1
|
Fan T, Jia M, Liu H, Gao Z, Huang W, Liu W, Gu Q. Engineering strategies for the construction of oriented and functional skeletal muscle tissues. Biofabrication 2025; 17:022013. [PMID: 40073456 DOI: 10.1088/1758-5090/adbfc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
The growth and formation of tissues, such as skeletal muscle, involve a complex interplay of spatiotemporal events, including cell migration, orientation, proliferation, and differentiation. With the continuous advancement ofin vitroconstruction techniques, many studies have contributed to skeletal muscle tissue engineering (STME). This review summarizes recent advances in the ordered construction of skeletal muscle tissues, and evaluates the impact of engineering strategies on cell behavior and maturation, including biomaterials, manufacturing methods and training means. Biomaterials are used as scaffolds to provide a good microenvironment for myoblasts, manufacturing methods to guide the alignment of myoblasts through construction techniques, and external stimulation to further promote the myoblast orientation and maturation after construction, resulting in oriented and functional skeletal muscle tissues. Subsequently, we critically examine recent advancements in engineered composite skeletal muscle constructs, with particular emphasis on essential functionalization strategies including skeletal muscle vascularization, innervation and others. Concurrently, we evaluate emerging applications of STME in diverse translational areas such as volumetric muscle loss treatment, muscle-related disease models, drug screening, biohybrid robots, and cultured meat. Finally, future perspectives are proposed to provide guidance for rational design based on engineering strategies in STME.
Collapse
Affiliation(s)
- Tingting Fan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Minxuan Jia
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Heng Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, People's Republic of China
| | - Zili Gao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| | - Wenhui Huang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenli Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Qi Gu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
2
|
Bolsterlee B, Lloyd R, Bilston LE, Herbert RD. A mechanically consistent muscle model shows that the maximum force-generating capacity of muscles is influenced by optimal fascicle length and muscle shape. J Biomech 2025; 182:112584. [PMID: 39970631 DOI: 10.1016/j.jbiomech.2025.112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Muscle forces are difficult to measure in vivo, so the force-generating capacity of muscles is commonly inferred from muscle architecture. It is often assumed, implicitly or explicity, that a muscle's maximum force-generating capacity is proportional to physiological cross-sectional area (PCSA), and that a muscle's operating range is proportional to mean optimal fascicle length. Here, we examined the effect of muscle architecture (PCSA and fascicle length) on muscle function (maximal isometric force and operating range) using a three-dimensional finite element model which accounts in a mechanically consistent way for muscle deformation and other complexities of muscle contraction. By varying architectural properties independently, it was shown that muscle force-generating capacity does not scale by the same factor as PCSA, and that operating range does not scale by the same factor as optimal fascicle length. For instance, 3-fold independent variation of mean optimal fascicle length caused the maximum isometric force-generating capacity of the muscle to vary from 83% to 105% of the force predicted by PCSA alone. Non-uniformities in fascicle length that develop as the muscle deforms during contraction reduce muscle force and operating range. Thus, a three-dimensional finite element model that satisfies fundamental physical constraints predicts that the maximum force-generating capacity of skeletal muscle depends on factors other than PCSA, and that operating range depends on factors other than optimal fascicle length. These findings have implications for how the force-generating properties of animal muscles are scaled to human muscles, and for how the functional capacity of muscles is predicted from muscle architecture.
Collapse
Affiliation(s)
- Bart Bolsterlee
- Neuroscience Research Australia (NeuRA), Sydney, Australia; University of New South Wales, Graduate School of Biomedical Engineering, Kensington, NSW 2033, Australia; Queensland University of Technology, School of Mechanical, Medical and Process Engineering, Brisbane, QLD, Australia.
| | - Rob Lloyd
- Neuroscience Research Australia (NeuRA), Sydney, Australia; University of New South Wales, Faculty of Medicine & Health, Kensington, NSW 2052, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia (NeuRA), Sydney, Australia; University of New South Wales, Graduate School of Biomedical Engineering, Kensington, NSW 2033, Australia
| | - Robert D Herbert
- Neuroscience Research Australia (NeuRA), Sydney, Australia; University of New South Wales, School of Biomedical Sciences, Kensington, NSW 2052, Australia
| |
Collapse
|
3
|
Karakoç B, Eken Ö, Kurtoğlu A, Arslan O, Eken İ, Elkholi SM. Time-of-Day Effects on Post-Activation Potentiation Protocols: Effects of Different Tension Loads on Agility and Vertical Jump Performance in Judokas. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:426. [PMID: 40142237 PMCID: PMC11943600 DOI: 10.3390/medicina61030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: This study aimed to investigate the effects of different tension loads in post-activation potentiation protocols on agility and vertical jump performance across different times of day in trained judokas, addressing a significant gap in understanding the interaction between diurnal variations and post-activation potentiation protocol responses in combat sports. Materials and Methods: Seventeen male judokas (age: 21.41 ± 1.37 years) with ≥2 years of training experience participated in the study. Participants completed three different protocols: specific warm-up, the 80% post-activation potentiation protocol, and the 100% post-activation potentiation protocol, performed both in the morning (09:00-11:00) and evening (17:00-19:00) sessions. Performance was assessed using the Illinois Agility Test and countermovement jump. Protocols were randomized and counterbalanced over a 3-week period, with a minimum 48 h recovery between sessions. Statistical analysis employed repeated measures ANOVA (3 × 2) with Greenhouse-Geisser corrections. Results: Significant differences were observed in both protocols and time interactions for agility (F = 41.691, ηp2 = 0.864, p < 0.001; F = 23.893, ηp2 = 0.123, p < 0.001) and countermovement jump performance (F = 7.471, ηp2 = 0.410, p = 0.002; F = 38.651, ηp2 = 0.530, p < 0.001). The 80% post-activation potentiation protocol demonstrated superior performance outcomes compared to both specific warm-up and 100% post-activation potentiation protocols. Evening performances were generally better than morning performances for both agility and countermovement jump; however, the protocols/time interaction was not statistically significant (p > 0.05). Conclusions: The 80% post-activation potentiation protocol was most effective for enhancing both agility and vertical jump performance in judokas, with superior results observed during evening sessions. These findings provide valuable insights for optimizing warm-up strategies in judo competition, suggesting that lower-intensity post-activation potentiation protocols might be more beneficial than maximal loading, particularly during evening competitions.
Collapse
Affiliation(s)
- Bilal Karakoç
- Coaching Programme, Faculty of Sports Sciences, Yalova University, Yalova 7700, Türkiye
| | - Özgür Eken
- Department of Physical Education and Sport Teaching, Faculty of Sports Sciences, Inonu University, Malatya 44280, Türkiye
| | - Ahmet Kurtoğlu
- Department of Coaching, Faculty of Sport Science, Bandirma Onyedi Eylul University, Balikesir 10200, Türkiye
| | | | - İsmihan Eken
- Department of Physical Education and Sport Teaching, Firat University, Elazığ 23119, Türkiye
| | - Safaa M. Elkholi
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
4
|
Normann AJ, Mo CC, Wilson RL, Perez M, Cutler C, Uno H, Thompson LV, Skinner TL, Richardson PG, Marinac CR, Dieli-Conwright CM. Prehabilitation Exercise Training to Target Improved Muscle Strength in Pretransplant Patients Diagnosed With Multiple Myeloma: Protocol for a Pilot Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e64905. [PMID: 39701583 PMCID: PMC11695955 DOI: 10.2196/64905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Muscle mass and strength are severely compromised in patients diagnosed with multiple myeloma, such that the risk of poor overall survival increases as the prevalence of low muscle mass, also known as sarcopenia, increases. Additionally, at the time of autologous stem cell transplant (ASCT), 51% of patients experience low muscle mass and strength, which can prolong hospitalization and lead to increased risk of obesity, insulin resistance, lowered physical function, and poor quality of life. OBJECTIVE The PROTECT (Prehabilitation Exercise Training in Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplantation) trial will examine the preliminary effects of digitally supervised prehabilitative aerobic and resistance exercise on muscle strength in patients with multiple myeloma scheduled for ASCT. METHODS This prospective, 2-armed single-center randomized controlled trial will recruit 30 patients with multiple myeloma, aged 18 years and older, planning to receive ASCT. Individuals will be assigned to either the exercise or the waitlist control group. The 8-week exercise intervention is home-based and digitally supervised by a clinical exercise trainer. The frequency of the exercise intervention is 3 times per week consisting of aerobic exercise on a cycle ergometer and resistance exercises, which are individually tailored based on patient health status. The waitlist control group maintains normal daily activities of living and is offered the intervention within 6 months from ASCT. The primary outcome is lower limb muscle strength, measured using the 10-repetition maximum leg press or extensor strength. Additional outcomes include physical and cardiorespiratory function, patient-reported outcomes, cardiometabolic health outcomes, and clinical outcomes. RESULTS The trial was funded in the fall of 2022 and recruitment began in June 2023. As of August 2024, a total of 3 participants have consented and been randomized (n=1, exercise group; n=2, waitlist control group). Trial completion and start of data analysis is expected in July 2025 with expected results to be published in early winter of 2026. CONCLUSIONS We expect exercise to improve lower limb muscle strength and overall health outcomes compared to the waitlist control group. Results will contribute foundational knowledge needed to conduct larger-phase clinical trials testing the clinical benefits of prehabilitation exercise in this patient population. This study will provide insight into a prehabilitative exercise intervention designed to support patient prognosis. TRIAL REGISTRATION ClinicalTrials.gov NCT05706766; https://clinicaltrials.gov/study/NCT05706766. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/64905.
Collapse
Affiliation(s)
- Amber J Normann
- Department of Health Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, United States
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Clifton C Mo
- Jerome Lipper Center for Multiple Myeloma Research, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Rebekah L Wilson
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Michelle Perez
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Corey Cutler
- Division of Transplantation and Cellular Therapy, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Hajime Uno
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States
| | - LaDora V Thompson
- Department of Physical Therapy, Boston University, Boston, MA, United States
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | | | - Catherine R Marinac
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Christina M Dieli-Conwright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Calvo-Rubio M, Garcia-Domiguez E, Tamayo-Torres E, Soto-Rodríguez S, Olaso-Gonzalez G, Ferrucci L, de Cabo R, Gómez-Cabrera MC. The repeated bout effect evokes the training-induced skeletal muscle cellular memory. Free Radic Biol Med 2024; 225:247-254. [PMID: 39343184 DOI: 10.1016/j.freeradbiomed.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Physical exercise is well-established as beneficial for health. With the 20th-century epidemiological transition, promoting healthy habits like exercise has become crucial for preventing chronic diseases. Stress can yield adaptive long-term benefits, potentially transmitted trans-generationally. Physical training exposes individuals to metabolic, thermal, mechanical, and oxidative stressors, activating cell signaling pathways that regulate gene expression and adaptive responses, thereby enhancing stress tolerance - a phenomenon known as hormesis. Muscle memory is the capacity of skeletal muscle to respond differently to environmental stimuli in an adaptive (positive) or maladaptive (negative) manner if the stimuli have been encountered previously. The Repeated Bout Effect encompasses our skeletal muscle capacity to activate an intrinsic protective mechanism that reacts to eccentric exercise-induced damage by activating an adaptive response that resists subsequent damage stimuli. Deciphering the molecular mechanism of this phenomenon would allow the incorporation of muscle memory in training programs for professional athletes, active individuals looking for the health benefits of exercise training, and patients with "exercise intolerance." Moreover, enhancing the adaptive response of muscle memory could promote healing in individuals who traditionally do not recover after immobilization. The improvement could be part of an exercise program but could also be targeted pharmacologically. This review explores Repeated Bout Effect mechanisms: neural adaptations, tendon and muscle fiber property changes, extracellular matrix remodeling, and improved inflammatory responses.
Collapse
Affiliation(s)
- Miguel Calvo-Rubio
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Esther Garcia-Domiguez
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia; Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Eva Tamayo-Torres
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Silvana Soto-Rodríguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | - Luigi Ferrucci
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Maria Carmen Gómez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
6
|
Bailly M, Beraud D, Lambert C, Garnier YM, Pereira B, Duclos M, Boirie Y, Isacco L, Thivel D, Verney J. Constitutional thinness might be characterized by physiologically adapted and not impaired muscle function and architecture: new results from the NUTRILEAN study. Eur J Appl Physiol 2024; 124:3303-3315. [PMID: 38900200 DOI: 10.1007/s00421-024-05539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE While muscle mass and skeletal muscle fibers phenotype have been shown atypical in constitutional thinness (CT), force production capacities and its architectural determinants have never been explored. The present study compared muscle functionality and architecture between participants with CT and their normal-weight (NW) counterparts. METHODS Anthropometry, body composition (Dual-X-ray Absorptiometry), physical activity/sedentary behavior (ActiGraph wGT3X-BT), ultrasound recording of the Vastus Lateralis (2D-ultrasound system), and functional capacities at maximal isometric and isokinetic voluntary contractions (MVCISO and MVCCON) during knee extension (isokinetic dynamometer chair Biodex) have been measured in 18 women with CT (body mass index < 17.5 kg/m2) and 17 NW women. RESULTS A lower fat-free mass (ES: -1.94, 95%CI: -2.76 to -1.11, p < 0.001), a higher sedentary time, and a trend for a lower time spent at low-intensity physical activity, were observed in CT vs NW participants. While absolute MVCISO, MVCCON, rate of torque development (RTD), and torque work were all markedly lower in CT, these differences disappeared when normalized to body or muscle mass. Muscle thickness and fascicle length were found lower in CT (ES: -1.29, 95%CI: -2.03 to -0.52, p < 0.001; and ES: -0.87, 95%CI: -1.58 to -0.15, p = 0.02, respectively), while pennation angle was found similar. CONCLUSION Despite lower absolute strength capacities observed in CT, present findings support the hypothesis of physiological adaptations to the low body and muscle mass than to some intrinsic contractile impairments. These results call for further studies exploring hypertrophy-targeted strategies in the management of CT.
Collapse
Affiliation(s)
- Mélina Bailly
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, CRNH, 63000, Clermont-Ferrand, France
| | - Duane Beraud
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, CRNH, 63000, Clermont-Ferrand, France
| | - Céline Lambert
- Biostatistics Unit, DRCI, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Yoann M Garnier
- Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, EA3920, Université de Franche-Comté, 25000, Besançon, France
| | - Bruno Pereira
- Biostatistics Unit, DRCI, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Martine Duclos
- Department of Sport Medicine and Functional Explorations, CHU Clermont-Ferrand, CRNH, INRA, University of Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Yves Boirie
- Department of Clinical Nutrition, CHU Clermont-Ferrand, Diet and Musculoskeletal Health Team, CRNH, INRA, University of Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Laurie Isacco
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, CRNH, 63000, Clermont-Ferrand, France
| | - David Thivel
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, CRNH, 63000, Clermont-Ferrand, France
| | - Julien Verney
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, CRNH, 63000, Clermont-Ferrand, France.
| |
Collapse
|
7
|
Hinks A, Vlemmix E, Power GA. Submaximal eccentric resistance training increases serial sarcomere number and improves dynamic muscle performance in old rats. Physiol Rep 2024; 12:e70036. [PMID: 39362825 PMCID: PMC11449626 DOI: 10.14814/phy2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
The age-related loss of muscle mass is partly accounted for by the loss of sarcomeres in series, contributing to declines in muscle mechanical performance. Resistance training biased to eccentric contractions increases serial sarcomere number (SSN) in young muscle, however, maximal eccentric training in old rats previously did not alter SSN and worsened performance. A submaximal eccentric training stimulus may be more conducive to adaptation for aged muscle. The purpose of this study was to assess whether submaximal eccentric training can increase SSN and improve mechanical function in old rats. Twelve 32-month-old male F344/BN rats completed 4 weeks of submaximal (60% maximum) eccentric plantar-flexion training 3 days/week. Pre- and post-training, we assessed in-vivo maximum isometric torque at a stretched and neutral ankle angle, the passive torque-angle relationship, and the isotonic torque-velocity-power relationship. The soleus and medial gastrocnemius (MG) were harvested for SSN measurements via laser diffraction, with the untrained leg as a control. SSN increased 11% and 8% in the soleus and MG, respectively. Training also shifted optimal torque production towards longer muscle lengths, reduced passive torque 42%, and increased peak isotonic power 23%. Submaximal eccentric training was beneficial for aged muscle adaptations, increasing SSN, reducing muscle passive tension, and improving dynamic contractile performance.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Ethan Vlemmix
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
8
|
Wang Z, Xu Z, Zhong H, Zheng X, Yan L, Lyu G. Establishment and Validation of a Predictive Model for Sarcopenia Based on 2-D Ultrasound and Shear Wave Elastography in the Medial Gastrocnemius Muscle. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1299-1307. [PMID: 38969525 DOI: 10.1016/j.ultrasmedbio.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE To develop and validate a predictive model for sarcopenia. METHODS A total of 240 subjects who visited our hospital between August 2021 and May 2023 were randomly divided by time of entry into a training set containing 2/3 of patients and a validation set containing 1/3 of patients. The muscle thickness (MT), echo intensity (EI), and shear wave velocity (SWV) of the medial gastrocnemius muscle were measured. Indicators that were meaningful in the univariate analysis in the training set were included in a binary logistic regression to derive a regression model, and the model was evaluated using a consistency index, calibration plot, and clinical validity curve. Diagnostic efficacy and clinical applicability were compared between the model and unifactorial indicators. RESULTS Four meaningful variables, age, body mass index (BMI), MT, and SWV, were screened into the predictive model. The model was Logit Y = 21.292 + 0.065 × Age - 0.411 × BMI - 0.524 × MT - 3.072 × SWV. The model was well differentiated with an internally validated C-index of 0.924 and an external validation C-index of 0.914. The calibration plot predicted probabilities against actual probabilities showed excellent agreement. The specificity, sensitivity, and Youden's index of the model were 73.80%, 97.40%, and 71.20%, respectively, when using the diagnostic cut-off value of >0.279 for sarcopenia. The logistic model had higher diagnostic efficacy (p < 0.001) and higher net clinical benefit (p < 0.001) over the same threshold range compared to indicators. CONCLUSION The logistic model of sarcopenia has been justified to have good discriminatory, calibrated, and clinical validity, and has higher diagnostic value than indicators.
Collapse
Affiliation(s)
- Zecheng Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Department of Ultrasound, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhenhong Xu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Huohu Zhong
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xinying Zheng
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Lisheng Yan
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, China.
| |
Collapse
|
9
|
Hinks A, Power GA. Age-related differences in the loss and recovery of serial sarcomere number following disuse atrophy in rats. Skelet Muscle 2024; 14:18. [PMID: 39095894 PMCID: PMC11295870 DOI: 10.1186/s13395-024-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Older adults exhibit a slower recovery of muscle mass following disuse atrophy than young adults. At a smaller scale, muscle fibre cross-sectional area (i.e., sarcomeres in parallel) exhibits this same pattern. Less is known, however, about age-related differences in the recovery of muscle fibre length, driven by increases in serial sarcomere number (SSN), following disuse. The purpose of this study was to investigate age-related differences in SSN adaptations and muscle mechanical function during and following muscle immobilization. We hypothesized that older adult rats would experience a similar magnitude of SSN loss during immobilization, however, take longer to recover SSN than young following cast removal, which would limit the recovery of muscle mechanical function. METHODS We casted the plantar flexors of young (8 months) and old (32 months) male rats in a shortened position for 2 weeks, and assessed recovery during 4 weeks of voluntary ambulation. Following sacrifice, legs were fixed in formalin for measurement of soleus SSN and physiological cross-sectional area (PCSA) with the un-casted soleus acting as a control. Ultrasonographic measurements of pennation angle (PA) and muscle thickness (MT) were conducted weekly. In-vivo active and passive torque-angle relationships were constructed pre-cast, post-cast, and following 4 weeks of recovery. RESULTS From pre- to post-cast, young and older adult rats experienced similar decreases in SSN (-20%, P < 0.001), muscle wet weight (-25%, P < 0.001), MT (-30%), PA (-15%, P < 0.001), and maximum isometric torque (-40%, P < 0.001), but there was a greater increase in passive torque in older (+ 180%, P < 0.001) compared to young adult rats (+ 68%, P = 0.006). Following cast removal, young exhibited quicker recovery of SSN and MT than old, but SSN recovered sooner than PA and MT in both young and old. PCSA nearly recovered and active torque fully recovered in young adult rats, whereas in older adult rats these remained unrecovered at ∼ 75%. CONCLUSIONS This study showed that older adult rats retain a better ability to recover longitudinal compared to parallel muscle morphology following cast removal, making SSN a highly adaptable target for improving muscle function in elderly populations early on during rehabilitation.
Collapse
MESH Headings
- Animals
- Male
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/diagnostic imaging
- Aging
- Rats
- Rats, Inbred F344
- Muscular Disorders, Atrophic/physiopathology
- Muscular Disorders, Atrophic/pathology
- Muscular Disorders, Atrophic/diagnostic imaging
- Muscular Disorders, Atrophic/etiology
- Recovery of Function
- Hindlimb Suspension/adverse effects
- Adaptation, Physiological
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada.
| |
Collapse
|
10
|
Olarogba OB, Lockyer EJ, Antolinez AK, Button DC. Sex-related differences in corticospinal excitability outcome measures of the biceps brachii during a submaximal elbow flexor contraction. Physiol Rep 2024; 12:e16102. [PMID: 39095333 PMCID: PMC11296885 DOI: 10.14814/phy2.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 08/04/2024] Open
Abstract
The purpose of this study was to investigate the effects of sex, muscle thickness, and subcutaneous fat thickness (SFT) on corticospinal excitability outcome measures of the biceps brachii. Eighteen participants (10 males and 8 females) completed this study. Ultrasound was used to assess biceps brachii muscle thickness and the overlying SFT. Transcranial magnetic stimulation (TMS) was used to determine corticospinal excitability by inducing motor-evoked potentials (MEPs) at eight different TMS intensities from 90% to 160% of active motor threshold (AMT) from the biceps brachii during an isometric contraction of the elbow flexors at 10% of maximum voluntary contraction (MVC). Biceps brachii maximal compound muscle action potential (Mmax) was also recorded prior to and after TMS. Males had higher (p < 0.001) biceps brachii muscle thickness and lower SFT, produced higher levels of MVC force and had, on average, higher (p < 0.001) MEP amplitudes at lower (p < 0.05) percentages of maximal stimulator output than females during the 10% elbow flexion MVC. Multiple linear regression modeling revealed that sex was not associated with any of the neurophysiological parameters examined, while SFT showed a positive association with the stimulation intensity required at AMT (p = 0.035) and a negative association with biceps brachii pre-stimulus electromyography (EMG) activity (p = 0.021). Additionally, there was a small positive association between muscle thickness and biceps brachii pre-stimulus EMG activity (p = 0.049). Overall, this study suggests that some measures of corticospinal excitability may be different between the sexes and influenced by SFT and muscle thickness.
Collapse
Affiliation(s)
- Olalekan B. Olarogba
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
| | - Evan J. Lockyer
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
- Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Angie K. Antolinez
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
| | - Duane C. Button
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
- Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
11
|
Santos LV, Pereira ET, Suárez-Iglesias D, Ayán C, Oliveira CEPD, Moreira OC. Strength training as a non-pharmacological alternative to improve body composition, and quality of life in people with spinal cord injury: A systematic review. J Bodyw Mov Ther 2024; 39:285-292. [PMID: 38876640 DOI: 10.1016/j.jbmt.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Spinal cord injuries (SCI) have physiological, emotional, and economic consequences in the lives of affected people. Resistance training (RT) is efficient in improving several physiological factors, quality of life, and body composition. Due to the scarce literature on the analysis of isolated RT, the objective of this systematic review is to evaluate the effects of RT without the association of other techniques, in aspects related to the quality of life and body composition of people with SCI. EVIDENCE ACQUISITION The research was carried out in databases such as Pubmed, Cochrane, and Web of Science using the terms ("Spinal cord injury") AND (("Resistance Training") OR ("Strength training")). Given the lack of evidence on the subject, no deadline was set for the study to be eligible for analysis. EVIDENCE SYNTHESIS The search for the articles was carried out in November of 2023 and returned 470 results, of which 315 remained after the elimination of duplicates, with 281 being excluded after title analysis. A total of 34 abstracts were analyzed and 29 studies were excluded, leaving 5 complete articles for thorough analysis. CONCLUSIONS After analyzing the main results, we concluded that RT promotes significant improvements in body composition, pain, stress and depression symptoms, increased functionality, physical awareness, and quality of life.
Collapse
Affiliation(s)
- Lucas Vieira Santos
- Department of Physical Education, Federal University of Viçosa, Campus Viçosa, Viçosa, Minas Gerais State, Brazil
| | - Eveline Torres Pereira
- Department of Physical Education, Federal University of Viçosa, Campus Viçosa, Viçosa, Minas Gerais State, Brazil
| | - David Suárez-Iglesias
- Department of Physical Education and Sport, Institute of Biomedicine (IBIOMED) - University of León, León, Spain
| | - Carlos Ayán
- Department of Special Didactics, Faculty of Educational Sciences and Sports, University of Vigo, Campus A Xunqueira, Pontevedra, Spain
| | | | - Osvaldo Costa Moreira
- Institute of Biological Sciences and Health, Federal University of Viçosa, Campus Florestal, Florestal, Minas Gerais State, Brazil.
| |
Collapse
|
12
|
Martin-Rodriguez S, Gonzalez-Henriquez JJ, Diaz-Conde JC, Calbet JAL, Sanchis-Moysi J. The relationship between muscle thickness and pennation angle is mediated by fascicle length in the muscles of the lower extremities. Sci Rep 2024; 14:14847. [PMID: 38937524 PMCID: PMC11211461 DOI: 10.1038/s41598-024-65100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Muscle morphological architecture, a crucial determinant of muscle function, has fascinated researchers since the Renaissance. Imaging techniques enable the assessment of parameters such as muscle thickness (MT), pennation angle (PA), and fascicle length (FL), which may vary with growth, sex, and physical activity. Despite known interrelationships, robust mathematical models like causal mediation analysis have not been extensively applied to large population samples. We recruited 109 males and females, measuring knee flexor and extensor, and plantar flexor MT, PA, and FL using real-time ultrasound imaging at rest. A mixed-effects model explored sex, leg (dominant vs. non-dominant), and muscle region differences. Males exhibited greater MT in all muscles (0.1 to 2.1 cm, p < 0.01), with no sex differences in FL. Dominant legs showed greater rectus femoris (RF) MT (0.1 cm, p = 0.01) and PA (1.5°, p = 0.01), while vastus lateralis (VL) had greater FL (1.2 cm, p < 0.001) and PA (0.6°, p = 0.02). Regional differences were observed in VL, RF, and biceps femoris long head (BFlh). Causal mediation analyses highlighted MT's influence on PA, mediated by FL. Moderated mediation occurred in BFlh, with FL differences. Gastrocnemius medialis and lateralis exhibited FL-mediated MT and PA relationships. This study unveils the intricate interplay of MT, FL, and PA in muscle architecture.
Collapse
Affiliation(s)
- Saul Martin-Rodriguez
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Juan Jose Gonzalez-Henriquez
- Research Institute of Biomedical and Health Sciences (IUIBS), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Mathematics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan Carlos Diaz-Conde
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway
| | - Joaquin Sanchis-Moysi
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain.
- Research Institute of Biomedical and Health Sciences (IUIBS), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain.
| |
Collapse
|
13
|
Hinks A, Patterson MA, Njai BS, Power GA. Age-related blunting of serial sarcomerogenesis and mechanical adaptations following 4 wk of maximal eccentric resistance training. J Appl Physiol (1985) 2024; 136:1209-1225. [PMID: 38511212 DOI: 10.1152/japplphysiol.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
During aging, muscles undergo atrophy, which is partly accounted for by a loss of sarcomeres in series. Serial sarcomere number (SSN) is associated with aspects of muscle mechanical function including the force-length and force-velocity-power relationships; hence, the age-related loss of SSN contributes to declining performance. Training emphasizing eccentric contractions increases SSN in young healthy rodents; however, the ability for eccentric training to increase SSN in old age is unknown. Ten young (8 mo) and 11 old (32 mo) male Fisher344/BN rats completed 4 wk of unilateral eccentric plantar flexion training. Pre- and posttraining, the plantar flexors were assessed for the torque-frequency, passive torque-angle, and torque-velocity-power relationships. The soleus, lateral gastrocnemius (LG), and medial gastrocnemius (MG) were harvested for SSN assessment via laser diffraction, with the untrained leg used as a control. In the untrained leg/pretraining, old rats had lower SSN in the soleus, LG, and MG, lower maximum torque, power, and shortening velocity, and greater passive torque than young. Young showed increased soleus and MG SSN following training. In contrast, old had no change in soleus SSN and experienced SSN loss in the LG. Pre- to posttraining, young experienced an increase in maximum isometric torque, whereas old had reductions in maximum torque, shortening velocity, and power, and increased passive torque. Our results show that although young muscle has the ability to add sarcomeres in response to maximal eccentric training, this stimulus could be not only ineffective, but also detrimental to aged muscle leading to dysfunctional remodeling.NEW & NOTEWORTHY The loss of sarcomeres in series with age contributes to declining muscle performance. The present study investigated whether eccentric training could improve performance via serial sarcomere addition in old muscle, like in young muscle. Four weeks of maximal eccentric training induced serial sarcomere addition in the young rat plantar flexors and improved in vivo performance, however, led to dysfunctional remodeling accompanied by further impaired performance in old rats.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Makenna A Patterson
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Binta S Njai
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
14
|
Schaun GZ, Gumpenberger M, Konermann L, Graf A, Raidl P, Wessner B, Csapo R. Multimodal and conventional resistance training interventions improve muscle function in older adults: Findings from the Training IMCT study. Exp Gerontol 2024; 188:112378. [PMID: 38355067 DOI: 10.1016/j.exger.2024.112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Age-associated remodeling processes affect the intramuscular connective tissue (IMCT) network, which may significantly impair muscle function. Thus, we aimed to test whether including exercises shown to efficiently target the IMCT to a conventional resistance exercise intervention (CONV) would result in greater functional gains as compared to CONV alone. Fifty-three men and women (66.2 ± 3.3 years) were assigned to either CONV (n = 15), multimodal training (MULTI; n = 17) or a control (CTRL; n = 21) group. All subjects were tested at baseline, and those assigned to CONV or MULTI underwent a 16-week training intervention. The CONV group followed a progressive resistance training program, in which the number of weekly training sessions gradually increased from 1 to 3. In the MULTI group, one of these sessions was replaced with plyometric training, followed by self-myofascial release. Testing included maximal strength and power, imaging-based muscle volume, architecture, and functional performance. The intervention effects were analyzed using two- or three-way repeated measures ANOVA models (α = 0.05). Briefly, the maximal knee extension isometric contraction, one-repetition maximum, and isokinetic peak torque increased in all groups (p < 0.05), albeit to a lesser extent in CTRL. On the other hand, quadriceps femoris muscle volume (p = 0.019) and vastus lateralis pennation angle (p < 0.001) increased only in the MULTI group. Handgrip strength did not change in response to the intervention (p = 0.312), whereas Sit-to-Stand performance improved in all groups after the first 8-wks, but only in MULTI and CONV after 16-wks (all p < 0.001). In conclusion, we found that a resistance training intervention in which one weekly training session is replaced by plyometric training is feasible and as effective as a program consisting solely of conventional strength training sessions for inducing gains in muscle strength and function in older adults. Muscle size and architecture improved only in the MULTI group. German Clinical Trials: DRKS00015750.
Collapse
Affiliation(s)
- Gustavo Z Schaun
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria.
| | - Matthias Gumpenberger
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, UMIT Tirol, Hall, Austria
| | - Leonie Konermann
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, UMIT Tirol, Hall, Austria
| | - Alexandra Graf
- Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Peter Raidl
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Barbara Wessner
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria; Research Platform Active Aging, University of Vienna, Vienna, Austria
| | - Robert Csapo
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria; Research Unit for Orthopaedic Sports Medicine and Injury Prevention, UMIT Tirol, Hall, Austria
| |
Collapse
|
15
|
Sayed RKA, Hibbert JE, Jorgenson KW, Hornberger TA. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle. Cells 2023; 12:2811. [PMID: 38132132 PMCID: PMC10741885 DOI: 10.3390/cells12242811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The maintenance of skeletal muscle mass plays a fundamental role in health and issues associated with quality of life. Mechanical signals are one of the most potent regulators of muscle mass, with a decrease in mechanical loading leading to a decrease in muscle mass. This concept has been supported by a plethora of human- and animal-based studies over the past 100 years and has resulted in the commonly used term of 'disuse atrophy'. These same studies have also provided a great deal of insight into the structural adaptations that mediate disuse-induced atrophy. For instance, disuse results in radial atrophy of fascicles, and this is driven, at least in part, by radial atrophy of the muscle fibers. However, the ultrastructural adaptations that mediate these changes remain far from defined. Indeed, even the most basic questions, such as whether the radial atrophy of muscle fibers is driven by the radial atrophy of myofibrils and/or myofibril hypoplasia, have yet to be answered. In this review, we thoroughly summarize what is known about the macroscopic, microscopic, and ultrastructural adaptations that mediated disuse-induced atrophy and highlight some of the major gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Ramy K. A. Sayed
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| |
Collapse
|
16
|
Castilla-López C, Romero-Franco N. Low-load strength resistance training with blood flow restriction compared with high-load strength resistance training on performance of professional soccer players: a randomized controlled trial. J Sports Med Phys Fitness 2023; 63:1146-1154. [PMID: 37535339 DOI: 10.23736/s0022-4707.23.14974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
BACKGROUND The aim of this study is to evaluate the effectiveness of low-load blood flow restriction strength resistance training (LL-BFR) compared to high load strength resistance training (HL) on performance of professional soccer players. METHODS Eighteen male players from National Soccer Professional League were randomly allocated into two groups: LL-BFR, who performed a 6-weeks strength training program with low load (20-35% of one-repetition maximum-[1RM]), or HL, who performed a 6-week resistance training program with high load (70-85% 1RM). Before and after, thigh girth, vertical jump, lower limb strength, vertical force-velocity profile (F-v), and 30-m sprint were evaluated. RESULTS After the training program, both LL-BFR and HL induced significant increases compared to baseline in thigh girth (+3.3% for LL-BFR and +3.1% for HL) and maximal velocity during sprinting (+6.0 and +6.2%, respectively), without between-group differences. In reference to FV, only HL players improved imbalance (-54.4%), maximal theoretical force production (+10.4%) and decreased extension velocity (-20.5%) compared to baseline, without between-group differences. Only LL-BFR induced increases in maximum voluntary contraction of left hamstring compared to baseline (+13.8%), without between-group differences. No differences were shown for the rest of variables (P>0.05). CONCLUSIONS Although LL-BFR may increase muscle circumference and sprint ability, these results are similar to those induced with HL in male professional soccer. In terms of F-v, only HL induced improvements, but these changes were not greater than those observed after LL-BFR.
Collapse
Affiliation(s)
| | - Natalia Romero-Franco
- Department of Nursing and Physiotherapy, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IIdISBa), Palma, Spain
| |
Collapse
|
17
|
Wei W, Xie C, Cao R, Que Y, Zhong X, Chen Z, Lv F, Kang Q, Lin R, Cao B, Lai X, Tu M. Ultrasound Assessment of the Gastrocnemius Muscle as a Potential Tool for Identifying Sarcopenia in Patients with Type 2 Diabetes. Diabetes Metab Syndr Obes 2023; 16:3435-3444. [PMID: 37929058 PMCID: PMC10624255 DOI: 10.2147/dmso.s435517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
Objective This study aims to examine the clinical significance of ultrasound evaluation of the gastrocnemius muscle (GM) in identifying sarcopenia in patients with type 2 diabetes (T2D). Methods One hundred and fifty-three patients with T2D were included in this study. We measured the appendicular skeletal muscle mass index (ASMI), handgrip strength, and 6-meter walking speed. The US-derived muscle thickness (MT), cross-sectional area (CSA), and shear wave ultrasound elastography (SWE) of GM were also measured. We assessed the correlations between clinical indicators and US features. The model for screening sarcopenia was established using stepwise logistic regression. Stepwise linear regression was used to identify a set of variables that jointly estimated ASMI. The model's ability to identify sarcopenia and low muscle mass was assessed by receiver operating characteristic (ROC) curve analysis. Results The prevalence of sarcopenia in this study was 24.2%. The CSA, MT and SWE values of the patients with sarcopenia were lower than those of patients without sarcopenia (all p < 0.05). ASMI was positively correlated with CSA (r = 0.56, p < 0.001) and MT (r = 0.39, p < 0.001). Handgrip strength was positively correlated with CSA (r = 0.45, p < 0.001), MT (r = 0.25, p < 0.001), and SWE (r = 0.26, p = 0.002). A diagnostic model for sarcopenia was established with a sensitivity of 81.1%, specificity of 75.0%, and an area under the curve (AUC) of 0.800. The estimated ASMI equation was developed and found to have a positive correlation with actual ASMI (r = 0.70, p < 0.001). It was also effective in diagnosing low muscle mass, with an AUC of 0.787 for males and 0.783 for females. Conclusion Ultrasonographic assessment of the gastrocnemius muscle was found to be a useful and convenient method for detecting sarcopenia in patients with T2D.
Collapse
Affiliation(s)
- Wen Wei
- Department of Endocrinology, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, People’s Republic of China
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Chengwen Xie
- Department of Ultrasonography, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, People’s Republic of China
| | - Ronghua Cao
- Department of Nuclear Medicine, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, People’s Republic of China
| | - Yanwen Que
- Department of Ultrasonography, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, People’s Republic of China
| | - Xuejing Zhong
- Department of Science and Education, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, People’s Republic of China
| | - Zheyuan Chen
- Department of Endocrinology, Fujian Longyan First Hospital, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Fenyan Lv
- Department of Endocrinology, Fujian Longyan First Hospital, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Qianqian Kang
- Department of Endocrinology, Fujian Longyan First Hospital, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Ruiyu Lin
- Department of Endocrinology, Fujian Longyan First Hospital, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Baozhen Cao
- Department of Pulmonary and Critical Care Medicine, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, People’s Republic of China
| | - Xiaomin Lai
- Department of Pulmonary and Critical Care Medicine, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, People’s Republic of China
| | - Mei Tu
- Department of Endocrinology, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, People’s Republic of China
| |
Collapse
|
18
|
Hinks A, Franchi MV, Power GA. Ultrasonographic measurements of fascicle length overestimate adaptations in serial sarcomere number. Exp Physiol 2023; 108:1308-1324. [PMID: 37608723 PMCID: PMC10988429 DOI: 10.1113/ep091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Ultrasound-derived measurements of muscle fascicle length (FL) are often used to infer increases (chronic stretch or training) or decreases (muscle disuse or aging) in serial sarcomere number (SSN). Whether FL adaptations measured via ultrasound can truly approximate SSN adaptations has not been investigated. We casted the right hindlimb of 15 male Sprague-Dawley rats in a dorsiflexed position (i.e., stretched the plantar flexors) for 2 weeks, with the left hindlimb serving as a control. Ultrasound images of the soleus, lateral gastrocnemius (LG), and medial gastrocnemius (MG) were obtained with the ankle at 90° and full dorsiflexion for both hindlimbs pre and post-cast. Following post-cast ultrasound measurements, legs were fixed in formalin with the ankle at 90°, then muscles were dissected and fascicles were teased out for measurement of sarcomere lengths via laser diffraction and calculation of SSN. Ultrasound detected an 11% increase in soleus FL, a 12% decrease in LG FL, and an 8-11% increase in MG FL for proximal fascicles and at full dorsiflexion. These adaptations were partly reflected by SSN adaptations, with a 6% greater soleus SSN in the casted leg than the un-casted leg, but no SSN differences for the gastrocnemii. Weak relationships were observed between ultrasonographic measurements of FL and measurements of FL and SSN from dissected fascicles. Our results showed that ultrasound-derived FL measurements can overestimate an increase in SSN by ∼5%. Future studies should be cautious when concluding a large magnitude of sarcomerogenesis from ultrasound-derived FL measurements, and may consider applying a correction factor. NEW FINDINGS: What is the central question of this study? Measurements of muscle fascicle length via ultrasound are often used to infer changes in serial sarcomere number, such as increases following chronic stretch or resistance training, and decreases with ageing: does ultrasound-derived fascicle length accurately depict adaptations in serial sarcomere number? What is the main finding and its importance? Ultrasound detected an ∼11% increase in soleus fascicle length, but measurements on dissected fascicles showed the actual serial sarcomere number increase was only ∼6%; therefore, measurements of ultrasound-derived fascicle length can overestimate serial sarcomere number adaptations by as much as 5%.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Martino V. Franchi
- Department of Biomedical Sciences, Human Neuromuscular Physiology LaboratoryUniversity of PaduaPaduaItaly
- CIR‐MYO Myology CentreUniversity of PaduaPaduaItaly
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
19
|
Xu X, Chen Y, Cai W, Huang J, Yao X, Zhao Q, Li H, Liang W, Zhang H. A Multivariable Model Based on Ultrasound Imaging Features of Gastrocnemius Muscle to Identify Patients With Sarcopenia. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2045-2055. [PMID: 36929858 DOI: 10.1002/jum.16223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES Low skeletal muscle mass, strength, or somatic function are used to diagnose sarcopenia; however, effective assessment methods are still lacking. Therefore, we evaluated the effectiveness of ultrasound in identifying patients with sarcopenia. METHODS This study included 167 patients, 78 with sarcopenia and 89 healthy participants, from two hospitals. We evaluated clinical factors and five ultrasound imaging features, of which three ultrasound imaging features were used to create the model. In both the training and validation datasets, the sarcopenia detection performances of chosen ultrasonic characteristics and the constructed model were evaluated using receiver operating characteristic (ROC) curves. The predictive performance was evaluated by area under the ROC (AUROC), calibration, and decision curves. RESULTS There were statistically significant differences in muscle thickness (MT) of gastrocnemius medialis muscle (GM), flaky myosteatosis echo (FE), pennation angle (PA), average shear wave velocity (SWV) in the relaxed state (RASWV), and average SWV in the passive stretched state (PASWV) between sarcopenic and normal subjects. PA, RASWV, and PASWV were effective predictors of sarcopenia. The AUROC (95% confidence interval) for these three parameters were 0.930 (0.882-0.978), 0.865 (0.791-0.940), and 0.849 (0.770-0.928), respectively, in the training set, and 0.873 (0.777-0.969), 0.936 (0.878-0.993), and 0.826 (0.716-0.935), respectively, in the validation set. The combined model had better detection power. Finally, the calibration curve showed that the combined model had good prediction accuracy. CONCLUSION Our model can be used to identify sarcopenia in primary medical institutions, which is valuable for the early recognition and management of sarcopenia patients.
Collapse
Affiliation(s)
- Xuanshou Xu
- Department of Ultrasound, Zhuhai People's Hospital, Zhuhai Hospital Affiliated to Jinan University, Zhuhai, China
- Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuansen Chen
- Department of Ultrasound, The Third People's Hospital of Longgang District, Shenzhen, China
| | - Wenwen Cai
- Department of Ultrasound, Zhuhai People's Hospital, Zhuhai Hospital Affiliated to Jinan University, Zhuhai, China
| | - Jing Huang
- Department of Ultrasound, Zhuhai People's Hospital, Zhuhai Hospital Affiliated to Jinan University, Zhuhai, China
| | - Xiaohong Yao
- Department of Ultrasound, The Third People's Hospital of Longgang District, Shenzhen, China
| | - Qin Zhao
- Department of Ultrasound, Zhuhai People's Hospital, Zhuhai Hospital Affiliated to Jinan University, Zhuhai, China
| | - Hong Li
- Department of Ultrasound, Zhuhai People's Hospital, Zhuhai Hospital Affiliated to Jinan University, Zhuhai, China
| | - Weixiang Liang
- Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Heng Zhang
- Department of Ultrasound, Zhuhai People's Hospital, Zhuhai Hospital Affiliated to Jinan University, Zhuhai, China
| |
Collapse
|
20
|
Vasilevska Nikodinovska V, Ivanoski S. Sarcopenia, More Than Just Muscle Atrophy: Imaging Methods for the Assessment of Muscle Quantity and Quality. ROFO-FORTSCHR RONTG 2023; 195:777-789. [PMID: 37160148 DOI: 10.1055/a-2057-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Sarcopenia, a progressive reduction of muscle mass and function, is associated with adverse outcomes in the elderly. Sarcopenia and muscle atrophy are not equal processes. Low muscle strength in association with muscle quantity/quality reduction is currently the optimal method for assessing sarcopenia. There is a practical need for indirect measurement of muscle strength using state-of-the-art imaging techniques. METHODS The following provides a narrative, broad review of all current imaging techniques for evaluating muscles and identifying sarcopenia, including DEXA, CT, MRI, and high-resolution ultrasound, their main strengths, weaknesses, and possible solutions to problems regarding each technique. RESULTS AND CONCLUSION Well-recognized imaging methods for the assessment of muscle mass are explained, including evaluation with DEXA, CT, and MRI muscle quantity assessment, ultrasound evaluation of muscle thickness and CSA, and their correlations with established muscle mass calculation methods. A special focus is on imaging methods for muscle quality evaluation. Several innovative and promising techniques that are still in the research phase but show potential in the assessment of different properties of muscle quality, including MRI DIXON sequences, MRI spectroscopy, Diffusion Tensor Imaging, ultrasound echo intensity, ultrasound elastography, and speed-of-sound ultrasound imaging are briefly mentioned. KEY POINTS · Sarcopenia definition includes low muscle strength and low muscle quantity/quality.. · DEXA is a low-radiation method for whole-body composition measurement in a single image.. · CT has established cut-off values for muscle quality/quantity evaluation and sarcopenia diagnosis.. · MRI is the most sophisticated muscle quality assessment method capable of evaluating myosteatosis, myofibrosis, and microstructure.. · Ultrasound can evaluate muscle quality, including tissue architecture, and elasticity with excellent spatial resolution.. CITATION FORMAT · Vasilevska Nikodinovska V, Ivanoski S, . Sarcopenia, More Than Just Muscle Atrophy: Imaging Methods for the Assessment of Muscle Quantity and Quality. Fortschr Röntgenstr 2023; 195: 777 - 789.
Collapse
Affiliation(s)
| | - Slavcho Ivanoski
- Diagnostic Radiology, St. Erasmo Hospital, Ohrid, North Macedonia
| |
Collapse
|
21
|
Quinlan JI, Dhaliwal A, Williams FR, Allen SL, Choudhary S, Rowlands A, Breen L, Lavery GG, Lord JM, Elsharkawy AM, Armstrong MJ, Greig CA. Impaired lower limb muscle mass, quality and function in end stage liver disease: A cross-sectional study. Exp Physiol 2023; 108:1066-1079. [PMID: 37166422 PMCID: PMC10988432 DOI: 10.1113/ep091157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
NEW FINDINGS What is the central question of this study? To what extent does musculoskeletal impairment occur (i.e., muscle mass, quality and function) in patients with end stage liver disease (ESLD) by comparison to a healthy age/sex-matched control group? What is the main finding and its importance? Muscle mass, quality and function are impaired in patients with ESLD (compared to age/sex matched controls). Importantly, greater impairments were seen in lower limb compared to arm and trunk muscle groups. These findings may suggest that there should be greater consideration of muscle health in functionally relevant lower limb muscle groups. ABSTRACT Sarcopenia is associated with reduced quality of life and increased mortality in patients with end stage liver disease (ESLD). Historically, sarcopenia identification in ESLD utilised L3 skeletal muscle index (SMI). There are few data on muscle quality and function within lower limb muscle groups with high functional relevance. The aim of this prospective case-control study was to evaluate the quadriceps muscle in patients with ESLD. Muscle mass and quality were evaluated using MRI (quadriceps anatomical cross sectional area (ACSA), quadriceps volume index, L3 SMI, quadriceps intermuscular adipose tissue (IMAT)), mid-arm muscle circumference (MAMC) and ultrasonography (vastus lateralis (VL) thickness and quadriceps ACSA). Muscle strength/function was assessed by handgrip strength, peak quadriceps isokinetic torque and chair rise time. Thirty-nine patients with ESLD (55 years, 61% male, 48% alcoholic related liver disease (ArLD), 71% Child-Pugh B/C) and 18 age/sex-matched healthy control participants (HC) were studied. Quadriceps mass was significantly reduced in ESLD versus HC (-17%), but L3 SMI and MAMC were unchanged. Quadriceps IMAT percentage was increased in ESLD (+103%). Handgrip strength (-15%), peak isokinetic torque (-29%), and chair rise time (+56%) were impaired in ESLD. Ultrasound measures of VL thickness (r = 0.56, r = 0.57, r = 0.42) and quadriceps ACSA (r = 0.98, r = 0.86, r = 0.67) correlated to MRI quadriceps ACSA, quadriceps volume and L3 SMI, respectively. Quadriceps muscle mass, quality, and function were impaired in patients with ESLD, whereas conventional assessments of muscle (L3 SMI and MAMC) highlighted no differences between ESLD and HC. Full evaluation of lower limb muscle health is essential in ESLD in order to accurately assess sarcopenia and target future interventions.
Collapse
Affiliation(s)
- Jonathan I. Quinlan
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation Trust and University of BirminghamBirminghamUK
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Amritpal Dhaliwal
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation Trust and University of BirminghamBirminghamUK
- Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Felicity R. Williams
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation Trust and University of BirminghamBirminghamUK
- Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
- Therapies DepartmentUniversity Hospitals BirminghamBirminghamUK
| | - Sophie L. Allen
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation Trust and University of BirminghamBirminghamUK
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | | | - Alex Rowlands
- NIHR Leicester Biomedical Research CentreLeicesterUK
- Diabetes Research CentreUniversity of Leicester, Leicester General HospitalLeicesterUK
| | - Leigh Breen
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation Trust and University of BirminghamBirminghamUK
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
| | - Gareth G. Lavery
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation Trust and University of BirminghamBirminghamUK
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
- Department of BiosciencesNottingham Trent UniversityNottinghamUK
| | - Janet M. Lord
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation Trust and University of BirminghamBirminghamUK
- Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
| | - Ahmed M. Elsharkawy
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation Trust and University of BirminghamBirminghamUK
- Liver UnitQueen Elizabeth Hospital BirminghamBirminghamUK
| | - Matthew J. Armstrong
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation Trust and University of BirminghamBirminghamUK
- Liver UnitQueen Elizabeth Hospital BirminghamBirminghamUK
| | - Carolyn A. Greig
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation Trust and University of BirminghamBirminghamUK
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
22
|
Delgado-Bravo M, Hart DA, Reimer RA, Herzog W. Alterations in skeletal muscle morphology and mechanics in juvenile male Sprague Dawley rats exposed to a high-fat high-sucrose diet. Sci Rep 2023; 13:12013. [PMID: 37491416 PMCID: PMC10368627 DOI: 10.1038/s41598-023-38487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
Although once a health concern largely considered in adults, the obesity epidemic is now prevalent in pediatric populations. While detrimental effects on skeletal muscle function have been seen in adulthood, the effects of obesity on skeletal muscle function in childhood is not clearly understood. The purpose of this study was to determine if the consumption of a high-fat high-sucrose (HFS) diet, starting in the post-weaning period, leads to changes in skeletal muscle morphology and mechanics after 14 weeks on the HFS diet. Eighteen 3-week-old male CD-Sprague Dawley rats were randomly assigned to a HFS (C-HFS, n = 10) or standard chow diet (C-CHOW, n = 8). Outcome measures included: weekly energy intake, activity levels, oxygen consumption, body mass, body composition, metabolic profile, serum protein levels, and medial gastrocnemius gene expression, morphology, and mechanics. The main findings from this study were that C-HFS rats: (1) had a greater body mass and percent body fat than control rats; (2) showed early signs of metabolic syndrome; (3) demonstrated potential impairment in muscle remodeling; (4) produced lower relative muscle force; and (5) had a shift in the force-length relationship, indicating that the medial gastrocnemius had shorter muscle fiber lengths compared to those of C-CHOW rats. Based on the results of this study, we conclude that exposure to a HFS diet led to increased body mass, body fat percentage, and early signs of metabolic syndrome, resulting in functional deficits in MG of childhood rats.
Collapse
Affiliation(s)
- Mauricio Delgado-Bravo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Carrera de Kinesiología, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David A Hart
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
23
|
Lizama-Pérez R, Chirosa-Ríos LJ, Contreras-Díaz G, Jerez-Mayorga D, Jiménez-Lupión D, Chirosa-Ríos IJ. Effect of sit-to-stand-based training on muscle quality in sedentary adults: a randomized controlled trial. PeerJ 2023; 11:e15665. [PMID: 37456889 PMCID: PMC10349562 DOI: 10.7717/peerj.15665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The aim of this study was to compare the effects of sit-to-stand (STS) training programs with 5 vs. 10 repetitions on muscle architecture and muscle function in sedentary adults. Sixty participants were randomly assigned into three groups: five-repetition STS (5STS), 10-repetition STS (10STS), or a control group (CG). Participants performed three sets of five or 10 repetitions of the STS exercise three times per week for 8 weeks. Before and after 8 weeks, all groups performed ultrasound measures to evaluate muscle thickness (MT), pennation angle (PA), and fascicle length (FL), and the five-repetition STS test to estimate the relative STS power and muscle quality index (MQI). After 8 weeks, both experimental groups improved MQI (40-45%), relative STS power (29-38%), and MT (8-9%) (all p < 0.001; no differences between the 5STS vs. 10STS groups). These improvements in both groups resulted in differences regarding the CG, which did not present any change. In addition, only the 5STS group improved PA (15%; p = 0.008) without differences to the 10STS and CG.This suggests that STS training is time-effective and low-cost for improving muscle function and generating adaptations in muscle architecture.
Collapse
Affiliation(s)
- Rodrigo Lizama-Pérez
- Department of Physical Education and Sports, University of Granada, Granada, Spain
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | | | | | - Daniel Jerez-Mayorga
- Department of Physical Education and Sports, University of Granada, Granada, Spain
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | | | | |
Collapse
|
24
|
Comfort P, Haff GG, Suchomel TJ, Soriano MA, Pierce KC, Hornsby WG, Haff EE, Sommerfield LM, Chavda S, Morris SJ, Fry AC, Stone MH. National Strength and Conditioning Association Position Statement on Weightlifting for Sports Performance. J Strength Cond Res 2023; 37:1163-1190. [PMID: 36952649 DOI: 10.1519/jsc.0000000000004476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Comfort, P, Haff, GG, Suchomel, TJ, Soriano, MA, Pierce, KC, Hornsby, WG, Haff, EE, Sommerfield, LM, Chavda, S, Morris, SJ, Fry, AC, and Stone, MH. National Strength and Conditioning Association position statement on weightlifting for sports performance. J Strength Cond Res XX(X): 000-000, 2022-The origins of weightlifting and feats of strength span back to ancient Egypt, China, and Greece, with the introduction of weightlifting into the Olympic Games in 1896. However, it was not until the 1950s that training based on weightlifting was adopted by strength coaches working with team sports and athletics, with weightlifting research in peer-reviewed journals becoming prominent since the 1970s. Over the past few decades, researchers have focused on the use of weightlifting-based training to enhance performance in nonweightlifters because of the biomechanical similarities (e.g., rapid forceful extension of the hips, knees, and ankles) associated with the second pull phase of the clean and snatch, the drive/thrust phase of the jerk and athletic tasks such as jumping and sprinting. The highest force, rate of force development, and power outputs have been reported during such movements, highlighting the potential for such tasks to enhance these key physical qualities in athletes. In addition, the ability to manipulate barbell load across the extensive range of weightlifting exercises and their derivatives permits the strength and conditioning coach the opportunity to emphasize the development of strength-speed and speed-strength, as required for the individual athlete. As such, the results of numerous longitudinal studies and subsequent meta-analyses demonstrate the inclusion of weightlifting exercises into strength and conditioning programs results in greater improvements in force-production characteristics and performance in athletic tasks than general resistance training or plyometric training alone. However, it is essential that such exercises are appropriately programmed adopting a sequential approach across training blocks (including exercise variation, loads, and volumes) to ensure the desired adaptations, whereas strength and conditioning coaches emphasize appropriate technique and skill development of athletes performing such exercises.
Collapse
Affiliation(s)
- Paul Comfort
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - G Gregory Haff
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - Timothy J Suchomel
- University of Salford, Greater Manchester, United Kingdom
- Carroll University, Waukesha, Wisconsin
| | | | | | | | - Erin E Haff
- University of Salford, Greater Manchester, United Kingdom
- Australian Weightlifting Federation, Chandler, Australia
| | | | - Shyam Chavda
- London Sports Institute, Middlesex University, London, United Kingdom
- British Weightlifting, Leeds, United Kingdom
| | | | | | | |
Collapse
|
25
|
Bulbrook BD, Chopp-Hurley JN, Wiebenga EG, Pritchard JM, Gatti AA, Keir PJ, Maly MR. Muscle Architecture and Subcutaneous Fat Measurements of Rectus Femoris and Vastus Lateralis at Optimal Length Aided by a Novel Ultrasound Transducer Attachment. Physiother Can 2023; 75:74-82. [PMID: 37250739 PMCID: PMC10211386 DOI: 10.3138/ptc-2021-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/13/2021] [Accepted: 07/22/2021] [Indexed: 01/11/2024]
Abstract
Purpose: This cross-sectional study determines the sensitivity of muscle architecture and fat measurements of the rectus femoris (RF) and vastus lateralis (VL) muscles from ultrasound images acquired with varying transducer tilt, using a novel transducer attachment, in healthy adults. Secondary objectives were to estimate intrarater and interrater reliability of image measurement and acquisition, respectively. Methods: Thirty healthy adults participated (15 women and 15 men; 25 [SD 2.5] y). Ultrasound image acquisition was conducted by two raters at different transducer tilts relative to the skin: estimated perpendicular, and five measured angles (80°, 85°, 90°, 95°, 100°) using the transducer attachment. Muscle thickness (MT), subcutaneous fat thickness (FT), pennation angle (PA), and fascicle length (FL) were measured. Sensitivity and reliability were assessed using intra-class correlation coefficients (ICCs) and standard error of measurements (SEMs). Results: MT and FT for RF and VL were not sensitive to transducer tilt. However, PA and FL were sensitive to transducer tilt. MT and FT for both muscles showed high ICCs and low SEMs for intrarater and interrater reliability. For PA of both muscles, standardizing transducer tilt improved interrater ICCs and lowered SEMs. Conclusion: MT and FT measurements of RF and VL acquired at 60° knee flexion are robust to varying transducer tilt angles. PA measurements benefit from standardizing transducer tilt.
Collapse
Affiliation(s)
| | - Jaclyn N. Chopp-Hurley
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Emily G. Wiebenga
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Janet M. Pritchard
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- School of Interdisciplinary Science, McMaster University, Hamilton, Ontario, Canada
| | - Anthony A. Gatti
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | - Peter J. Keir
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Monica R. Maly
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
- School of Interdisciplinary Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Werkhausen A, Gløersen Ø, Nordez A, Paulsen G, Bojsen-Møller J, Seynnes OR. Linking muscle architecture and function in vivo: conceptual or methodological limitations? PeerJ 2023; 11:e15194. [PMID: 37077309 PMCID: PMC10108853 DOI: 10.7717/peerj.15194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/15/2023] [Indexed: 04/21/2023] Open
Abstract
Background Despite the clear theoretical link between sarcomere arrangement and force production, the relationship between muscle architecture and function remain ambiguous in vivo. Methods We used two frequently used ultrasound-based approaches to assess the relationships between vastus lateralis architecture parameters obtained in three common conditions of muscle lengths and contractile states, and the mechanical output of the muscle in twenty-one healthy subjects. The relationship between outcomes obtained in different conditions were also examined. Muscle architecture was analysed in panoramic ultrasound scans at rest with the knee fully extended and in regular scans at an angle close to maximum force (60°), at rest and under maximum contraction. Isokinetic and isometric strength tests were used to estimate muscle force production at various fascicle velocities. Results Measurements of fascicle length, pennation angle and thickness obtained under different experimental conditions correlated moderately with each other (r = 0.40-.74). Fascicle length measured at 60° at rest correlated with force during high-velocity knee extension (r = 0.46 at 400° s-1) and joint work during isokinetic knee extension (r = 0.44 at 200° s-1 and r = 0.57 at 100° s-1). Muscle thickness was related to maximum force for all measurement methods (r = 0.44-0.73). However, we found no significant correlations between fascicle length or pennation angle and any measures of muscle force or work. Most correlations between architecture and force were stronger when architecture was measured at rest close to optimal length. Conclusion These findings reflect methodological limitations of current approaches to measure fascicle length and pennation angle in vivo. They also highlight the limited value of static architecture measurements when reported in isolation or without direct experimental context.
Collapse
Affiliation(s)
- Amelie Werkhausen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Øyvind Gløersen
- Smart Sensors and Microsystems, SINTEF Digital, Oslo, Norway
| | - Antoine Nordez
- Movement - Interactions - Performance, MIP, Nantes Université, Nantes, France
- Institut Universitaire de France, IUF, France
| | - Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jens Bojsen-Møller
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Olivier R. Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
27
|
Umehara J, Fukuda N, Konda S, Hirashima M. Validity of Freehand 3-D Ultrasound System in Measurement of the 3-D Surface Shape of Shoulder Muscles. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1966-1976. [PMID: 35831210 DOI: 10.1016/j.ultrasmedbio.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Freehand 3-D ultrasound (3DUS) system is a promising technique for accurately assessing muscle morphology. However, its accuracy has been validated mainly in terms of volume by examining lower limb muscles. This study was aimed at validating 3DUS in the measurements of 3-D surface shape and volume by comparing them with magnetic resonance imaging (MRI) measurements while ensuring the reproducibility of participant posture by focusing on the shoulder muscles. The supraspinatus, infraspinatus and posterior deltoid muscles of 10 healthy men were scanned using 3DUS and MRI while secured by an immobilization support customized for each participant. A 3-D surface model of each muscle was created from the 3DUS and MRI methods, and the agreement between them was assessed. For the muscle volume, the mean difference between the two models was within -0.51 cm3. For the 3-D surface shape, the distances between the closest points of the two models and the Dice similarity coefficient were calculated. The results indicated that the median surface distance was less than 1.12 mm and the Dice similarity coefficient was larger than 0.85. These results suggest that, given the aforementioned error is permitted, 3DUS can be used as an alternative to MRI in measuring volume and surface shape, even for the shoulder muscles.
Collapse
Affiliation(s)
- Jun Umehara
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan; Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan; Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Norio Fukuda
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Shoji Konda
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan; Department of Health and Sport Sciences, Graduate School of Medicine, Osaka University, Toyonaka, Osaka, Japan
| | - Masaya Hirashima
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
28
|
Architectural Ultrasound Pennation Angle Measurement of Lumbar Multifidus Muscles: A Reliability Study. J Clin Med 2022; 11:jcm11175174. [PMID: 36079105 PMCID: PMC9457246 DOI: 10.3390/jcm11175174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The pennation angle has been shown to be a relevant parameter of muscle architecture. This parameter has not previously been measured in the lumbar multifidus musculature, and it is for this reason that it has been considered of great interest to establish an assessment protocol to generate new lines of research in the future. Objective: The objective of this study was to establish a protocol for measuring the pennation angle of the multifidus muscles, with a study of intra-rater and interrater reliability values. Design: This was a reliability study following the recommendations of the Guidelines for Reporting Reliability and Agreement Studies (GRRAS). Setting: The study was carried out at University of Alcalá, Department of Physiotherapy. Subjects: Twenty-seven subjects aged between 18 and 55 years were recruited for this study. Methods: Different ultrasound images of the lumbar multifidus musculature were captured. Subsequently, with the help of ImageJ software, the pennation angle of this musculature was measured. Finally, a complex statistical analysis determined the intra- and interrater reliability. Results: The intra-rater reliability of the pennation angle measurement protocol was excellent for observer 1 in the measurement of the left-sided superficial multifidus 0.851 (0.74, 0.923), and for observer 2 in the measurement of the right-sided superficial 0.711 (0.535, 0.843) and deep multifidus 0.886 (0.798, 0.942). Interrater reliability was moderate to poor, and correlation analysis results were high for thickness vs. pennation angle. Conclusions: The designed protocol for ultrasound measurement of the pennation angle of the lumbar multifidus musculature has excellent intra-rater reliability values, supporting the main conclusions and interpretations. Normative ranges of pennation angles are reported. High correlation between variables is described.
Collapse
|
29
|
Warneke K, Brinkmann A, Hillebrecht M, Schiemann S. Influence of Long-Lasting Static Stretching on Maximal Strength, Muscle Thickness and Flexibility. Front Physiol 2022; 13:878955. [PMID: 35694390 PMCID: PMC9174468 DOI: 10.3389/fphys.2022.878955] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background: In animal studies long-term stretching interventions up to several hours per day have shown large increases in muscle mass as well as maximal strength. The aim of this study was to investigate the effects of a long-term stretching on maximal strength, muscle cross sectional area (MCSA) and range of motion (ROM) in humans. Methods: 52 subjects were divided into an Intervention group (IG, n = 27) and a control group (CG, n = 25). IG stretched the plantar flexors for one hour per day for six weeks using an orthosis. Stretching was performed on one leg only to investigate the contralateral force transfer. Maximal isometric strength (MIS) and 1RM were both measured in extended knee joint. Furthermore, we investigated the MCSA of IG in the lateral head of the gastrocnemius (LG) using sonography. Additionally, ROM in the upper ankle was investigated via the functional “knee to wall stretch” test (KtW) and a goniometer device on the orthosis. A two-way ANOVA was performed in data analysis, using the Scheffé Test as post-hoc test. Results: There were high time-effects (p = 0.003, ƞ² = 0.090) and high interaction-effect (p < 0.001, ƞ²=0.387) for MIS and also high time-effects (p < 0.001, ƞ²=0.193) and interaction-effects (p < 0.001, ƞ²=0,362) for 1RM testing. Furthermore, we measured a significant increase of 15.2% in MCSA of LG with high time-effect (p < 0.001, ƞ²=0.545) and high interaction-effect (p=0.015, ƞ²=0.406). In ROM we found in both tests significant increases up to 27.3% with moderate time-effect (p < 0.001, ƞ²=0.129) and high interaction-effect (p < 0.001, ƞ²=0.199). Additionally, we measured significant contralateral force transfers in maximal strength tests of 11.4% (p < 0.001) in 1RM test and 1.4% (p=0.462) in MIS test. Overall, there we no significant effects in control situations for any parameter (CG and non-intervened leg of IG). Discussion: We hypothesize stretching-induced muscle damage comparable to effects of mechanical load of strength training, that led to hypertrophy and thus to an increase in maximal strength. Increases in ROM could be attributed to longitudinal hypertrophy effects, e.g., increase in serial sarcomeres. Measured cross-education effects could be explained by central neural adaptations due to stimulation of the stretched muscles.
Collapse
Affiliation(s)
- Konstantin Warneke
- Department for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany
- *Correspondence: Konstantin Warneke,
| | - Anna Brinkmann
- Assistive Systems and Medical Device Technology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- University Sports Center, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Martin Hillebrecht
- Assistive Systems and Medical Device Technology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- University Sports Center, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Stephan Schiemann
- Department for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany
| |
Collapse
|
30
|
Hinks A, Franchi MV, Power GA. The influence of longitudinal muscle fascicle growth on mechanical function. J Appl Physiol (1985) 2022; 133:87-103. [DOI: 10.1152/japplphysiol.00114.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle has the remarkable ability to remodel and adapt, such as the increase in serial sarcomere number (SSN) or fascicle length (FL) observed after overstretching a muscle. This type of remodelling is termed longitudinal muscle fascicle growth, and its impact on biomechanical function has been of interest since the 1960s due to its clinical applications in muscle strain injury, muscle spasticity, and sarcopenia. Despite simplified hypotheses on how longitudinal muscle fascicle growth might influence mechanical function, existing literature presents conflicting results partly due to a breadth of methodologies. The purpose of this review is to outline what is currently known about the influence of longitudinal muscle fascicle growth on mechanical function and suggest future directions to address current knowledge gaps and methodological limitations. Various interventions indicate longitudinal muscle fascicle growth can increase the optimal muscle length for active force, but whether the whole force-length relationship widens has been less investigated. Future research should also explore the ability for longitudinal fascicle growth to broaden the torque-angle relationship's plateau region, and the relation to increased force during shortening. Without a concurrent increase in intramuscular collagen, longitudinal muscle fascicle growth also reduces passive tension at long muscle lengths; further research is required to understand whether this translates to increased joint range of motion. Lastly, some evidence suggests longitudinal fascicle growth can increase maximum shortening velocity and peak isotonic power, however, there has yet to be direct assessment of these measures in a neurologically intact model of longitudinal muscle fascicle growth.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Martino V. Franchi
- Department of Biomedical Sciences,, University of Padua, Padova, Veneto, Italy
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
31
|
Ramírez-delaCruz M, Bravo-Sánchez A, Esteban-García P, Jiménez F, Abián-Vicén J. Effects of Plyometric Training on Lower Body Muscle Architecture, Tendon Structure, Stiffness and Physical Performance: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:40. [PMID: 35312884 PMCID: PMC8938535 DOI: 10.1186/s40798-022-00431-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/27/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Plyometric training (PT) has been widely studied in sport science. However, there is no review that determines the impact of PT on the structural variables and mechanical properties of the lower limbs and physical performance. OBJECTIVE The aim of this systematic review and meta-analysis was to determine the effects of PT on lower body muscle architecture, tendon structure, stiffness and physical performance. METHODS Five electronic databases were analysed. The inclusion criteria were: (1) Availability in English; (2) Experimental studies that included a PT of at least eight sessions; and (3) Healthy adults subjects. Four meta-analyses were performed using Review Manager software: (1) muscle architecture; (2) tendon structure; (3) muscle and tendon stiffness; (4) physical performance. RESULTS From 1008 search records, 32 studies were eligible for meta-analysis. Muscle architecture meta-analysis found a moderate effect of PT on muscle thickness (Standard Mean Difference (SMD): 0.59; [95% Confidence Interval (CI) 0.47, 0.71]) and fascicle length (SMD: 0.51; [95% CI 0.26, 0.76]), and a small effect of PT on pennation angle (SMD: 0.29; [95% CI 0.02, 0.57]). The meta-analysis found a moderate effect of PT on tendon stiffness (SMD: 0.55; [95% CI 0.28, 0.82]). The lower body physical performance meta-analysis found a moderate effect of PT on jumping (SMD: 0.61; [95% CI 0.47, 0.74]) and strength (SMD: 0.57; [95% CI 0.42, 0.73]). CONCLUSION PT increased the thickness, pennation angle and fascicle length of the evaluated muscles. In addition, plyometrics is an effective tool for increasing tendon stiffness and improving jump and strength performance of the lower body.
Collapse
Affiliation(s)
- María Ramírez-delaCruz
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, Avda. Carlos III S/N, 45071, Toledo, Spain
| | - Alfredo Bravo-Sánchez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, Avda. Carlos III S/N, 45071, Toledo, Spain
| | - Paula Esteban-García
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, Avda. Carlos III S/N, 45071, Toledo, Spain
| | - Fernando Jiménez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, Avda. Carlos III S/N, 45071, Toledo, Spain
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, Avda. Carlos III S/N, 45071, Toledo, Spain.
| |
Collapse
|
32
|
REJC E, FLOREANI M, VACCARI F, GIOVANELLI N, BOTTER A, GANZINI A, LAZZER S. Effects of underweight-plyometric training on the neuromuscular characteristics in professional rugby players. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2022. [DOI: 10.23736/s0393-3660.20.04546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Santos LV, Pereira ET, Reguera-García MM, Oliveira CEPD, Moreira OC. Resistance Training and Muscle Strength in people with Spinal cord injury: A systematic review and meta-analysis. J Bodyw Mov Ther 2022; 29:154-160. [DOI: 10.1016/j.jbmt.2021.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/27/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022]
|
34
|
May S, Locke S, Kingsley M. Gastrocnemius Muscle Architecture in Elite Basketballers and Cyclists: A Cross-Sectional Cohort Study. Front Sports Act Living 2021; 3:768846. [PMID: 34950871 PMCID: PMC8688802 DOI: 10.3389/fspor.2021.768846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022] Open
Abstract
Eccentric and concentric actions produce distinct mechanical stimuli and result in different adaptations in skeletal muscle architecture. Cycling predominantly involves concentric activity of the gastrocnemius muscles, while playing basketball requires both concentric and eccentric actions to support running, jumping, and landing. The aim of this study was to examine differences in the architecture of gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) between elite basketballers and cyclists. A trained sonographer obtained three B-mode ultrasound images from GM and GL muscles in 44 athletes (25 basketballers and 19 cyclists; 24 ± 5 years of age). The images were digitized and average fascicle length (FL), pennation angle (θ), and muscle thickness were calculated from three images per muscle. The ratio of FL to tibial length (FL/TL) and muscle thickness to tibial length (MT/TL) was also calculated to account for the potential scaling effect of stature. In males, no significant differences were identified between the athletic groups in all parameters in the GM, but a significant difference existed in muscle thickness in the GL. In basketballers, GL was 2.5 mm thicker (95% CI: 0.7-4.3 mm, p = 0.011) on the left side and 2.6 mm thicker (95% CI: 0.6-5.7 mm, p = 0.012) on the right side; however, these differences were not significant when stature was accounted for (MT/TL). In females, significant differences existed in the GM for all parameters including FL/TL and MT/TL. Female cyclists had longer FL in both limbs (MD: 11.2 and 11.3 mm), narrower θ (MD: 2.1 and 1.8°), and thicker muscles (MD: 2.1 and 2.5 mm). For the GL, female cyclists had significantly longer FL (MD: 5.2 and 5.8 mm) and narrower θ (MD: 1.7 and 2.3°) in both limbs; no differences were observed in absolute muscle thickness or MT/TL ratio. Differences in gastrocnemius muscle architecture were observed between female cyclists and basketballers, but not between males. These findings suggest that participation in sport-specific training might influence gastrocnemius muscle architecture in elite female athletes; however, it remains unclear as to whether gastrocnemius architecture is systematically influenced by the different modes of muscle activation between these respective sports.
Collapse
Affiliation(s)
- Samantha May
- La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Simon Locke
- La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Michael Kingsley
- Holsworth Research Initiative, La Trobe University, Bendigo, VIC, Australia.,Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Rodriguez-Lopez C, Alcazar J, Sanchez-Martin C, Baltasar-Fernandez I, Ara I, Csapo R, Alegre LM. Neuromuscular adaptations after 12 weeks of light- vs. heavy-load power-oriented resistance training in older adults. Scand J Med Sci Sports 2021; 32:324-337. [PMID: 34618979 DOI: 10.1111/sms.14073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
This study aimed to determine the specific adaptations provoked by power-oriented resistance training using light (LL-PT, 40% 1-RM) vs. heavy (HL-PT, 80% 1-RM) loads in older adults. Using a randomized within-subject study design, 45 older adults (>65 years) completed an 8-week control period (CTR) followed by 12 weeks of unilateral LL-PT vs. HL-PT on a leg press. The 1-RM, theoretical force at zero velocity (F0 ), maximal unloaded velocity (V0 ), and maximal muscle power (Pmax ) were determined through a force-velocity relationship test. Isometrically, the rate of force development (RFD) and the corresponding muscle excitation of the knee extensor muscles were assessed. In addition, muscle cross-sectional area (CSA) and architecture of two quadriceps muscles were determined. Changes after CTR, LL-PT and HL-PT were compared using linear mixed models. HL-PT provoked greater improvements in 1-RM and F0 (effect size (ES) = 0.55-0.68; p < 0.001) than those observed after LL-PT (ES = 0.27-0.47; p ≤ 0.001) (post hoc treatment effect, p ≤ 0.057). By contrast, ES of changes in V0 was greater in LL-PT compared to HL-PT (ES = 0.71, p < 0.001 vs. ES = 0.39, p < 0.001), but this difference was not statistically significant. Both power training interventions elicited a moderate increase in Pmax (ES = 0.65-0.69, p < 0.001). Only LL-PT improved early RFD (ie, ≤100 ms) and muscle excitation (ES = 0.36-0.60, p < 0.05). Increased CSA were noted after both power training programs (ES = 0.13-0.35, p < 0.035), whereas pennation angle increased only after HL-PT (ES = 0.37, p = 0.004). In conclusion, HL-PT seems to be more effective in improving the capability to generate large forces, whereas LL-PT appears to trigger greater gains in movement velocity in older adults. However, both interventions promoted similar increases in muscle power as well as muscle hypertrophy.
Collapse
Affiliation(s)
- Carlos Rodriguez-Lopez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Julian Alcazar
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Coral Sanchez-Martin
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Ivan Baltasar-Fernandez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Robert Csapo
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Luis M Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
36
|
Jansen D, Jonkman AH, Vries HJD, Wennen M, Elshof J, Hoofs MA, van den Berg M, Man AMED, Keijzer C, Scheffer GJ, van der Hoeven JG, Girbes A, Tuinman PR, Marcus JT, Ottenheijm CAC, Heunks L. Positive end-expiratory pressure affects geometry and function of the human diaphragm. J Appl Physiol (1985) 2021; 131:1328-1339. [PMID: 34473571 DOI: 10.1152/japplphysiol.00184.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Positive end-expiratory pressure (PEEP) is routinely applied in mechanically ventilated patients to improve gas exchange and respiratory mechanics by increasing end-expiratory lung volume (EELV). In a recent experimental study in rats, we demonstrated that prolonged application of PEEP causes diaphragm remodeling, especially longitudinal muscle fiber atrophy. This is of potential clinical importance, as the acute withdrawal of PEEP during ventilator weaning decreases EELV and thereby stretches the adapted, longitudinally atrophied diaphragm fibers to excessive sarcomere lengths, having a detrimental effect on force generation. Whether this series of events occurs in the human diaphragm is unknown. In the current study, we investigated if short-term application of PEEP affects diaphragm geometry and function, which are prerequisites for the development of longitudinal atrophy with prolonged PEEP application. Nineteen healthy volunteers were noninvasively ventilated with PEEP levels of 2, 5, 10, and 15 cmH2O. Magnetic resonance imaging was performed to investigate PEEP-induced changes in diaphragm geometry. Subjects were instrumented with nasogastric catheters to measure diaphragm neuromechanical efficiency (i.e., diaphragm pressure normalized to its electrical activity) during tidal breathing with different PEEP levels. We found that increasing PEEP from 2 to 15 cmH2O resulted in a caudal diaphragm displacement (19 [14-26] mm, P < 0.001), muscle shortening in the zones of apposition (20.6% anterior and 32.7% posterior, P < 0.001), increase in diaphragm thickness (36.4% [0.9%-44.1%], P < 0.001) and reduction in neuromechanical efficiency (48% [37.6%-56.6%], P < 0.001). These findings demonstrate that conditions required to develop longitudinal atrophy in the human diaphragm are present with the application of PEEP.NEW & NOTEWORTHY We demonstrate that PEEP causes changes in diaphragm geometry, especially muscle shortening, and decreases in vivo diaphragm contractile function. Thus, prerequisites for the development of diaphragm longitudinal muscle atrophy are present with the acute application of PEEP. Once confirmed in ventilated critically ill patients, this could provide a new mechanism for ventilator-induced diaphragm dysfunction and ventilator weaning failure in the intensive care unit (ICU).
Collapse
Affiliation(s)
- Diana Jansen
- Department of Anesthesiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemijn H Jonkman
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Heder J de Vries
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Myrte Wennen
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Judith Elshof
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Maud A Hoofs
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Marloes van den Berg
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Angélique M E de Man
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christiaan Keijzer
- Department of Anesthesiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gert-Jan Scheffer
- Department of Anesthesiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Armand Girbes
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Pieter Roel Tuinman
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - J Tim Marcus
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Coen A C Ottenheijm
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Leo Heunks
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Quantitative Ultrasound Changes in Echotexture and Functional Parameters after a Multicomponent Training Program in Pre-Frailty Individuals: A Pilot Randomized Clinical Trial. Healthcare (Basel) 2021; 9:healthcare9101279. [PMID: 34682959 PMCID: PMC8535283 DOI: 10.3390/healthcare9101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: Currently, ultrasound imaging (USI) is considered a feasible tool in the evaluation of structural and textural muscle differences due to aging. The main aim of this study was to evaluate sonographic changes in muscular structure and function after a 12-week multicomponent training program in pre-frailty individuals. Design: A prospective, randomized, clinical trial was carried out. Participants: Thirty-two pre-frailty subjects were recruited and randomly divided into a multicomponent training program group (n = 16; Multicomponent group) and a conventional care group (n = 14; Control group) with a 12-week follow up. Main outcome measures: Rectus femoris thickness, cross-sectional area (CSA), echointensity, echovariation and vastus lateralis pennation angle tests were carried out to assess the structure and echotexture, and the force-velocity (F-V) profile for muscle power and muscle strength was employed to assess the functional parameters. Results: Statistically significant differences (p < 0.05) were shown for the left rectus femoris echointensity and in the functional parameter of muscle power after a 12-week program for the multicomponent training group compared to the conventional care group. Conclusions: Pre-frailty elderly subjects showed a decrease in rectus femoris echointensity (RF-EI) and an increase in the functional parameter of muscle power after a 12-week multicomponent training program compared to the control group.
Collapse
|
38
|
Kao SY, Nikonova E, Chaabane S, Sabani A, Martitz A, Wittner A, Heemken J, Straub T, Spletter ML. A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle. Cells 2021; 10:2505. [PMID: 34685485 PMCID: PMC8534295 DOI: 10.3390/cells10102505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/30/2022] Open
Abstract
The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently, only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here, we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a powerful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered.
Collapse
Affiliation(s)
- Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Sabrina Chaabane
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Albiona Sabani
- Department of Biology, University of Wisconsin at Madison, 1117 W. Johnson St., Madison, WI 53706, USA;
| | - Alexandra Martitz
- Molecular Nutrition Medicine, Else Kröner-Fresenius Center, Technical University of Munich, 85354 Freising, Germany;
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Jakob Heemken
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Facility, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany;
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| |
Collapse
|
39
|
Zellers JA, Commean PK, Chen L, Mueller MJ, Hastings MK. A limited number of slices yields comparable results to all slices in foot intrinsic muscle deterioration ratio on computed tomography and magnetic resonance imaging. J Biomech 2021; 129:110750. [PMID: 34555631 DOI: 10.1016/j.jbiomech.2021.110750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 01/20/2023]
Abstract
Diagnostic imaging modalities, like computed tomography (CT) and magnetic resonance imaging (MRI), can be used to assess in vivo muscle quality. Quantitative assessment using these techniques is time-intensive and costly due in part to extensive post-processing needs. The purpose of this study was to identify whether a subset of slices on CT and MRI would yield comparable results to the full number of slices for a measure of muscle quality (muscle deterioration ratio = fat volume/muscle volume) in the foot intrinsic muscles of people with diabetes and peripheral neuropathy. CT (0.6 mm slice thickness) and MRI (3.5 mm slice thickness) scans were obtained using previously described methods. The total number of slices acquired during the scan was compared to several conditions using a portion of slices. Bland-Altman plots and Lin's concordance correlation coefficient were used to test agreement. Any condition using at least three slices yielded substantial to almost perfect agreement with the total number of slices on both CT and MRI (Range of Lin's concordance correlation coefficient: 0.947-0.999). Using a single slice in the middle of the region of interest demonstrated poor to moderate agreement with the total number of slices. The findings of this study suggest that using a limited number of slices to quantify muscle deterioration ratio on CT or MRI is a viable way to balance the combined need for measurement accuracy with feasibility in research and clinical settings.
Collapse
Affiliation(s)
- Jennifer A Zellers
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, United States
| | - Paul K Commean
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, United States
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine in St. Louis, United States
| | - Michael J Mueller
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, United States
| | - Mary K Hastings
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, United States.
| |
Collapse
|
40
|
Quinlan JI, Franchi MV, Gharahdaghi N, Badiali F, Francis S, Hale A, Phillips BE, Szewczyk N, Greenhaff PL, Smith K, Maganaris C, Atherton PJ, Narici MV. Muscle and tendon adaptations to moderate load eccentric vs. concentric resistance exercise in young and older males. GeroScience 2021; 43:1567-1584. [PMID: 34196903 PMCID: PMC8492846 DOI: 10.1007/s11357-021-00396-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Resistance exercise training (RET) is well-known to counteract negative age-related changes in both muscle and tendon tissue. Traditional RET consists of both concentric (CON) and eccentric (ECC) contractions; nevertheless, isolated ECC contractions are metabolically less demanding and, thus, may be more suitable for older populations. However, whether submaximal (60% 1RM) CON or ECC contractions differ in their effectiveness is relatively unknown. Further, whether the time course of muscle and tendon adaptations differs to the above is also unknown. Therefore, this study aimed to establish the time course of muscle and tendon adaptations to submaximal CON and ECC RET. Twenty healthy young (24.5 ± 5.1 years) and 17 older males (68.1 ± 2.4 years) were randomly allocated to either isolated CON or ECC RET which took place 3/week for 8 weeks. Tendon biomechanical properties, muscle architecture and maximal voluntary contraction were assessed every 2 weeks and quadriceps muscle volume every 4 weeks. Positive changes in tendon Young's modulus were observed after 4 weeks in all groups after which adaptations in young males plateaued but continued to increase in older males, suggesting a dampened rate of adaptation with age. However, both CON and ECC resulted in similar overall changes in tendon Young's modulus, in all groups. Muscle hypertrophy and strength increases were similar between CON and ECC in all groups. However, pennation angle increases were greater in CON, and fascicle length changes were greater in ECC. Notably, muscle and tendon adaptations appeared to occur in synergy, presumably to maintain the efficacy of the muscle-tendon unit.
Collapse
Affiliation(s)
- Jonathan Iain Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,National Institute for Health Research, Birmingham Biomedical Research Centre At University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Martino Vladimiro Franchi
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nima Gharahdaghi
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Francesca Badiali
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Susan Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Andrew Hale
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Bethan Eileen Phillips
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Nathaniel Szewczyk
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK.,Ohio Musculoskeletal and Neurological Institute (OMNI) and Department of Biomedical Sciences, Ohio University, Athens, OH, 43147, USA
| | - Paul Leonard Greenhaff
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Kenneth Smith
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | | | - Phillip James Atherton
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Marco Vincenzo Narici
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK. .,Department of Biomedical Sciences, University of Padova, Padova, Italy. .,CIR-MYO Myology Center, University of Padova, Padova, Italy.
| |
Collapse
|
41
|
Liegnell R, Wessman F, Shalabi A, Harringe M. Validity of ultrasonography-derived predictions for estimating skeletal muscle volume: a systematic literature review. BMC Med Imaging 2021; 21:106. [PMID: 34229618 PMCID: PMC8258927 DOI: 10.1186/s12880-021-00638-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/29/2021] [Indexed: 11/11/2022] Open
Abstract
Background The amount of muscle volume (MV) varies between individuals and is important for health, well-being and performance. Therefore, the monitoring of MV using different imaging modalities is important. Magnetic resonance imaging (MRI) is considered the gold standard, but is not always easily accessible, and the examinations are expensive. Ultrasonography (US) is a much less expensive imaging method widely used to measure changes in muscle thickness (MT). Whether MT may translate into MV needs further investigation. Purpose The aim of this review is to clarify whether US-derived equations based on MT predict MV based on MRI. Methods A systematic literature review was conducted according to the PRISMA statement, searching the electronic databases PubMed, CINAHL and Web of Science, for currently published equations to estimate MV with US. Results The literature search resulted in 363 citations. Twelve articles met the eligibility criteria. Ten articles scored eight out of eleven on QUADAS and two scored nine. Thirty-six prediction equations were identified. R values ranged between 0.53 and 0.961 and the standard error of the estimate (SEE) ranged between 6 and 12% for healthy adult populations, and up to 25.6% for children with cerebral palsy. Eight studies evaluated the results with a Bland–Altman plot and found no systematic errors. The overall strength and quality of the evidence was rated “low quality” as defined by the GRADE system. Conclusions The validity of US-derived equations based on MT is specific to the populations from which it is developed. The agreement with MV based on MRI is moderate with the SEE ranging between 6 and 12% in healthy adult populations. Suggestions for future research include investigations as to whether testing positions or increasing the number of measuring sites could improve the validity for prediction equations.
Collapse
Affiliation(s)
- Rasmus Liegnell
- Stockholm Sports Trauma Research Centre, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.
| | - Fredrik Wessman
- Stockholm Sports Trauma Research Centre, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Adel Shalabi
- Centre for Medical Imaging, University Hospital, Uppsala University, Uppsala, Sweden
| | - Marita Harringe
- Stockholm Sports Trauma Research Centre, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
42
|
Sarto F, Spörri J, Fitze DP, Quinlan JI, Narici MV, Franchi MV. Implementing Ultrasound Imaging for the Assessment of Muscle and Tendon Properties in Elite Sports: Practical Aspects, Methodological Considerations and Future Directions. Sports Med 2021; 51:1151-1170. [PMID: 33683628 PMCID: PMC8124062 DOI: 10.1007/s40279-021-01436-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
Ultrasound (US) imaging has been widely used in both research and clinical settings to evaluate the morphological and mechanical properties of muscle and tendon. In elite sports scenarios, a regular assessment of such properties has great potential, namely for testing the response to training, detecting athletes at higher risks of injury, screening athletes for structural abnormalities related to current or future musculoskeletal complaints, and monitoring their return to sport after a musculoskeletal injury. However, several practical and methodological aspects of US techniques should be considered when applying this technology in the elite sports context. Therefore, this narrative review aims to (1) present the principal US measures and field of applications in the context of elite sports; (2) to discuss, from a methodological perspective, the strengths and shortcomings of US imaging for the assessment of muscle and tendon properties; and (3) to provide future directions for research and application.
Collapse
Affiliation(s)
- Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jörg Spörri
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Orthopaedics, University Centre for Prevention and Sports Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Daniel P Fitze
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jonathan I Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Centre, University of Padova, Padova, Italy
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
43
|
Power GA, Crooks S, Fletcher JR, Macintosh BR, Herzog W. Age-related reductions in the number of serial sarcomeres contribute to shorter fascicle lengths but not elevated passive tension. J Exp Biol 2021; 224:268352. [PMID: 34028517 DOI: 10.1242/jeb.242172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
We investigated age-related changes to fascicle length, sarcomere length and serial sarcomere number (SSN), and how this affects passive force. Following mechanical testing to determine passive force, the medial gastrocnemius muscle of young (n=9) and old (n=8) Fisher 344BN hybrid rats was chemically fixed at the optimal muscle length for force production; individual fascicles were dissected for length measurement, and laser diffraction was used to assess sarcomere length. Old rats had ∼14% shorter fascicle lengths than young rats, which was driven by a ∼10% reduction in SSN, with no difference in sarcomere length (∼4%). Passive force was greater in the old than in the young rats at long muscle lengths. Shorter fascicle lengths and reduced SSN in the old rats could not entirely explain increased passive forces for absolute length changes, owing to a slight reduction in sarcomere length in old rats, resulting in similar sarcomere length at long muscle lengths.
Collapse
Affiliation(s)
- Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, CanadaN1G 2W1.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CanadaT2N 1N4
| | - Sean Crooks
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CanadaT2N 1N4
| | - Jared R Fletcher
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CanadaT2N 1N4.,Department of Health and Physical Education, Mount Royal University, Calgary, AB, CanadaT3E 6K6
| | - Brian R Macintosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CanadaT2N 1N4
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CanadaT2N 1N4
| |
Collapse
|
44
|
Mpampoulis T, Methenitis S, Papadopoulos C, Papadimas G, Spiliopoulou P, Stasinaki AN, Bogdanis GC, Karampatsos G, Terzis G. Weak Association Between Vastus Lateralis Muscle Fiber Composition and Fascicle Length in Young Untrained Females. Sports (Basel) 2021; 9:56. [PMID: 33925196 PMCID: PMC8146508 DOI: 10.3390/sports9050056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
The aim of the study was to investigate the relationships between vastus lateralis muscle fiber length and fiber type composition in individuals with minimal exposure to systematic resistance/power training. In sixty female physical education students (age: 21.03 ± 2.1 years, body weight: 59.8 ± 9.7 kg, body height: 166.2 ± 6.5 cm), with no experience in systematic training, lean body mass, VL muscle architecture and fiber composition type, countermovement jumping (CMJ) performance, and isometric leg press rate of force development were evaluated. Data were analyzed for all participants, as well as two equally numbered groups assigned according to their maximum countermovement jumping power (High-Power or Low-Power group). Significant but low correlations were found between type II muscle fiber percentage and fascicle length (N = 60, p < 0.05). Significant correlations were found between type IIa and IIx muscle fiber percentage cross-sectional area (%CSA) and fascicle length (N = 60; r = 0.321, and r = 0.378; respectively, p < 0.05). These correlations were higher for the High-Power group (r = 0.499, and r = 0.522; respectively, p < 0.05), and lower, and nonsignificant, for the Low-Power group. The best predictor of strength/power performance was the lean body mass of the lower extremities (r = 0.389-0.645, p < 0.05). These results suggest that in females with minimal exposure to systematic training, fascicle length may be weakly linked with type II fiber areas, only in females with high-power profiles.
Collapse
Affiliation(s)
- Thomas Mpampoulis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| | - Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| | - Constantinos Papadopoulos
- A’ Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.P.); (G.P.)
| | - Giorgos Papadimas
- A’ Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.P.); (G.P.)
| | - Polyxeni Spiliopoulou
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| | - Angeliki-Nikoletta Stasinaki
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| | - Gregory C. Bogdanis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| | - Giorgos Karampatsos
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| |
Collapse
|
45
|
Pignanelli C, Christiansen D, Burr JF. Blood flow restriction training and the high-performance athlete: science to application. J Appl Physiol (1985) 2021; 130:1163-1170. [PMID: 33600282 DOI: 10.1152/japplphysiol.00982.2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The manipulation of blood flow in conjunction with skeletal muscle contraction has greatly informed the physiological understanding of muscle fatigue, blood pressure reflexes, and metabolism in humans. Recent interest in using intentional blood flow restriction (BFR) has focused on elucidating how exercise during periods of reduced blood flow affects typical training adaptations. A large initial appeal for BFR training was driven by studies demonstrating rapid increases in muscle size, strength, and endurance capacity, even when notably low intensities and resistances, which would typically be incapable of stimulating change in healthy populations, were used. The incorporation of BFR exercise into the training of strength- and endurance-trained athletes has recently been shown to provide additive training effects that augment skeletal muscle and cardiovascular adaptations. Recent observations suggest BFR exercise alters acute physiological stressors such as local muscle oxygen availability and vascular shear stress, which may lead to adaptations that are not easily attained with conventional training. This review explores these concepts and summarizes both the evidence base and knowledge gaps regarding the application of BFR training for athletes.
Collapse
Affiliation(s)
- Christopher Pignanelli
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Danny Christiansen
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jamie F Burr
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
46
|
Lorentzen J, Frisk RF, Nielsen JB, Barber L. Increased Ankle Plantar Flexor Stiffness Is Associated With Reduced Mechanical Response to Stretch in Adults With CP. Front Bioeng Biotechnol 2021; 9:604071. [PMID: 33842442 PMCID: PMC8026870 DOI: 10.3389/fbioe.2021.604071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Hyperexcitable stretch reflexes are often not present despite of other signs of spasticity in people with brain lesion. Here we looked for evidence that increased resistance to length change of the plantar flexor muscle-fascicles may contribute to a reduction in the stretch reflex response in adults with cerebral palsy (CP). A total of 17 neurologically intact (NI) adults (mean age 36.1; 12 female) and 13 ambulant adults with CP (7 unilateral; mean age 33.1; 5 female) participated in the study. Subjects were seated in a chair with the examined foot attached to a foot plate, which could be moved by a computer-controlled electromotor. An ultrasound probe was placed over the medial aspect of the leg to measure the length of medial gastrocnemius muscle fascicles. Slow (7 deg/s) and fast (200 deg/s) stretches with amplitude 6 deg of the plantar flexors were applied over an ankle range of 70 deg at 10 deg intervals between 60 and 130 deg plantarflexion. It was checked by EMG electrodes that the slow stretches were sufficiently slow not to elicit any activity and that the fast stretches were sufficiently quick to elicit a maximal stretch reflex in both groups. The torque elicited by the stretches was measured together with changes in the length of medial gastrocnemius muscle fascicles. Muscle fascicles increased significantly in length with increasing dorsiflexion position in both populations (p < 0.001), but the fascicles were shorter in the CP population at all positions. Slow stretches elicited significantly larger torque and significantly smaller length change of muscle fascicles as the ankle joint position was moved more towards dorsiflexion in CP than in NI (p < 0.001). Fast stretches elicited larger torque responses at ankle joint positions of 80–100 deg in the NI than in the CP group (p < 0.01). A significant negative correlation was observed between the torque response and muscle fascicle length change to slow stretch in CP (p < 0.05), but not in NI. These findings support that increased passive resistance of the ankle plantar flexor muscle-tendon unit and development of contractures may conceal stretch reflex response in adults with CP. We argue that this should be taken into account in the neurological examination of spasticity.
Collapse
Affiliation(s)
- Jakob Lorentzen
- Department for Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Foundation, Charlottenlund, Denmark
| | - Rasmus Feld Frisk
- Department for Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Foundation, Charlottenlund, Denmark
| | - Jens Bo Nielsen
- Department for Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Foundation, Charlottenlund, Denmark
| | - Lee Barber
- School of Applied Health Sciences, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
47
|
The effects of 12 weeks of static stretch training on the functional, mechanical, and architectural characteristics of the triceps surae muscle-tendon complex. Eur J Appl Physiol 2021; 121:1743-1758. [PMID: 33687531 PMCID: PMC8144166 DOI: 10.1007/s00421-021-04654-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE We investigated the effects of 12 weeks of passive static stretching training (PST) on force-generating capacity, passive stiffness, muscle architecture of plantarflexor muscles. METHODS Thirty healthy adults participated in the study. Fifteen participants (STR, 6 women, 9 men) underwent 12-week plantarflexor muscles PST [(5 × 45 s-on/15 s-off) × 2exercises] × 5times/week (duration: 2250 s/week), while 15 participants (CTRL, 6 women, 9 men) served as control (no PST). Range of motion (ROM), maximum passive resistive torque (PRTmax), triceps surae architecture [fascicle length, fascicle angle, and thickness], passive stiffness [muscle-tendon complex (MTC) and muscle stiffness], and plantarflexors maximun force-generating capacity variables (maximum voluntary contraction, maximum muscle activation, rate of torque development, electromechanical delay) were calculated Pre, at the 6th (Wk6), and the 12th week (Wk12) of the protocol in both groups. RESULTS Compared to Pre, STR ROM increased (P < 0.05) at Wk6 (8%) and Wk12 (23%). PRTmax increased at Wk12 (30%, P < 0.05), while MTC stiffness decreased (16%, P < 0.05). Muscle stiffness decreased (P < 0.05) at Wk6 (11%) and Wk12 (16%). No changes in triceps surae architecture and plantarflexors maximum force-generating capacity variables were found in STR (P > 0.05). Percentage changes in ROM correlated with percentage changes in PRTmax (ρ = 0.62, P = 0.01) and MTC stiffness (ρ = - 0.78, P = 0.001). In CTRL, no changes (P > 0.05) occurred in any variables at any time point. CONCLUSION The expected long-term PST-induced changes in ROM were associated with modifications in the whole passive mechanical properties of the ankle joint, while maximum force-generating capacity characteristics were preserved. 12 weeks of PST do not seem a sufficient stimulus to induce triceps surae architectural changes.
Collapse
|
48
|
Hirsch KR, Greenwalt CE, Saylor HE, Gould LM, Harrison CH, Brewer GJ, Blue MNM, Ferrando AA, Huffman KM, Mayer‐Davis EJ, Ryan ED, Smith‐Ryan AE. High-intensity interval training and essential amino acid supplementation: Effects on muscle characteristics and whole-body protein turnover. Physiol Rep 2021; 9:e14655. [PMID: 33369879 PMCID: PMC7769174 DOI: 10.14814/phy2.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to compare the independent and combined effects of high-intensity interval training (HIIT) and essential amino acids (EAA) on lean mass, muscle characteristics of the quadriceps, and 24-hr whole-body protein turnover (WBPT) in overweight and obese adults. An exploratory aim was to evaluate potential modulatory effects of sex. Sixty-six adults (50% female; Age: 36.7 ± 6.0 yrs; %BF: 36.0 ± 7.8%) were assigned to 8 wks of: (a) HIIT, 2 days/wk; (b) EAA supplementation, 3.6 g twice daily; (c) HIIT + EAA; or (d) control. At baseline, 4 wks, and 8 wks, total body, thigh LM and muscle characteristics were measured via dual-energy x-ray absorptiometry and B-mode ultrasound, respectively. In a subsample, changes in WBPT was measured using [N15 ]alanine. Differences between groups were assessed using linear mixed models adjusted for baseline values, followed by 95% confidence intervals on adjusted mean change scores (Δ). HIIT and HIIT + EAA improved thigh LM (Δ: +0.17 ± 0.05 kg [0.08, 0.27]; +0.22 ± 0.05 kg [0.12,0.31]) and vastus lateralis cross-sectional area (Δ: +2.73 ± 0.52 cm2 [1.69,3.77]; +2.64 ± 0.53 cm2 [1.58,3.70]), volume (Δ: +54.50 ± 11.69 cm3 [31.07, 77.92]; +62.39 ± 12.05 cm3 [38.26, 86.52]), and quality (Δ: -5.46 ± 2.68a.u. [-10.84, -0.09]; -7.97 ± 2.76a.u.[-13.49, -2.45]). Protein synthesis, breakdown, and flux were greater with HIIT + EAA and EAA compared to HIIT (p < .05). Sex differences were minimal. Compared to women, men tended to respond more to HIIT, with or without EAA. For women, responses were greater with HIIT + EAA than HIIT. In overweight and obese adults, 8 weeks of HIIT, with or without EAA, improved thigh LM size and quality; EAA may enhance muscular adaptation via increases in protein turnover, supporting greater improvements in muscular size and quality.
Collapse
Affiliation(s)
- Katie R. Hirsch
- Applied Physiology LaboratoryDepartment of Exercise and Sport ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Human Movement Science CurriculumDepartment of Allied Health ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Department of GeriatricsDonald W. Reynolds Institute on AgingCenter for Translational Research in Aging & LongevityUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Casey E. Greenwalt
- Applied Physiology LaboratoryDepartment of Exercise and Sport ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Hannah E. Saylor
- Applied Physiology LaboratoryDepartment of Exercise and Sport ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Human Movement Science CurriculumDepartment of Allied Health ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Lacey M. Gould
- Applied Physiology LaboratoryDepartment of Exercise and Sport ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Courtney H. Harrison
- Applied Physiology LaboratoryDepartment of Exercise and Sport ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Gabrielle J. Brewer
- Applied Physiology LaboratoryDepartment of Exercise and Sport ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Malia N. M. Blue
- Applied Physiology LaboratoryDepartment of Exercise and Sport ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Human Movement Science CurriculumDepartment of Allied Health ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Arny A. Ferrando
- Department of GeriatricsDonald W. Reynolds Institute on AgingCenter for Translational Research in Aging & LongevityUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Kim M. Huffman
- Duke Molecular Physiology InstituteDuke UniversityDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
| | - Elizabeth J. Mayer‐Davis
- Department of NutritionGillings School of Public HealthUniversity of North Carolina at Chapel Hill Chapel HillNCUSA
- Department of MedicineUniversity of North CarolinaChapel HillNCUSA
| | - Eric D. Ryan
- Human Movement Science CurriculumDepartment of Allied Health ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Neuromuscular Assessment LaboratoryDepartment of Exercise and Sport ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Abbie E. Smith‐Ryan
- Applied Physiology LaboratoryDepartment of Exercise and Sport ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Human Movement Science CurriculumDepartment of Allied Health ScienceUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Department of NutritionGillings School of Public HealthUniversity of North Carolina at Chapel Hill Chapel HillNCUSA
| |
Collapse
|
49
|
Wiedmer P, Jung T, Castro JP, Pomatto LC, Sun PY, Davies KJ, Grune T. Sarcopenia - Molecular mechanisms and open questions. Ageing Res Rev 2021; 65:101200. [PMID: 33130247 DOI: 10.1016/j.arr.2020.101200] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Sarcopenia represents a muscle-wasting syndrome characterized by progressive and generalized degenerative loss of skeletal muscle mass, quality, and strength occurring during normal aging. Sarcopenia patients are mainly suffering from the loss in muscle strength and are faced with mobility disorders reducing their quality of life and are, therefore, at higher risk for morbidity (falls, bone fracture, metabolic diseases) and mortality. Several molecular mechanisms have been described as causes for sarcopenia that refer to very different levels of muscle physiology. These mechanisms cover e. g. function of hormones (e. g. IGF-1 and Insulin), muscle fiber composition and neuromuscular drive, myo-satellite cell potential to differentiate and proliferate, inflammatory pathways as well as intracellular mechanisms in the processes of proteostasis and mitochondrial function. In this review, we describe sarcopenia as a muscle-wasting syndrome distinct from other atrophic diseases and summarize the current view on molecular causes of sarcopenia development as well as open questions provoking further research efforts for establishing efficient lifestyle and therapeutic interventions.
Collapse
|
50
|
Alkhateeb G, Donath L. Effects of football versus aerobic exercise training on muscle architecture in healthy men adults: a study protocol of a two-armed randomized controlled trial. Trials 2020; 21:1007. [PMID: 33298145 PMCID: PMC7724695 DOI: 10.1186/s13063-020-04797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sports and exercise training can attenuate age-related declines in physical function. As people age, they suffer a progressive deterioration of overall muscle structure and function, such as muscle diameter, strength, mass, and power. Therefore, supporting older adults-aged 50 years and above-to continue being physically active is a very important factor. Several forms of exercise (strength, agility, endurance, balance, and flexibility) are recommended. In this regard, football has been repeatedly shown to be an integrative approach to promote measures of strength, endurance, and agility. However, there has been no previous randomized controlled trial that comparatively investigates the effects of football training versus traditional aerobic exercise training on muscle architecture and patella tendon properties in healthy community dwellers. The study protocol is designed to examine whether football differentially affects muscle thickness, muscle length, fascicle length, pennation angle, patella tendon length, and thickness compared to a workload matched traditional aerobic exercise training regimen. METHODS The study sample consists of 60 untrained but healthy men (50-60 years old), who will be randomly assigned (strata: age, activate) to two groups: football group (n = 30) and aerobic group (n = 30). The intervention will take place within 12 consecutive weeks, two times a week for 60 min each session. The football group will perform recreational football training as a large-sided game, whereas the aerobic group undergoes a running exercise. Both groups have the same external workload ranging between moderate and high exercise intensity. The outcome measure will be collected before and after the intervention period. DISCUSSION Findings of this study will provide insight into the effects of 24 sessions of both football and aerobic training program on the selected groups of men adults, including detecting their effects on the thigh muscle architecture. TRIAL REGISTRATION DRKS-German Clinical Trials Register, DRKS00020536 . Registered on 30 January 2020.
Collapse
Affiliation(s)
- Guevar Alkhateeb
- Department of Intervention Research in Exercise Training, German Sport University Cologne, 50933, Köln, Germany.
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, 50933, Köln, Germany
| |
Collapse
|