1
|
Chen YR, Tzeng DTW, Yang EC. Chronic Effects of Imidacloprid on Honey Bee Worker Development-Molecular Pathway Perspectives. Int J Mol Sci 2021; 22:11835. [PMID: 34769266 PMCID: PMC8584158 DOI: 10.3390/ijms222111835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022] Open
Abstract
Sublethal dosages of imidacloprid cause long-term destructive effects on honey bees at the individual and colony levels. In this review, the molecular effects of sublethal imidacloprid were integrated and reported. Several general effects have been observed among different reports using different approaches. Quantitative PCR approaches revealed that imidacloprid treatments during the adult stage are expressed as changes in immuneresponse, detoxification, and oxidation-reduction response in both workers and queens. In addition, transcriptomic approaches suggested that phototransduction, behavior, and somatic muscle development also were affected. Although worker larvae show a higher tolerance to imidacloprid than adults, molecular evidence reveals its potential impacts. Sublethal imidacloprid treatment during the larval stage causes gene expression changes in larvae, pupae, and adults. Transcriptome profiles suggest that the population and functions of affected differentially expressed genes, DEGs, vary among different worker ages. Furthermore, an early transcriptomic switch from nurse bees to foragers was observed, suggesting that precocious foraging activity may occur. This report comprehensively describes the molecular effects of sublethal dosages of imidacloprid on the honey bee Apis mellifera. The corresponding molecular pathways for physiological and neurological responses in imidacloprid-exposed honey bees were validated. Transcriptomic evidence suggests a global and sustained sublethal impact of imidacloprid on honey bee development.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Department of Entomology, National Taiwan University, Taipei 10617, Taiwan;
| | - David T. W. Tzeng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
2
|
Chen YR, Tzeng DTW, Ting C, Hsu PS, Wu TH, Zhong S, Yang EC. Missing Nurse Bees-Early Transcriptomic Switch From Nurse Bee to Forager Induced by Sublethal Imidacloprid. Front Genet 2021; 12:665927. [PMID: 34220942 PMCID: PMC8248817 DOI: 10.3389/fgene.2021.665927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/12/2021] [Indexed: 01/20/2023] Open
Abstract
The environmental residue/sublethal doses of neonicotinoid insecticides are believed to generate a negative impact on pollinators, including honey bees. Here we report our recent investigation on how imidacloprid, one of the major neonicotinoids, affects worker bees by profiling the transcriptomes of various ages of bees exposed to different doses of imidacloprid during the larval stage. The results show that imidacloprid treatments during the larval stage severely altered the gene expression profiles and may induce precocious foraging. Differential expression of foraging regulators was found in 14-day-old treated adults. A high transcriptome similarity between larvae-treated 14-day-old adults and 20-day-old controls was also observed, and the similarity was positively correlated with the dose of imidacloprid. One parts per billion (ppb) of imidacloprid was sufficient to generate a long-term impact on the bee's gene expression as severe as with 50 ppb imidacloprid. The disappearance of nurse bees may be driven not only by the hive member constitution but also by the neonicotinoid-induced precocious foraging behavior.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - David T W Tzeng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chieh Ting
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Pei-Shou Hsu
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Gongguan, Taiwan
| | - Tzu-Hsien Wu
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Gongguan, Taiwan
| | - Silin Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Abstract
Explaining how animals respond to an increasingly urbanised world is a major challenge for evolutionary biologists. Urban environments often present animals with novel problems that differ from those encountered in their evolutionary past. To navigate these rapidly changing habitats successfully, animals may need to adjust their behaviour flexibly over relatively short timescales. These behavioural changes, in turn, may be facilitated by an ability to acquire, store and process information from the environment. The question of how cognitive abilities allow animals to avoid threats and exploit resources (or constrain their ability to do so) is attracting increasing research interest, with a growing number of studies investigating cognitive and behavioural differences between urban-dwelling animals and their non-urban counterparts. In this review we consider why such differences might arise, focusing on the informational challenges faced by animals living in urban environments, and how different cognitive abilities can assist in overcoming these challenges. We focus largely on birds, as avian taxa have been the subject of most research to date, but discuss work in other species where relevant. We also address the potential consequences of cognitive variation at the individual and species level. For instance, do urban environments select for, or influence the development of, particular cognitive abilities? Are individuals or species with particular cognitive phenotypes more likely to become established in urban habitats? How do other factors, such as social behaviour and individual personality, interact with cognition to influence behaviour in urban environments? The aim of this review is to synthesise current knowledge and identify key avenues for future research, in order to improve our understanding of the ecological and evolutionary consequences of urbanisation.
Collapse
Affiliation(s)
- Victoria E Lee
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, UK
| |
Collapse
|
4
|
Prado A, Requier F, Crauser D, Le Conte Y, Bretagnolle V, Alaux C. Honeybee lifespan: the critical role of pre-foraging stage. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200998. [PMID: 33391795 PMCID: PMC7735337 DOI: 10.1098/rsos.200998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/14/2020] [Indexed: 05/25/2023]
Abstract
Assessing the various anthropogenic pressures imposed on honeybees requires characterizing the patterns and drivers of natural mortality. Using automated lifelong individual monitoring devices, we monitored worker bees in different geographical, seasonal and colony contexts creating a broad range of hive conditions. We measured their life-history traits and notably assessed whether lifespan is influenced by pre-foraging flight experience. Our results show that the age at the first flight and onset of foraging are critical factors that determine, to a large extent, lifespan. Most importantly, our results indicate that a large proportion (40%) of the bees die during pre-foraging stage, and for those surviving, the elapsed time and flight experience between the first flight and the onset of foraging is of paramount importance to maximize the number of days spent foraging. Once in the foraging stage, individuals experience a constant mortality risk of 9% and 36% per hour of foraging and per foraging day, respectively. In conclusion, the pre-foraging stage during which bees perform orientation flights is a critical driver of bee lifespan. We believe these data on the natural mortality risks in honeybee workers will help assess the impact of anthropogenic pressures on bees.
Collapse
Affiliation(s)
- Alberto Prado
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM Querétaro, Querétaro, Mexico
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Didier Crauser
- INRAE, Abeilles and Environnement, 84914 Avignon, France
| | - Yves Le Conte
- INRAE, Abeilles and Environnement, 84914 Avignon, France
| | - Vincent Bretagnolle
- Centre d'Etudes Biologiques de Chizé, CNRS and La Rochelle University, UMR 7372, 79360 Beauvoir sur Niort, France
- LTSER Zone Atelier “Plaine & Val de Sèvre”, CNRS, F-79360 Villiers-en-Bois, France
| | - Cédric Alaux
- INRAE, Abeilles and Environnement, 84914 Avignon, France
| |
Collapse
|
5
|
Corby-Harris V, Deeter ME, Snyder L, Meador C, Welchert AC, Hoffman A, Obernesser BT. Octopamine mobilizes lipids from honey bee ( Apis mellifera) hypopharyngeal glands. J Exp Biol 2020; 223:jeb216135. [PMID: 32139471 DOI: 10.1242/jeb.216135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/27/2020] [Indexed: 08/26/2023]
Abstract
Recent widespread honey bee (Apis mellifera) colony loss is attributed to a variety of stressors, including parasites, pathogens, pesticides and poor nutrition. In principle, we can reduce stress-induced declines in colony health by either removing the stressor or increasing the bees' tolerance to the stressor. This latter option requires a better understanding than we currently have of how honey bees respond to stress. Here, we investigated how octopamine, a stress-induced hormone that mediates invertebrate physiology and behavior, influences the health of young nurse-aged bees. Specifically, we asked whether octopamine induces abdominal lipid and hypopharyngeal gland (HG) degradation, two physiological traits of stressed nurse bees. Nurse-aged workers were treated topically with octopamine and their abdominal lipid content, HG size and HG autophagic gene expression were measured. Hemolymph lipid titer was measured to determine whether tissue degradation was associated with the release of nutrients from these tissues into the hemolymph. The HGs of octopamine-treated bees were smaller than control bees and had higher levels of HG autophagy gene expression. Octopamine-treated bees also had higher levels of hemolymph lipid compared with control bees. Abdominal lipids did not change in response to octopamine. Our findings support the hypothesis that the HGs are a rich source of stored energy that can be mobilized during periods of stress.
Collapse
Affiliation(s)
| | - Megan E Deeter
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA
- Department of Entomology, University of Arizona, Tucson, AZ 85719, USA
| | - Lucy Snyder
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA
| | - Charlotte Meador
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA
| | - Ashley C Welchert
- Department of Entomology, University of Arizona, Tucson, AZ 85719, USA
| | - Amelia Hoffman
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA
| | | |
Collapse
|
6
|
Traniello IM, Bukhari SA, Kevill J, Ahmed AC, Hamilton AR, Naeger NL, Schroeder DC, Robinson GE. Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation. Sci Rep 2020; 10:3101. [PMID: 32080242 PMCID: PMC7033282 DOI: 10.1038/s41598-020-59808-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Crop pollination by the western honey bee Apis mellifera is vital to agriculture but threatened by alarmingly high levels of colony mortality, especially in Europe and North America. Colony loss is due, in part, to the high viral loads of Deformed wing virus (DWV), transmitted by the ectoparasitic mite Varroa destructor, especially throughout the overwintering period of a honey bee colony. Covert DWV infection is commonplace and has been causally linked to precocious foraging, which itself has been linked to colony loss. Taking advantage of four brain transcriptome studies that unexpectedly revealed evidence of covert DWV-A infection, we set out to explore whether this effect is due to DWV-A mimicking naturally occurring changes in brain gene expression that are associated with behavioral maturation. Consistent with this hypothesis, we found that brain gene expression profiles of DWV-A infected bees resembled those of foragers, even in individuals that were much younger than typical foragers. In addition, brain transcriptional regulatory network analysis revealed a positive association between DWV-A infection and transcription factors previously associated with honey bee foraging behavior. Surprisingly, single-cell RNA-Sequencing implicated glia, not neurons, in this effect; there are relatively few glial cells in the insect brain and they are rarely associated with behavioral plasticity. Covert DWV-A infection also has been linked to impaired learning, which together with precocious foraging can lead to increased occurrence of infected bees from one colony mistakenly entering another colony, especially under crowded modern apiary conditions. These findings provide new insights into the mechanisms by which DWV-A affects honey bee health and colony survival.
Collapse
Affiliation(s)
- Ian M Traniello
- Neuroscience Program, University of Illinois at Urbana-Champaign, (UIUC), Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA.
| | - Syed Abbas Bukhari
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
- Department of Animal Biology, UIUC, Urbana, USA
| | - Jessica Kevill
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Amy Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
| | - Adam R Hamilton
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
| | - Nicholas L Naeger
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- School of Biological Sciences, University of Reading, Reading, UK
| | - Gene E Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign, (UIUC), Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
- Department of Entomology, UIUC, Urbana, USA
| |
Collapse
|
7
|
Belsky J, Joshi NK. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. INSECTS 2019; 10:E233. [PMID: 31374933 PMCID: PMC6723792 DOI: 10.3390/insects10080233] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
Abstract
Large-scale declines in bee abundance and species richness over the last decade have sounded an alarm, given the crucial pollination services that bees provide. Population dips have specifically been noted for both managed and feral bee species. The simultaneous increased cultivation of bee-dependent agricultural crops has given rise to additional concern. As a result, there has been a surge in scientific research investigating the potential stressors impacting bees. A group of environmental and anthropogenic stressors negatively impacting bees has been isolated. Habitat destruction has diminished the availability of bee floral resources and nest habitats, while massive monoculture plantings have limited bee access to a variety of pollens and nectars. The rapid spread and increased resistance buildup of various bee parasites, pathogens, and pests to current control methods are implicated in deteriorating bee health. Similarly, many pesticides that are widely applied on agricultural crops and within beehives are toxic to bees. The global distribution of honey bee colonies (including queens with attendant bees) and bumble bee colonies from crop to crop for pollination events has been linked with increased pathogen stress and increased competition with native bee species for limited resources. Climatic alterations have disrupted synchronous bee emergence with flower blooming and reduced the availability of diverse floral resources, leading to bee physiological adaptations. Interactions amongst multiple stressors have created colossal maladies hitting bees at one time, and in some cases delivering additive impacts. Initiatives including the development of wild flower plantings and assessment of pesticide toxicity to bees have been undertaken in efforts to ameliorate current bee declines. In this review, recent findings regarding the impact of these stressors on bees and strategies for mitigating them are discussed.
Collapse
Affiliation(s)
- Joseph Belsky
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA
| | - Neelendra K Joshi
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA.
| |
Collapse
|
8
|
Cauchoix M, Chow PKY, van Horik JO, Atance CM, Barbeau EJ, Barragan-Jason G, Bize P, Boussard A, Buechel SD, Cabirol A, Cauchard L, Claidière N, Dalesman S, Devaud JM, Didic M, Doligez B, Fagot J, Fichtel C, Henke-von der Malsburg J, Hermer E, Huber L, Huebner F, Kappeler PM, Klein S, Langbein J, Langley EJG, Lea SEG, Lihoreau M, Lovlie H, Matzel LD, Nakagawa S, Nawroth C, Oesterwind S, Sauce B, Smith EA, Sorato E, Tebbich S, Wallis LJ, Whiteside MA, Wilkinson A, Chaine AS, Morand-Ferron J. The repeatability of cognitive performance: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170281. [PMID: 30104426 PMCID: PMC6107569 DOI: 10.1098/rstb.2017.0281] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
Behavioural and cognitive processes play important roles in mediating an individual's interactions with its environment. Yet, while there is a vast literature on repeatable individual differences in behaviour, relatively little is known about the repeatability of cognitive performance. To further our understanding of the evolution of cognition, we gathered 44 studies on individual performance of 25 species across six animal classes and used meta-analysis to assess whether cognitive performance is repeatable. We compared repeatability (R) in performance (1) on the same task presented at different times (temporal repeatability), and (2) on different tasks that measured the same putative cognitive ability (contextual repeatability). We also addressed whether R estimates were influenced by seven extrinsic factors (moderators): type of cognitive performance measurement, type of cognitive task, delay between tests, origin of the subjects, experimental context, taxonomic class and publication status. We found support for both temporal and contextual repeatability of cognitive performance, with mean R estimates ranging between 0.15 and 0.28. Repeatability estimates were mostly influenced by the type of cognitive performance measures and publication status. Our findings highlight the widespread occurrence of consistent inter-individual variation in cognition across a range of taxa which, like behaviour, may be associated with fitness outcomes.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- M Cauchoix
- Station d'Ecologie Théorique et Expérimentale du CNRS UMR5321, Evolutionary Ecology Group, 2 route du CNRS, 09200 Moulis, France
- Institute for Advanced Study in Toulouse, 21 allée de Brienne, 31015 Toulouse, France
| | - P K Y Chow
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
- Graduate School of Environmental Science, Division of Biospohere Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - J O van Horik
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - C M Atance
- School of Psychology, University of Ottawa, Ottawa, Canada
| | - E J Barbeau
- Centre de recherche Cerveau et Cognition, UPS-CNRS, UMR5549, Toulouse, France
| | - G Barragan-Jason
- Institute for Advanced Study in Toulouse, 21 allée de Brienne, 31015 Toulouse, France
| | - P Bize
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - A Boussard
- Department of Zoology/Ethology, Stockholm University, Svante Arrheniusväg 18B, 10691 Stockholm, Sweden
| | - S D Buechel
- Department of Zoology/Ethology, Stockholm University, Svante Arrheniusväg 18B, 10691 Stockholm, Sweden
| | - A Cabirol
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - L Cauchard
- Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - N Claidière
- LPC, Aix Marseille University, CNRS, Marseille, France
| | - S Dalesman
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - J M Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - M Didic
- AP-HM Timone & Institut de Neurosciences des Systèmes, Marseille, France
| | - B Doligez
- Department of Biometry and Evolutionary Biology, CNRS UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - J Fagot
- LPC, Aix Marseille University, CNRS, Marseille, France
| | - C Fichtel
- Behavioural Ecology and Sociobiology Unit, German Primate Centre, Leibniz Institute for Primatology, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - J Henke-von der Malsburg
- Behavioural Ecology and Sociobiology Unit, German Primate Centre, Leibniz Institute for Primatology, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - E Hermer
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
| | - L Huber
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - F Huebner
- Behavioural Ecology and Sociobiology Unit, German Primate Centre, Leibniz Institute for Primatology, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - P M Kappeler
- Behavioural Ecology and Sociobiology Unit, German Primate Centre, Leibniz Institute for Primatology, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - S Klein
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - J Langbein
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - E J G Langley
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - S E G Lea
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - M Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - H Lovlie
- IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - L D Matzel
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - S Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - C Nawroth
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - S Oesterwind
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - B Sauce
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - E A Smith
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - E Sorato
- IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - S Tebbich
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
| | - L J Wallis
- Clever Dog Lab, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - M A Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - A Wilkinson
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - A S Chaine
- Station d'Ecologie Théorique et Expérimentale du CNRS UMR5321, Evolutionary Ecology Group, 2 route du CNRS, 09200 Moulis, France
- Institute for Advanced Study in Toulouse, 21 allée de Brienne, 31015 Toulouse, France
| | | |
Collapse
|
9
|
Cabirol A, Cope AJ, Barron AB, Devaud JM. Relationship between brain plasticity, learning and foraging performance in honey bees. PLoS One 2018; 13:e0196749. [PMID: 29709023 PMCID: PMC5927457 DOI: 10.1371/journal.pone.0196749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Abstract
Brain structure and learning capacities both vary with experience, but the mechanistic link between them is unclear. Here, we investigated whether experience-dependent variability in learning performance can be explained by neuroplasticity in foraging honey bees. The mushroom bodies (MBs) are a brain center necessary for ambiguous olfactory learning tasks such as reversal learning. Using radio frequency identification technology, we assessed the effects of natural variation in foraging activity, and the age when first foraging, on both performance in reversal learning and on synaptic connectivity in the MBs. We found that reversal learning performance improved at foraging onset and could decline with greater foraging experience. If bees started foraging before the normal age, as a result of a stress applied to the colony, the decline in learning performance with foraging experience was more severe. Analyses of brain structure in the same bees showed that the total number of synaptic boutons at the MB input decreased when bees started foraging, and then increased with greater foraging intensity. At foraging onset MB structure is therefore optimized for bees to update learned information, but optimization of MB connectivity deteriorates with foraging effort. In a computational model of the MBs sparser coding of information at the MB input improved reversal learning performance. We propose, therefore, a plausible mechanistic relationship between experience, neuroplasticity, and cognitive performance in a natural and ecological context.
Collapse
Affiliation(s)
- Amélie Cabirol
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, Toulouse, France
- * E-mail: (AC); (ABB)
| | - Alex J. Cope
- Department of Computer Science, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- * E-mail: (AC); (ABB)
| | - Jean-Marc Devaud
- Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, Toulouse, France
| |
Collapse
|
10
|
Poissonnier LA, Lihoreau M, Gomez-Moracho T, Dussutour A, Buhl C. A theoretical exploration of dietary collective medication in social insects. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:78-87. [PMID: 28826630 DOI: 10.1016/j.jinsphys.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Animals often alter their food choices following a pathogen infection in order to increase immune function and combat the infection. Whether social animals that collect food for their brood or nestmates adjust their nutrient intake to the infection states of their social partners is virtually unexplored. Here we develop an individual-based model of nutritional geometry to examine the impact of collective nutrient balancing on pathogen spread in a social insect colony. The model simulates a hypothetical social insect colony infected by a horizontally transmitted parasite. Simulation experiments suggest that collective nutrition, by which foragers adjust their nutrient intake to simultaneously address their own nutritional needs as well as those of their infected nestmates, is an efficient social immunity mechanism to limit contamination when immune responses are short. Impaired foraging in infected workers can favour colony resilience when pathogen transmission rate is low (by reducing contacts with the few infected foragers) or trigger colony collapse when transmission rate is fast (by depleting the entire pool of foragers). Our theoretical examination of dietary collective medication in social insects suggests a new possible mechanism by which colonies can defend themselves against pathogens and provides a conceptual framework for experimental investigations of the nutritional immunology of social animals.
Collapse
Affiliation(s)
- Laure-Anne Poissonnier
- School of Agriculture, Food and Wine, Waite campus, The University of Adelaide, SA 5005, Australia
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, France.
| | - Tamara Gomez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, France
| | - Audrey Dussutour
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, France
| | - Camille Buhl
- School of Agriculture, Food and Wine, Waite campus, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
Gage SL, Kramer C, Calle S, Carroll M, Heien M, DeGrandi-Hoffman G. Nosema ceranae parasitism impacts olfactory learning and memory and neurochemistry in honey bees ( Apis mellifera). ACTA ACUST UNITED AC 2018; 221:jeb.161489. [PMID: 29361577 DOI: 10.1242/jeb.161489] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Nosema sp. is an internal parasite of the honey bee, Apis mellifera, and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut and has profound consequences for the host's physiology. Nosema sp. impairs foraging performance in honey bees, yet, it is unclear whether this parasite affects the bee's neurobiology. In this study, we examined whether Nosema sp. affects odor learning and memory and whether the brains of parasitized bees show differences in amino acids and biogenic amines. We took newly emerged bees and fed them with Nosema ceranae At approximate nurse and forager ages, we employed an odor-associative conditioning assay using the proboscis extension reflex and two bioanalytical techniques to measure changes in brain chemistry. We found that nurse-aged bees infected with N. ceranae significantly outperformed controls in odor learning and memory, suggestive of precocious foraging, but by forager age, infected bees showed deficits in learning and memory. We also detected significant differences in amino acid concentrations, some of which were age specific, as well as altered serotonin, octopamine, dopamine and l-dopa concentrations in the brains of parasitized bees. These findings suggest that N. ceranae infection affects honey bee neurobiology and may compromise behavioral tasks. These results yield new insight into the host-parasite dynamic of honey bees and N. ceranae, as well as the neurochemistry of odor learning and memory under normal and parasitic conditions.
Collapse
Affiliation(s)
- Stephanie L Gage
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA .,Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Catherine Kramer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Samantha Calle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA
| | - Mark Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA
| | - Michael Heien
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA.,Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
DeGrandi-Hoffman G, Ahumada F, Graham H. Are Dispersal Mechanisms Changing the Host-Parasite Relationship and Increasing the Virulence of Varroa destructor (Mesostigmata: Varroidae) in Managed Honey Bee (Hymenoptera: Apidae) Colonies? ENVIRONMENTAL ENTOMOLOGY 2017; 46:737-746. [PMID: 28486589 DOI: 10.1093/ee/nvx077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 06/07/2023]
Abstract
Varroa (Varroa destructor Anderson and Trueman) are a serious pest of European honey bees (Apis mellifera L.), and difficult to control in managed colonies. In our 11-mo longitudinal study, we applied multiple miticide treatments, yet mite numbers remained high and colony losses exceeded 55%. High mortality from varroa in managed apiaries is a departure from the effects of the mite in feral colonies where bees and varroa can coexist. Differences in mite survival strategies and dispersal mechanisms may be contributing factors. In feral colonies, mites can disperse through swarming. In managed apiaries, where swarming is reduced, mites disperse on foragers robbing or drifting from infested hives. Using a honey bee-varroa population model, we show that yearly swarming curtails varroa population growth, enabling colony survival for >5 yr. Without swarming, colonies collapsed by the third year. To disperse, varroa must attach to foragers that then enter other hives. We hypothesize that stress from parasitism and virus infection combined with effects that viruses have on cognitive function may contribute to forager drift and mite and virus dispersal. We also hypothesize that drifting foragers with mites can measurably increase mite populations. Simulations initialized with field data indicate that low levels of drifting foragers with mites can create sharp increases in mite populations in the fall and heavily infested colonies in the spring. We suggest new research directions to investigate factors leading to mite dispersal on foragers, and mite management strategies with consideration of varroa as a migratory pest.
Collapse
Affiliation(s)
| | | | - Henry Graham
- Carl Hayden Bee Research Center, USDA-ARS, 2000 East Allen Rd., Tucson, AZ 85719
| |
Collapse
|
13
|
Giehr J, Heinze J, Schrempf A. Group demography affects ant colony performance and individual speed of queen and worker aging. BMC Evol Biol 2017; 17:173. [PMID: 28764664 PMCID: PMC5540184 DOI: 10.1186/s12862-017-1026-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background The performance and fitness of social societies mainly depends on the efficiency of interactions between reproductive individuals and helpers. Helpers need to react to the group’s requirements and to adjust their tasks accordingly, while the reproductive individual has to adjust its reproductive rate. Social insects provide a good system to study the interrelations between individual and group characteristics. In general, sterile workers focus on brood care and foraging while the queen lays eggs. Reproductive division of labor is determined by caste and not interchangeable as, e.g., in social mammals or birds. Hence, changing social and environmental conditions require a flexible response by each caste. In the ant Cardiocondyla obscurior, worker task allocation is based on age polyethism, with young workers focusing on brood care and old workers on foraging. Here, we examine how group age demography affects colony performance and fitness in colonies consisting of only old or young workers and a single old or young queen. We hypothesized that both groups will be fully functional, but that the forced task shift affects the individuals’ performance. Moreover, we expected reduced worker longevity in groups with only young workers due to precocious foraging but no effect on queen longevity depending on group composition. Results Neither the performance of queens nor that of workers declined strongly with time per se, but offspring number and weight were influenced by queen age and the interaction between queen and worker age. Individual residual life expectancy strongly depended on colony demography instead of physiological age. While worker age affected queen longevity only slightly, exposing old workers to the conditions of colony founding increased their life spans by up to 50% relative to workers that had emerged shortly before colony set-up. Conclusions The social environment strongly affected the tempo of aging and senescence in C. obscurior, highlighting the plasticity of life expectancy in social insects. Furthermore, colonies obtained the highest reproductive output when consisting of same-aged queens and workers independent of their physiological age. However, workers appeared to be able to adjust their behavior to the colony’s needs and not to suffer from age-dependent restrictions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1026-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Giehr
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany.
| | - Jürgen Heinze
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Alexandra Schrempf
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
14
|
Van Nest BN, Wagner AE, Marrs GS, Fahrbach SE. Volume and density of microglomeruli in the honey bee mushroom bodies do not predict performance on a foraging task. Dev Neurobiol 2017; 77:1057-1071. [PMID: 28245532 DOI: 10.1002/dneu.22492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 12/17/2022]
Abstract
The mushroom bodies (MBs) are insect brain regions important for sensory integration, learning, and memory. In adult worker honey bees (Apis mellifera), the volume of neuropil associated with the MBs is larger in experienced foragers compared with hive bees and less experienced foragers. In addition, the characteristic synaptic structures of the calycal neuropils, the microglomeruli, are larger but present at lower density in 35-day-old foragers relative to 1-day-old workers. Age- and experience-based changes in plasticity of the MBs are assumed to support performance of challenging tasks, but the behavioral consequences of brain plasticity in insects are rarely examined. In this study, foragers were recruited from a field hive to a patch comprising two colors of otherwise identical artificial flowers. Flowers of one color contained a sucrose reward mimicking nectar; flowers of the second were empty. Task difficulty was adjusted by changing flower colors according to the principle of honey bee color vision space. Microglomerular volume and density in the lip (olfactory inputs) and collar (visual inputs) compartments of the MB calyces were analyzed using anti-synapsin I immunolabeling and laser scanning confocal microscopy. Foragers displayed significant variation in microglomerular volume and density, but no correlation was found between these synaptic attributes and foraging performance. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1057-1071, 2017.
Collapse
Affiliation(s)
- Byron N Van Nest
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina.,Wake Forest School of Medicine, Neuroscience Program, Winston-Salem, North Carolina.,Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina
| | - Ashley E Wagner
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Glen S Marrs
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina.,Wake Forest School of Medicine, Neuroscience Program, Winston-Salem, North Carolina.,Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina
| | - Susan E Fahrbach
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina.,Wake Forest School of Medicine, Neuroscience Program, Winston-Salem, North Carolina.,Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
15
|
Klein S, Cabirol A, Devaud JM, Barron AB, Lihoreau M. Why Bees Are So Vulnerable to Environmental Stressors. Trends Ecol Evol 2017; 32:268-278. [PMID: 28111032 DOI: 10.1016/j.tree.2016.12.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Bee populations are declining in the industrialized world, raising concerns for the sustainable pollination of crops. Pesticides, pollutants, parasites, diseases, and malnutrition have all been linked to this problem. We consider here neurobiological, ecological, and evolutionary reasons why bees are particularly vulnerable to these environmental stressors. Central-place foraging on flowers demands advanced capacities of learning, memory, and navigation. However, even at low intensity levels, many stressors damage the bee brain, disrupting key cognitive functions needed for effective foraging, with dramatic consequences for brood development and colony survival. We discuss how understanding the relationships between the actions of stressors on the nervous system, individual cognitive impairments, and colony decline can inform constructive interventions to sustain bee populations.
Collapse
Affiliation(s)
- Simon Klein
- Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research(CNRS), University Paul Sabatier(UPS), Toulouse, France; Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amélie Cabirol
- Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research(CNRS), University Paul Sabatier(UPS), Toulouse, France; Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jean-Marc Devaud
- Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research(CNRS), University Paul Sabatier(UPS), Toulouse, France
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mathieu Lihoreau
- Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research(CNRS), University Paul Sabatier(UPS), Toulouse, France.
| |
Collapse
|