1
|
Regulation of spermatogenic cell apoptosis by the pro-apoptotic proteins in the testicular tissues of mammalian and avian species. Anim Reprod Sci 2022; 247:107158. [DOI: 10.1016/j.anireprosci.2022.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
|
2
|
Beltrán-Frutos E, Seco-Rovira V, Martínez-Hernández J, Ferrer C, Serrano-Sánchez MI, Pastor LM. Cellular Modifications in Spermatogenesis during Seasonal Testicular Regression: An Update Review in Mammals. Animals (Basel) 2022; 12:ani12131605. [PMID: 35804504 PMCID: PMC9265002 DOI: 10.3390/ani12131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The most common form of reproduction in mammals is seasonal reproduction. This ensures that offspring are born at the most suitable time for survival, due to the abundance of food and the optimal temperatures for early postnatal development. In males, one way to achieve this is to decrease or lose fertility over a given period. This loss is associated with a greater or lesser degree of spermatogenesis modification that affects both germ and Sertoli cells. This paper reviews the different cellular mechanisms that have been postulated in recent years to explain how the activity of the seminiferous epithelium decreases during the non-reproductive period. Abstract Testicular regression occurs during the non-breeding season in many mammals. This affects spermatogenesis, resulting in decreased or arrested activity. Both lead to a decrease or cessation in sperm production. In recent years, the cellular mechanisms that lead to infertility in males in non-reproductive periods have been studied in very different species of mammals. At the start of the present century, the main mechanism involved was considered as an increase in the apoptotic activity of germ cells during the regression period. The loss of spermatogonia and spermatocytes causes not only a decrease in spermatogenesis, but an arrest of the seminiferous epithelium activity at the end of regression. Recently, in some mammal species, it was found that apoptosis is the usual mechanism involved in epithelium activity arrest, although it is firstly atrophied by massive desquamation of the germ cells that are released from their binding with the Sertoli cells, and which are shed into the lumen of the seminiferous tubule. In other species, it has been shown that not only germ cell apoptosis, but also Sertoli cell apoptosis, including decreased proliferative activity, spermatophagy or autophagy, are involved in testicular regression. Furthermore, the most recent studies indicate that there are multiple patterns of seminiferous epithelium regression in seasonally breeding animals, which may not only be used by different species, but also by the same ones to reproduce in the best conditions, ensuring their survival. In conclusion, at this time, it is not possible to consider the existence of a paradigmatic cellular mechanism in the involution of the seminiferous epithelium applicable to all male mammals with seasonal reproduction, rather the existence of several mechanisms which participate to a greater or lesser extent in each of the species that have been studied to date.
Collapse
|
3
|
Gumułka M, Hrabia A, Rozenboim I. Annual changes in cell proliferation and apoptosis and expression of connexin 43 in the testes of domestic seasonal breeding ganders. Theriogenology 2022; 186:27-39. [DOI: 10.1016/j.theriogenology.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/15/2022]
|
4
|
Zhang X, Li M, Huang M, Peng H, Song X, Chen L, Hu W, Xu W, Luo R, Han D, Shi Y, Cao Y, Li X, Hu C. Effect of RFRP-3, the mammalian ortholog of GnIH, on apoptosis and autophagy in porcine ovarian granulosa cells via the p38MAPK pathway. Theriogenology 2021; 180:137-145. [PMID: 34973645 DOI: 10.1016/j.theriogenology.2021.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022]
Abstract
RFamide-related peptide-3 (RFRP-3) has been proposed as a key inhibitory regulator of mammalian reproduction. Our previous studies demonstrated that RFRP-3 mediated apoptosis and autophagy of the epididymis in rats and inhibited porcine granulosa cell (GC) proliferation. However, the molecular mechanisms of the RFRP-3 effect on porcine GC apoptosis and autophagy have not been studied before. Herein, we first investigated the role of RFRP-3 in apoptosis and autophagy in cultured porcine GCs in vitro. Our results showed that different doses of RFRP-3 dose-dependently elevated the expression of autophagy markers at both the mRNA and protein levels, whereas the expression of apoptosis markers exhibited a bidirectional, dose-dependent effect. Because the p38MAPK signaling pathway plays essential roles in apoptosis and autophagy, we subsequently evaluated the effect of RFRP-3 on p38MAPK activation. The results showed that 10-6 M RFRP-3 treatment not only significantly decreased p38MAPK phosphorylation but also inhibited the p38MAPK activator U-46619 to promote p38MAPK activation in porcine GCs. Finally, we applied U-46619 to investigate the role of the p38MAPK signaling pathway in apoptosis and autophagy in RFRP-3-treated porcine GCs. The results showed that all doses of RFRP-3 significantly inhibited the U-46619-induced increase in apoptosis in a dose-dependent manner. However, except for the U-46619-induced Beclin-1 expression increase, which was significantly suppressed in high-dose RFRP-3-treated porcine GCs, other doses of RFRP-3 treatment strengthened the U-46619-induced increase in other autophagy markers. In summary, our data demonstrate a critical role for the p38MAPK signaling pathway in the porcine GC cellular response to RFRP-3 by controlling the balance between apoptosis and autophagy.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Ming Li
- Chengdu Research Base of Giant Panda Breeding, China
| | | | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, China
| | - Xingxing Song
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Lei Chen
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Wen Hu
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Wenhao Xu
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Rongrong Luo
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Dongyang Han
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China.
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China.
| |
Collapse
|
5
|
Falvo S, Rosati L, Di Fiore MM, Di Giacomo Russo F, Chieffi Baccari G, Santillo A. Proliferative and Apoptotic Pathways in the Testis of Quail Coturnix coturnix during the Seasonal Reproductive Cycle. Animals (Basel) 2021; 11:ani11061729. [PMID: 34207904 PMCID: PMC8226535 DOI: 10.3390/ani11061729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The quail Coturnix coturnix exhibits an annual cycle of testis size, sexual steroid production, and spermatogenesis. The testicular levels of both 17β-estradiol (E2) and androgens are higher during the reproductive period compared to the non-reproductive period, suggesting that estrogens act in synergy with the androgens for the initiation of spermatogenesis. Therefore, the present study aimed to investigate the estrogen responsive system in quail testis in relation to the reproduction seasons, with a focus on the molecular pathways activated in both active and regressive quail testes. The results indicated that estrogens participated in the activation of mitotic and meiotic events during the reproductive period by activating the ERK1/2 and Akt-1 pathways. In the non-reproductive period, when the E2/ERα levels are low, ERK1/2 and Akt-1 pathways remain inactive and apoptotic events occur. Our results suggest that the activation or inhibition of these molecular pathways plays a crucial role in the physiological switch “on/off” of the testicular activity in male quail during the seasonal reproductive cycle. Abstract The quail Coturnix coturnix is a seasonal breeding species, with the annual reproductive cycle of its testes comprising an activation phase and a regression phase. Our previous results have proven that the testicular levels of both 17β-estradiol (E2) and androgens are higher during the reproductive period compared to the non-reproductive period, which led us to hypothesize that estrogens and androgens may act synergistically to initiate spermatogenesis. The present study was, therefore, aimed to investigate the estrogen responsive system in quail testis in relation to the reproduction seasonality, with a focus on the molecular pathways elicited in both active and regressive quail testes. Western blotting and immunohistochemistry analysis revealed that the expression of ERα, which is the predominant form of estrogen receptors in quail testis, was correlated with E2 concentration, suggesting that increased levels of E2-induced ERα could play a key role in the resumption of spermatogenesis during the reproductive period, when both PCNA and SYCP3, the mitotic and meiotic markers, respectively, were also increased. In the reproductive period we also found the activation of the ERK1/2 and Akt-1 kinase pathways and an increase in second messengers cAMP and cGMP levels. In the non-reproductive phase, when the E2/ERα levels were low, the inactivation of ERK1/2 and Akt-1 pathways favored apoptotic events due to an increase in the levels of Bax and cytochrome C, with a consequent regression of the gonad.
Collapse
Affiliation(s)
- Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Luigi Rosati
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, 80138 Napoli, Italy;
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Federica Di Giacomo Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
- Correspondence:
| |
Collapse
|
6
|
Shahin S, Singh SP, Chaturvedi CM. 2.45 GHz microwave radiation induced oxidative and nitrosative stress mediated testicular apoptosis: Involvement of a p53 dependent bax-caspase-3 mediated pathway. ENVIRONMENTAL TOXICOLOGY 2018; 33:931-945. [PMID: 29968967 DOI: 10.1002/tox.22578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Deleterious effects of MW radiation on the male reproduction are well studied. Previous reports although suggest that 2.45 GHz MW irradiation induced oxidative and nitrosative stress adversely affects the male reproductive function but the detailed molecular mechanism occurring behind it has yet to be elucidated. The aim of present study was to investigate the underlying detailed pathway of the testicular apoptosis induced by free radical load and redox imbalance due to 2.45 GHz MW radiation exposure and the degree of severity along with the increased exposure duration. Twelve-week old male mice were exposed to 2.45 GHz MW radiation [continuous-wave (CW) with overall average Power density of 0.0248 mW/cm2 and overall average whole body SAR value of 0.0146 W/kg] for 2 hr/day over a period of 15, 30, and 60 days. Testicular histology, serum testosterone, ROS, NO, MDA level, activity of antioxidant enzymes, expression of pro-apoptotic proteins (p53 and Bax), anti-apoptotic proteins (Bcl-2 and Bcl-xL ), cytochrome-c, inactive/active caspase-3, and uncleaved PARP-1 were evaluated. Findings suggest that 2.45 GHz MW radiation exposure induced testicular redox imbalance not only leads to enhanced testicular apoptosis via p53 dependent Bax-caspase-3 mediated pathway, but also increases the degree of apoptotic severity in a duration dependent manner.
Collapse
Affiliation(s)
- Saba Shahin
- Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pal Singh
- Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
7
|
Banerjee S, Chaturvedi CM. Specific neural phase relation of serotonin and dopamine modulate the testicular activity in Japanese quail. J Cell Physiol 2018; 234:2866-2879. [PMID: 30073648 DOI: 10.1002/jcp.27104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 06/29/2018] [Indexed: 12/19/2022]
Abstract
Specific phase relation of serotonin and dopamine modulate the hypothalamo-hypophyseal-gonadal axis as well as photosexual responses in Japanese quail, but the effect of these specific phase relations on testicular activity and steroidogenesis is not yet been investigated. We hypothesized that temporal phase relation induced alteration in local testicular gonadotropin-releasing hormone (GnRH)-Gonadotropin-inhibitory hormone (GnIH) and their receptor system may modulate the testicular activity and steroidogenesis through local (paracrine and autocrine) action. To validate this hypothesis, we have checked the alterations in the expression of gonadotropin-releasing hormone receptor (GnRH-R), gonadotropin-inhibitory hormone receptor (GnIH-R) messenger RNA (mRNA), growth hormone receptor (GH-R), proliferating cell nuclear antigen (PCNA), cell communication and gap junctional proteins (14-3-3 and connexin-43 [Cnx-43]), steroidogenic factor-1 (SF-1), steroidogenic acute regulatory (StAR) protein, steroidogenic enzyme (3β-hydroxysteroid dehydrogenase [3β-HSD]) in testis as well as androgen receptor (AR) in testis and epididymis of control, 8-, and 12-hr quail. Experimental findings clearly indicate the increased expression of GnIH-R mRNA and suppression of GnRH-R, GH-R, PCNA, 14-3-3, Cnx-43, SF-1, StAR, 3β-HSD in testis as well as AR in testis and epididymis in 8-hr quail, while 12-hr quail exhibited the opposite results that is significantly decreased expression of GnIH-R mRNA and increased expression of GnRH-R, GH-R, PCNA, 14-3-3, Cnx-43, SF-1, StAR, 3β-HSD in testis as well as AR in testis and epididymis. The significantly increased intratesticular testosterone has been observed in the 12-hr quail while, 8-hr quail showed opposite result. Hence, it can be concluded that 12-hr quail showed significantly increased testicular activity and steroidogenesis while opposite pattern was observed in 8-hr quail.
Collapse
|
8
|
Banerjee S, Chaturvedi CM. Neuroendocrine mechanism of food intake and energy regulation in Japanese quail under differential simulated photoperiodic conditions: Involvement of hypothalamic neuropeptides, AMPK, insulin and adiponectin receptors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:10-23. [PMID: 29857310 DOI: 10.1016/j.jphotobiol.2018.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/21/2018] [Accepted: 05/19/2018] [Indexed: 12/14/2022]
Abstract
Neuroendocrine coordination between the reproductive and energy regulatory hypothalamic circuitries not only tightly regulates food intake and energy expenditure but also maintains the body weight and reproduction. The effect of different simulated photoperiodic conditions on food intake and neuroendocrine mechanism of energy homeostasis in Japanese quail is not investigated till date. Hence, our present study is designed to elucidate the effect of different simulated photoperiodic conditions on food consumption and neuroendocrine mechanism(s) of energy regulation in this poultry species. The alterations in hypothalamic energy balancing neuropeptides (NPY/AgRP/CART), polypeptide hormone precursor (POMC), protein kinase (AMPK-p-AMPK) as well as receptors of insulin and adiponectin [Insulin Receptor (IR), Adiponectin Receptor 1 & 2] have been investigated in photosensitive (PS), scotorefractory (SR),photorefractory (PR) and scotosensitive (SS) quail. Immunofluorescence and western blotting were used to quantify the expression of these peptides and proteins. Results showed increased food consumption and body weight gain, along with increased expression of NPY, AgRP, IR, adiponectin receptors and p-AMPK, decreased CART and POMC in the hypothalamus of photosensitive and scotorefractory quail. While, opposite findings were observed in photorefractory and scotosensitive quail. Hence, this study may suggest the hypothalamic energy channelization towards reproductive axis in photosensitive and scotorefractory quail to support the full breeding conditions, while hypothalamic energy deprivation in photorefractory and scotosensitive quail leads to reproductive quiescence.
Collapse
Affiliation(s)
- Somanshu Banerjee
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
9
|
Shukla R, Banerjee S, Tripathi YB. Pueraria tuberosa extract inhibits iNOS and IL-6 through suppression of PKC-α and NF-kB pathway in diabetes-induced nephropathy. ACTA ACUST UNITED AC 2018; 70:1102-1112. [PMID: 29770444 DOI: 10.1111/jphp.12931] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/16/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Inflammation plays an important role in the pathogenesis of diabetic nephropathy (DN). The aim of this study was to explore the anti-inflammatory role of PTY-2r (extracted from Pueraria tuberosa), on streptozotocin (STZ)-induced DN rats. METHODS Diabetes was induced by intraperitoneal injection of STZ (55mg/kg) in rats. After 60 days, the rats were randomly divided into three groups (n = 6/each group), namely DN control group 2, DN rats treated with PTY-2r at dose of 100 mg/100 g, group 3 and 50 mg/100 g, group 4, p.o for 20 days. The normal rats were chosen as a normal control (NC) group 1. KEY FINDINGS In DN rats, the expression of iNOS and inflammatory cytokines (IL-6 and TNF-α) was significantly increased. Raised expression of PKC-α was also found. As NF-kB is the main transcription factor for the inflammatory response-mediated progression of DN, variation in NF-kB expression and its activated phosphorylated derivative (pNF-kB) were also evaluated and increase in expression was obtained in the kidney of DN rats. PTY-2r treatment significantly reversed these changes in dose-dependent manner. CONCLUSIONS This study suggested that the nephroprotective effect of PTY-2r is possibly due to downregulation of PKC-α and NF-kB pathway and normalizing the expression of inflammatory cytokines and iNOS in the kidney of DN rats.
Collapse
Affiliation(s)
- Rashmi Shukla
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Somanshu Banerjee
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Yamini B Tripathi
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
Shukla R, Banerjee S, Tripathi YB. Antioxidant and Antiapoptotic effect of aqueous extract of Pueraria tuberosa (Roxb. Ex Willd.) DC. On streptozotocin-induced diabetic nephropathy in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:156. [PMID: 29751837 PMCID: PMC5948837 DOI: 10.1186/s12906-018-2221-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oxidative stress and renal apoptosis play a significant role in the progression of diabetic nephropathy. The tubers of Pueraria tuberosa (Roxb. ex Willd.) DC. has been traditionally used as anti-ageing and health promotive tonic. The purpose of this study was to investigate its nephroprotective effect and mechanism via antioxidant and antiapoptotic potential in Streptozotocin-induced diabetic nephropathy (DN) in rats. METHODS The chemical composition of aqueous extract of Pueraria tuberosa (PTY-2r) was analyzed by gas chromatography-mass spectrometry (GC-MS). Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) (55 mg/kg body weight) in rats. After 60 days, the rats were randomly divided into 3 groups (n = 6/each group), namely DN control (DN) group-2, DN rats treated with PTY-2r at the dose of 50 mg/100 g, group-3 and 100 mg/100 g, group-4 p.o. for 20 days. The normal rats were chosen as a normal control (NC) group-1. PTY-2r was orally given to the rats for 20 days. Reactive oxygen species (ROS), lipid peroxidation (LPO) and the activity of ROS-scavenging enzymes - superoxide dismutase (SOD), catalase (CAT) & glutathione peroxidase (GPx) were determined in the kidney tissue of DN rats. The expression of apoptosis-related proteins was measured by immunofluorescence. RESULTS GC-MS analysis of PTY-2r indicated the presence of 37 compounds among them 5-Hydroxymethylfurfural (17.80%), 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (17.03%), n-Hexadecanoic acid (5.18%) and 9-Octadecenoic acid (Z) - (6.69%) were found in the higher amount. A significant increase in ROS and LPO was observed along with the decreased activity of antioxidant enzymes, responsible for oxidative stress in the kidney of DN rats. Since, high oxidative stress induces apoptosis in target cells, as shown by significantly decreased expression of Bcl-2 along with increased expression of Bax, active Caspase-3 & cleaved PARP-1 in DN control rats, suggesting apoptosis. The PTY-2r treatment significantly raised the activity of antioxidant enzymes, suppressed oxidative stress and apoptosis thus, prevented urinary albumin excretion in a dose-dependent manner. CONCLUSIONS The findings suggest that PTY-2r exerted the nephroprotective potential against STZ induced DN rats via suppressing oxidative stress and apoptosis due to the presence of different bioactive compounds. ᅟ.
Collapse
|
11
|
Shahin S, Singh SP, Chaturvedi CM. 1800 MHz mobile phone irradiation induced oxidative and nitrosative stress leads to p53 dependent Bax mediated testicular apoptosis in mice,
Mus musculus. J Cell Physiol 2018; 233:7253-7267. [DOI: 10.1002/jcp.26558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/20/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Saba Shahin
- Department of ZoologyBanaras Hindu UniversityVaranasiIndia
| | - Surya P. Singh
- Department of Electronics Engineering, Indian Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
| | | |
Collapse
|
12
|
Banerjee S, Shahin S, Chaturvedi CM. Age dependent variations in the deep brain photoreceptors (DBPs), GnRH-GnIH system and testicular steroidogenesis in Japanese quail, Coturnix coturnix japonica. Exp Gerontol 2018; 108:7-17. [PMID: 29580815 DOI: 10.1016/j.exger.2018.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
The complex physiology of aging involves a number of molecular and biochemical events, manifested as signs of senescence. Japanese quail is a very unique and advantageous model to study the signs and symptoms of senescence in the central and peripheral modules of HPG axis. In the present study, we have investigated the age dependent variations in hypothalamic deep brain photoreceptors (DBPs), central GnRH-I/II-GnIH-Mel1cR system, testicular GnRH-GnIH system, testicular steroidogenic genes and proteins, androgen receptor (AR) and serum testosterone level in quail of different age groups [3-wk (sexually immature), 6-wk (sexually mature and crossed the puberty), 16-wk (adult, sexually active and showing full breeding phase) and 144-wk (aged)]. Findings of our present study showed the differential expression of these genes/proteins in quail of different age groups. The low levels of the DBPs, GnRH-I, GnIH, Mel1cR in hypothalamus and GnRH-II in midbrain, significantly decreased testicular GnRH/GnRH-R-GnIH, steroidogenic genes/proteins and serum testosterone were observed in immature quail. The significantly increased expression of opsins in the DBPs, GnRH-I, GnIH, Mel1cR in hypothalamus and GnRH-II in midbrain influences the testicular GnRH-GnIH and stimulate the testicular steroidogenesis in mature and adult quail. In aged quail, the significantly decreased levels of hypothalamic DBPs, GnRH-I, GnIH, Mel1cR and midbrain GnRH-II modulates the testicular GnRH-GnIH and further suppresses the genes/proteins involved in steroidogenesis and results in reduced serum testosterone. Hence, it can be concluded from our findings that the testicular steroidogenesis and its neuroendocrine regulation varies with age, in Japanese quail.
Collapse
Affiliation(s)
- Somanshu Banerjee
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Saba Shahin
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
13
|
Simulated photoperiod influences testicular activity in quail via modulating local GnRHR-GnIHR, GH-R, Cnx-43 and 14-3-3. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:412-423. [DOI: 10.1016/j.jphotobiol.2017.11.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/17/2017] [Accepted: 11/25/2017] [Indexed: 12/11/2022]
|
14
|
Banerjee S, Chaturvedi CM. Apoptotic mechanism behind the testicular atrophy in photorefractory and scotosensitive quail: Involvement of GnIH induced p-53 dependent Bax-Caspase-3 mediated pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 176:124-135. [DOI: 10.1016/j.jphotobiol.2017.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022]
|
15
|
Shahin S, Banerjee S, Swarup V, Singh SP, Chaturvedi CM. From the Cover: 2.45-GHz Microwave Radiation Impairs Hippocampal Learning and Spatial Memory: Involvement of Local Stress Mechanism-Induced Suppression of iGluR/ERK/CREB Signaling. Toxicol Sci 2017; 161:349-374. [DOI: 10.1093/toxsci/kfx221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
16
|
Testicular atrophy and reproductive quiescence in photorefractory and scotosensitive quail: Involvement of hypothalamic deep brain photoreceptors and GnRH-GnIH system. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:254-268. [DOI: 10.1016/j.jphotobiol.2017.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 02/04/2023]
|
17
|
Shahin S, Singh SP, Chaturvedi CM. Mobile phone (1800MHz) radiation impairs female reproduction in mice, Mus musculus, through stress induced inhibition of ovarian and uterine activity. Reprod Toxicol 2017; 73:41-60. [PMID: 28780396 DOI: 10.1016/j.reprotox.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/27/2017] [Accepted: 08/01/2017] [Indexed: 12/30/2022]
Abstract
Present study investigated the long-term effects of mobile phone (1800MHz) radiation in stand-by, dialing and receiving modes on the female reproductive function (ovarian and uterine histo-architecture, and steroidogenesis) and stress responses (oxidative and nitrosative stress). We observed that mobile phone radiation induces significant elevation in ROS, NO, lipid peroxidation, total carbonyl content and serum corticosterone coupled with significant decrease in antioxidant enzymes in hypothalamus, ovary and uterus of mice. Compared to control group, exposed mice exhibited reduced number of developing and mature follicles as well as corpus lutea. Significantly decreased serum levels of pituitary gonadotrophins (LH, FSH), sex steroids (E2 and P4) and expression of SF-1, StAR, P-450scc, 3β-HSD, 17β-HSD, cytochrome P-450 aromatase, ER-α and ER-β were observed in all the exposed groups of mice, compared to control. These findings suggest that mobile phone radiation induces oxidative and nitrosative stress, which affects the reproductive performance of female mice.
Collapse
Affiliation(s)
- Saba Shahin
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Surya Pal Singh
- Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | | |
Collapse
|
18
|
Shukla R, Pandey N, Banerjee S, Tripathi YB. Effect of extract of Pueraria tuberosa on expression of hypoxia inducible factor-1α and vascular endothelial growth factor in kidney of diabetic rats. Biomed Pharmacother 2017. [PMID: 28648975 DOI: 10.1016/j.biopha.2017.06.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUNDS Kidney hypoxia represents a unifying mechanism in the pathogenesis of diabetic nephropathy. Hypoxia-induced factor (HIF)-1α mediates the metabolic responses of renal hypoxia by modulating the expression of VEGF. In the present study, we investigated the effect of Pueraria tuberosa extract (PTY-2r) on the expression of HIF-1α, VEGF and nephrin in streptozotocin (STZ) induced diabetic nephropathy (DN). METHODS The model of diabetic nephropathy (DN) was produced by intraperitoneal injection of 55mg/kg of STZ and maintained for 60days. These DN-rats were randomly divided into three groups, i.e., DN, DN+PTY-2r (100mg/100g), and DN+PTY-2r (50mg/100g). A normal control (NC) group was administrated with drug vehicle. Expression of HIF-1α, VEGF and nephrin were evaluated in the renal tissue. RESULTS Blood glucose, urine protein, serum creatinine, and urea, level were significantly raised along with decreased creatinine clearance in DN rats. Immunofluorescence and Western blot analysis showed significantly increased expression of HIF-1α & VEGF and decreased expression of nephrin in DN control rats. The PTY-2r treatment significantly reversed these changes in a dose-dependent manner. Correlation analysis showed that the expression of VEGF was positively correlated with that of HIF-1α and negatively correlated with nephrin. CONCLUSIONS The PTY-2r can improve the chronic hyperglycemic condition induced kidney damage, and may delay the development of diabetic nephropathy by inhibiting the expression of HIF-1α and VEGF, thereby restoring the expression of nephrin.
Collapse
Affiliation(s)
- Rashmi Shukla
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nidhi Pandey
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Somanshu Banerjee
- Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Yamini B Tripathi
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|