine Nicolle
- Sorbonne Université, CNRS, Station Biologique de Roscoff, Laboratoire Adaptation Et Diversité en Milieu Marin, ADMM, CS90074, 29688, Roscoff Cedex, France.,ENSTA Bretagne, Pôle STIC/OSM, 2 rue François Verny, 29806, Brest Cedex 9, France
| | - Éric Thiébaut
- Sorbonne Université, CNRS, Station Biologique de Roscoff, Laboratoire Adaptation Et Diversité en Milieu Marin, ADMM, CS90074, 29688, Roscoff Cedex, France
| | - Thierry Comtet
- Sorbonne Université, CNRS, Station Biologique de Roscoff, Laboratoire Adaptation Et Diversité en Milieu Marin, ADMM, CS90074, 29688, Roscoff Cedex, France
| |
Collapse
|
5
|
Liberti A, Bertocci I, Pollet A, Musco L, Locascio A, Ristoratore F, Spagnuolo A, Sordino P. An indoor study of the combined effect of industrial pollution and turbulence events on the gut environment in a marine invertebrate. MARINE ENVIRONMENTAL RESEARCH 2020; 158:104950. [PMID: 32217300 DOI: 10.1016/j.marenvres.2020.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/25/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Natural storms are able to determine reworking of seabed up to considerable depths and favour suspension of sediment-associated chemicals. Yet, a direct link between exposure to resuspended contaminants and the biological effects on marine organisms have to be fully established. We exposed adults of a suspension feeder, the ascidian Ciona robusta, to polluted sediment (e.g., containing mixtures of polycyclic aromatic hydrocarbons and heavy metals) from the industrial area of Bagnoli-Coroglio under two temporal patterns ('aggregated' vs. 'spaced') of turbulence events. Then, we assessed the impact of resuspended pollutants on the ascidian gut environment via four broad categories: oxidative stress, innate immunity, host-microbiota interactions, and epithelium. An early oxidative stress response was seen after a week of exposure to static sediment. Instead, water turbulence had no effect on the antioxidant defence. The first episode of turbulent suspension induced a minimal pro-inflammatory response in the 'spaced' pattern. Mucus overproduction and a complete occlusion of the crypt lumen were found following sediment reworking. This study suggests a protective response of the gut environment in marine invertebrates exposed to environmental extremes, leading to increased susceptibility to disease and to concerns on the combined effects of chronic environmental contamination and acute disturbance events possibly associated with climate change.
Collapse
Affiliation(s)
- Assunta Liberti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Iacopo Bertocci
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Biology, University of Pisa, CoNISMa, Pisa, Italy
| | | | - Luigi Musco
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
6
|
Wheeler JD, Secchi E, Rusconi R, Stocker R. Not Just Going with the Flow: The Effects of Fluid Flow on Bacteria and Plankton. Annu Rev Cell Dev Biol 2019; 35:213-237. [PMID: 31412210 DOI: 10.1146/annurev-cellbio-100818-125119] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms often live in habitats characterized by fluid flow, from lakes and oceans to soil and the human body. Bacteria and plankton experience a broad range of flows, from the chaotic motion characteristic of turbulence to smooth flows at boundaries and in confined environments. Flow creates forces and torques that affect the movement, behavior, and spatial distribution of microorganisms and shapes the chemical landscape on which they rely for nutrient acquisition and communication. Methodological advances and closer interactions between physicists and biologists have begun to reveal the importance of flow-microorganism interactions and the adaptations of microorganisms to flow. Here we review selected examples of such interactions from bacteria, phytoplankton, larvae, and zooplankton. We hope that this article will serve as a blueprint for a more in-depth consideration of the effects of flow in the biology of microorganisms and that this discussion will stimulate further multidisciplinary effort in understanding this important component of microorganism habitats.
Collapse
Affiliation(s)
- Jeanette D Wheeler
- Institute of Environmental Engineering, Department of Civil, Environmental, and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland;
| | - Eleonora Secchi
- Institute of Environmental Engineering, Department of Civil, Environmental, and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland;
| | - Roberto Rusconi
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele (MI), Italy.,Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano (MI), Italy
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental, and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland;
| |
Collapse
|
7
|
George SB, Strathmann RR. Arms of larval seastars of Pisaster ochraceus provide versatility in muscular and ciliary swimming. PLoS One 2019; 14:e0213803. [PMID: 30870513 PMCID: PMC6417731 DOI: 10.1371/journal.pone.0213803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/28/2019] [Indexed: 11/19/2022] Open
Abstract
Larval swimming with cilia, unaided by muscles, is the presumed ancestral condition for echinoderms, but use of muscles in swimming has evolved several times. Ciliation and musculature of the arms of brachiolaria-stage larvae in the family Asteriidae provide unusual versatility in the use of muscles in swimming. The muscles affect swimming in two different ways. (1) Contraction of muscles moves the arms, propelling the larva. (2) Contraction of muscles changes orientation of the arms, thereby changing direction of ciliary currents and direction of swimming. New observations of the brachiolaria of the asteriid seastar Pisaster ochraceus demonstrate more versatility in both of these uses of muscles than had been previously described: the posterolateral arms stroke in more ways to propel the larva forward and to change the direction of swimming, and more pairs of the arms point ciliary currents in more directions for changes in direction of swimming. Morphology of brachiolariae suggests that these uses of muscles in swimming evolved before divergence of the families Stichasteridae and Asteriidae within forcipulate asteroids. This versatile use of muscles for swimming, both alone and in combination with ciliary currents, further distinguishes the swimming of these brachiolariae from swimming by larvae of other echinoderms and larvae of acorn worms in the sister phylum Hemichordata.
Collapse
Affiliation(s)
- Sophie B. George
- Biology Department, Georgia Southern University, Statesboro, Georgia, United States of America
| | - Richard R. Strathmann
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| |
Collapse
|
8
|
Hodin J, Ferner MC, Ng G, Gaylord B. Sand Dollar Larvae Show Within-Population Variation in Their Settlement Induction by Turbulence. THE BIOLOGICAL BULLETIN 2018; 235:152-166. [PMID: 30624118 DOI: 10.1086/699827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Settlement-the generally irreversible transition from a planktonic phase to a benthic phase-is a critical stage in the life history of many shoreline organisms. It is reasonable to expect that larvae are under intense selection pressure to identify appropriate settlement habitat. Several decades of studies have focused mainly on local indicators that larvae use to identify suitable habitat, such as olfactory cues that indicate the presence of conspecifics or a favored food source. Our recent work has shown that the larvae of seashore-dwelling echinoids (sea urchins, sand dollars, and kin) can be primed to settle following a brief exposure to a broader-scale indicator of their approach to shore: an increase in fluid turbulence. Here we demonstrate that this priming shows within-population variation: the offspring of certain Pacific sand dollar (Dendraster excentricus) parents-both specific fathers and specific mothers, regardless of the other parent-are more responsive to turbulence than others. In particular, the observation of the effect correlating, in some cases, with specific fathers leads us to conclude that these behavioral differences are likely genetic and thus heritable. We also report that turbulence exposure causes larvae to temporarily sink to the bottom of a container of seawater and that larvae that respond in this way are also more likely to subsequently settle. We hypothesize a two-step scenario for the evolution of turbulence responsiveness at settlement and suggest that the evolutionary origin of these behaviors could be a driving force for population differentiation and speciation.
Collapse
|
9
|
Waves cue distinct behaviors and differentiate transport of congeneric snail larvae from sheltered versus wavy habitats. Proc Natl Acad Sci U S A 2018; 115:E7532-E7540. [PMID: 30037993 DOI: 10.1073/pnas.1804558115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine population dynamics often depend on dispersal of larvae with infinitesimal odds of survival, creating selective pressure for larval behaviors that enhance transport to suitable habitats. One intriguing possibility is that larvae navigate using physical signals dominating their natal environments. We tested whether flow-induced larval behaviors vary with adults' physical environments, using congeneric snail larvae from the wavy continental shelf (Tritia trivittata) and from turbulent inlets (Tritia obsoleta). Turbulence and flow rotation (vorticity) induced both species to swim more energetically and descend more frequently. Accelerations, the strongest signal from waves, induced a dramatic response in T. trivittata but almost no response in competent T. obsoleta Early stage T. obsoleta did react to accelerations, ruling out differences in sensory capacities. Larvae likely distinguished turbulent vortices from wave oscillations using statocysts. Statocysts' ability to sense acceleration would also enable detection of low-frequency sound from wind and waves. T. trivittata potentially hear and react to waves that provide a clear signal over the continental shelf, whereas T. obsoleta effectively "go deaf" to wave motions that are weak in inlets. Their contrasting responses to waves would cause these larvae to move in opposite directions in the water columns of their respective adult habitats. Simulations showed that the congeners' transport patterns would diverge over the shelf, potentially reinforcing the separate biogeographic ranges of these otherwise similar species. Responses to turbulence could enhance settlement but are unlikely to aid large-scale navigation, whereas shelf species' responses to waves may aid retention over the shelf via Stokes drift.
Collapse
|
10
|
Fuchs HL, Specht JA, Adams DK, Christman AJ. Turbulence induces metabolically costly behaviors and inhibits food capture in oyster larvae, causing net energy loss. ACTA ACUST UNITED AC 2018; 220:3419-3431. [PMID: 28978637 DOI: 10.1242/jeb.161125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022]
Abstract
Planktotrophic invertebrate larvae require energy to develop, disperse and settle successfully, and it is unknown how their energetics are impacted by turbulence. Ciliated larvae gain metabolic energy from their phytoplankton food to offset the energetic costs of growth, development and ciliary activity for swimming and feeding. Turbulence may affect the energetic balance by inducing behaviors that alter the metabolic costs and efficiency of swimming, by raising the encounter rate with food particles and by inhibiting food capture. We used experiments and an empirical model to quantify the net rate of energy gain, swimming efficiency and food capture efficiency for eyed oyster larvae (Crassostrea virginica) in turbulence. At dissipation rates representative of coastal waters, larvae lost energy even when food concentrations were very high. Both feeding activity and turbulence-induced behaviors incurred high metabolic costs. Swimming efficiency was concave up versus dissipation rate, suggesting that ciliary activity for food handling became more costly while swimming became more efficient with turbulence intensity. Though counter-intuitive, swimming may have become more efficient in turbulence because vorticity-induced rotation caused larvae to swim more horizontally, which requires less effort than swimming vertically against the pull of gravity. Overall, however, larvae failed to offset high activity costs with food energy gains because turbulence reduced food capture efficiency more than it enhanced food encounter rates. Younger, smaller larvae may have some energetic advantages, but competent larvae would lose energy at turbulence intensities they experience frequently, suggesting that turbulence-induced starvation may account for much of oysters' high larval mortality.
Collapse
Affiliation(s)
- Heidi L Fuchs
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jaclyn A Specht
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Diane K Adams
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Adam J Christman
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
11
|
Michalec FG, Fouxon I, Souissi S, Holzner M. Zooplankton can actively adjust their motility to turbulent flow. Proc Natl Acad Sci U S A 2017; 114:E11199-E11207. [PMID: 29229858 PMCID: PMC5748176 DOI: 10.1073/pnas.1708888114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calanoid copepods are among the most abundant metazoans in the ocean and constitute a vital trophic link within marine food webs. They possess relatively narrow swimming capabilities, yet are capable of significant self-locomotion under strong hydrodynamic conditions. Here we provide evidence for an active adaptation that allows these small organisms to adjust their motility in response to background flow. We track simultaneously and in three dimensions the motion of flow tracers and planktonic copepods swimming freely at several intensities of quasi-homogeneous, isotropic turbulence. We show that copepods synchronize the frequency of their relocation jumps with the frequency of small-scale turbulence by performing frequent relocation jumps of low amplitude that seem unrelated to localized hydrodynamic signals. We develop a model of plankton motion in turbulence that shows excellent quantitative agreement with our measurements when turbulence is significant. We find that, compared with passive tracers, active motion enhances the diffusion of organisms at low turbulence intensity whereas it dampens diffusion at higher turbulence levels. The existence of frequent jumps in a motion that is otherwise dominated by turbulent transport allows for the possibility of active locomotion and hence to transition from being passively advected to being capable of controlling diffusion. This behavioral response provides zooplankton with the capability to retain the benefits of self-locomotion despite turbulence advection and may help these organisms to actively control their distribution in dynamic environments. Our study reveals an active adaptation that carries strong fitness advantages and provides a realistic model of plankton motion in turbulence.
Collapse
Affiliation(s)
- François-Gaël Michalec
- Institute of Environmental Engineering, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland;
| | - Itzhak Fouxon
- Institute of Environmental Engineering, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Sami Souissi
- Laboratoire d'Océanologie et de Géosciences, Université de Lille, CNRS, Université Littoral Côte d'Opale, UMR 8187, F 62930 Wimereux, France
| | - Markus Holzner
- Institute of Environmental Engineering, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Wheeler JD, Chan KYK, Anderson EJ, Mullineaux LS. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence. ACTA ACUST UNITED AC 2017; 219:1303-10. [PMID: 27208032 PMCID: PMC4874563 DOI: 10.1242/jeb.129502] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/17/2016] [Indexed: 11/20/2022]
Abstract
Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae–flow interactions have focused on competent larvae near settlement. We examined the importance of flow on early larval stages by studying how local flow and ontogeny influence swimming behavior in pre-competent larval sea urchins, Arbacia punctulata. We exposed larval urchins to grid-stirred turbulence and recorded their behavior at two stages (4- and 6-armed plutei) in three turbulence regimes. Using particle image velocimetry to quantify and subtract local flow, we tested the hypothesis that larvae respond to turbulence by increasing swimming speed, and that the increase varies with ontogeny. Swimming speed increased with turbulence for both 4- and 6-armed larvae, but their responses differed in terms of vertical swimming velocity. 4-Armed larvae swam most strongly upward in the unforced flow regime, while 6-armed larvae swam most strongly upward in weakly forced flow. Increased turbulence intensity also decreased the relative time that larvae spent in their typical upright orientation. 6-Armed larvae were tilted more frequently in turbulence compared with 4-armed larvae. This observation suggests that as larvae increase in size and add pairs of arms, they are more likely to be passively re-oriented by moving water, rather than being stabilized (by mechanisms associated with increased mass), potentially leading to differential transport. The positive relationship between swimming speed and larval orientation angle suggests that there was also an active response to tilting in turbulence. Our results highlight the importance of turbulence to planktonic larvae, not just during settlement but also in earlier stages through morphology–flow interactions. Highlighted Article: Pre-competent, 6-armed larval urchins swim faster and are less stable in experimental turbulent flow than younger 4-armed larvae, suggesting a potential age/morphology-driven differential transport mechanism in ambient flow conditions.
Collapse
Affiliation(s)
- Jeanette D Wheeler
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Kit Yu Karen Chan
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Erik J Anderson
- Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Department of Mechanical Engineering, Grove City College, Grove City, PA 16127, USA
| | - Lauren S Mullineaux
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
13
|
|
14
|
Fuchs HL, Christman AJ, Gerbi GP, Hunter EJ, Diez FJ. Directional flow sensing by passively stable larvae. J Exp Biol 2015; 218:2782-92. [DOI: 10.1242/jeb.125096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mollusk larvae have a stable, velum-up orientation that may influence how they sense and react to hydrodynamic signals applied in different directions. Directional sensing abilities and responses could affect how a larva interacts with anisotropic fluid motions, including those in feeding currents and in boundary layers encountered during settlement. Oyster larvae (Crassostrea virginica) were exposed to simple shear in a Couette device and to solid-body rotation in a single rotating cylinder. Both devices were operated in two different orientations, one with the axis of rotation parallel to the gravity vector, and one with the axis perpendicular. Larvae and flow were observed simultaneously with near-infrared particle-image velocimetry, and behavior was quantified as a response to strain rate, vorticity and centripetal acceleration. Only flows rotating about a horizontal axis elicited the diving response observed previously for oyster larvae in turbulence. The results provide strong evidence that the turbulence-sensing mechanism relies on gravity-detecting organs (statocysts) rather than mechanosensors (cilia). Flow sensing with statocysts sets oyster larvae apart from zooplankters such as copepods and protists that use external mechanosensors in sensing spatial velocity gradients generated by prey or predators. Sensing flow-induced changes in orientation, rather than flow deformation, would enable more efficient control of vertical movements. Statocysts provide larvae with a mechanism of maintaining their upward swimming when rotated by vortices and initiating dives toward the seabed in response to the strong turbulence associated with adult habitats.
Collapse
Affiliation(s)
- Heidi L. Fuchs
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Adam J. Christman
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gregory P. Gerbi
- Physics Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Elias J. Hunter
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - F. Javier Diez
- Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
15
|
Abstract
When animals swim in aquatic habitats, the water through which they move is usually flowing. Therefore, an important part of understanding the physics of how animals swim in nature is determining how they interact with the fluctuating turbulent water currents in their environment. We addressed this issue using microscopic larvae of invertebrates in "fouling communities" growing on docks and ships to ask how swimming affects the transport of larvae between moving water and surfaces from which they disperse and onto which they recruit. Field measurements of the motion of water over fouling communities were used to design realistic turbulent wavy flow in a laboratory wave-flume over early-stage fouling communities. Fine-scale measurements of rapidly-varying water-velocity fields were made using particle-image velocimetry, and of dye-concentration fields (analog for chemical cues from the substratum) were made using planar laser-induced fluorescence. We used individual-based models of larvae that were swimming, passively sinking, passively rising, or were passive and neutrally buoyant to determine how their trajectories were affected by their motion through the water, rotation by local shear, and transport by ambient flow. Swimmers moved up and down in the turbulent flow more than did neutrally buoyant larvae. Although more of the passive sinkers landed on substrata below them, and more passive risers on surfaces above, swimming was the best strategy for landing on surfaces if their location was not predictable (as is true for fouling communities). When larvae moved within 5 mm of surfaces below them, passive sinkers and neutrally-buoyant larvae landed on the substratum, whereas many of the swimmers were carried away, suggesting that settling larvae should stop swimming as they near a surface. Swimming and passively-rising larvae were best at escaping from a surface below them, as precompetent larvae must do to disperse away. Velocities, vorticities, and odor-concentrations encountered by larvae fluctuated rapidly, with peaks much higher than mean values. Encounters with concentrations of odor or with vorticities above threshold increased as larvae neared the substratum. Although microscopic organisms swim slowly, their locomotory behavior can affect where they are transported by the movement of ambient water as well as the signals they encounter when they move within a few centimeters of surfaces.
Collapse
Affiliation(s)
- M A R Koehl
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - T Cooper
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| |
Collapse
|