1
|
Borsdorf M, Papenkort S, Böl M, Siebert T. Influence of muscle packing on the three-dimensional architecture of rabbit M. plantaris. J Mech Behav Biomed Mater 2024; 160:106762. [PMID: 39413545 DOI: 10.1016/j.jmbbm.2024.106762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/26/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024]
Abstract
In their physiological condition, muscles are surrounded by connective tissue, other muscles and bone. These tissues exert transverse forces that change the three-dimensional shape of the muscle compared to its isolated condition, in which all surrounding tissues are removed. A change in shape affects the architecture of a muscle and therefore its mechanical properties. The rabbit M. plantaris is a multi-pennate calf muscle consisting of two compartments. A smaller, bi-pennate inner muscle compartment is embedded in a larger, uni-pennate outer compartment (Böl et al., 2015). As part of the calf, the plantaris is tightly packed between other muscles. It is unclear how packing affects the shape and architecture of the plantaris. Therefore, we examined the isolated and packed plantaris of the contralateral legs of three rabbits to determine the influence of the surrounding muscles on its shape and architectural properties using photogrammetric reconstruction and manual digitization, respectively. In the packed condition, the plantaris showed a 27% increase in fascicle pennation and a 54% increase in fascicle curvature compared to the isolated condition. Fascicle length was not affected by muscle packing. The change in muscle architecture occurred mainly in the outer compartment of the plantaris. Furthermore, the isolated plantaris showed a more circular shape and a reduced width of its muscle belly. It can be concluded that the packed plantaris is flattened by the forces exerted by the surrounding muscles, causing a complex architectural change. The data provided improve our understanding of muscle packages in general and can be used to develop and validate realistic three-dimensional muscle models.
Collapse
Affiliation(s)
- Mischa Borsdorf
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
| | - Stefan Papenkort
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Coenning C, Rieg V, Siebert T, Wank V. Impact of contraction intensity and ankle joint angle on calf muscle fascicle length and pennation angle during isometric and dynamic contractions. Sci Rep 2024; 14:24929. [PMID: 39438523 PMCID: PMC11496514 DOI: 10.1038/s41598-024-75795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
During muscle contraction, not only are the fascicles shortening but also the pennation angle changes, which leads to a faster contraction of the muscle than of its fascicles. This phenomenon is called muscle gearing, and it has a direct influence on the force output of the muscle. There are few studies showing pennation angle changes during isometric and concentric contractions for different contraction intensities and muscle lengths. Therefore, the aim was to determine these influences over a wide range of contraction intensities and ankle joint angles for human triceps surae. Additionally, the influence of contraction intensity and ankle joint angle on muscle gearing was evaluated. Ten sport students performed concentric and isometric contractions with intensities between 0 and 90% of the maximum voluntary contraction and ankle joint angles from 50° to 120°. During these contractions, the m. gastrocnemius medialis and lateralis and the m. soleus were recorded via ultrasound imaging. A nonlinear relationship between fascicle length and pennation angle was discovered, which can be described with a quadratic fit for each of the muscles during isometric contraction. A nearly identical relationship was detected during dynamic contraction. The muscle gearing increased almost linearly with contraction intensity and ankle joint angle.
Collapse
Affiliation(s)
- Corinna Coenning
- Institute of Sports Science, Eberhard Karls University, Wilhelmstraße 124, 72074, Tubingen, Germany
| | - Volker Rieg
- Institute of Sports Science, Eberhard Karls University, Wilhelmstraße 124, 72074, Tubingen, Germany.
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center of Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Veit Wank
- Institute of Sports Science, Eberhard Karls University, Wilhelmstraße 124, 72074, Tubingen, Germany
| |
Collapse
|
3
|
Blickhan R, Siebert T. Note on hydrostatic skeletons: muscles operating within a pressurized environment. Biol Open 2024; 13:bio060318. [PMID: 38818878 PMCID: PMC11261639 DOI: 10.1242/bio.060318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
Muscles and muscle fibers are volume-constant constructs that deform when contracted and develop internal pressures. However, muscles embedded in hydrostatic skeletons are also exposed to external pressures generated by their activity. For two examples, the pressure generation in spiders and in annelids, we used simplified biomechanical models to demonstrate that high intracellular pressures diminishing the resulting tensile stress of the muscle fibers are avoided in the hydrostatic skeleton. The findings are relevant for a better understanding of the design and functionality of biological hydrostatic skeletons.
Collapse
Affiliation(s)
- Reinhard Blickhan
- Science of Motion, Friedrich-Schiller-University, 07749 Jena, Germany
| | - Tobias Siebert
- Institute of Sport and Motion Science, University of Stuttgart, Allmandring 28, D-70569 Stuttgart, Germany
| |
Collapse
|
4
|
Sahrmann AS, Vosse L, Siebert T, Handsfield GG, Röhrle O. Determination of muscle shape deformations of the tibialis anterior during dynamic contractions using 3D ultrasound. Front Bioeng Biotechnol 2024; 12:1388907. [PMID: 38903187 PMCID: PMC11188672 DOI: 10.3389/fbioe.2024.1388907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Purpose In this paper, we introduce a novel method for determining 3D deformations of the human tibialis anterior (TA) muscle during dynamic movements using 3D ultrasound. Materials and Methods An existing automated 3D ultrasound system is used for data acquisition, which consists of three moveable axes, along which the probe can move. While the subjects perform continuous plantar- and dorsiflexion movements in two different controlled velocities, the ultrasound probe sweeps cyclically from the ankle to the knee along the anterior shin. The ankle joint angle can be determined using reflective motion capture markers. Since we considered the movement direction of the foot, i.e., active or passive TA, four conditions occur: slow active, slow passive, fast active, fast passive. By employing an algorithm which defines ankle joint angle intervals, i.e., intervals of range of motion (ROM), 3D images of the volumes during movement can be reconstructed. Results We found constant muscle volumes between different muscle lengths, i.e., ROM intervals. The results show an increase in mean cross-sectional area (CSA) for TA muscle shortening. Furthermore, a shift in maximum CSA towards the proximal side of the muscle could be observed for muscle shortening. We found significantly different maximum CSA values between the fast active and all other conditions, which might be caused by higher muscle activation due to the faster velocity. Conclusion In summary, we present a method for determining muscle volume deformation during dynamic contraction using ultrasound, which will enable future empirical studies and 3D computational models of skeletal muscles.
Collapse
Affiliation(s)
- Annika S. Sahrmann
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Lukas Vosse
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
- Institute of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
| | - Tobias Siebert
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
- Institute of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
| | | | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Van Hooren B, Aagaard P, Monte A, Blazevich AJ. The role of pennation angle and architectural gearing to rate of force development in dynamic and isometric muscle contractions. Scand J Med Sci Sports 2024; 34:e14639. [PMID: 38686976 DOI: 10.1111/sms.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Associations between muscle architecture and rate of force development (RFD) have been largely studied during fixed-end (isometric) contractions. Fixed-end contractions may, however, limit muscle shape changes and thus alter the relationship between muscle architecture an RFD. AIM We compared the correlation between muscle architecture and architectural gearing and knee extensor RFD when assessed during dynamic versus fixed-end contractions. METHODS Twenty-two recreationally active male runners performed dynamic knee extensions at constant acceleration (2000°s-2) and isometric contractions at a fixed knee joint angle (fixed-end contractions). Torque, RFD, vastus lateralis muscle thickness, and fascicle dynamics were compared during 0-75 and 75-150 ms after contraction onset. RESULTS Resting fascicle angle was moderately and positively correlated with RFD during fixed-end contractions (r = 0.42 and 0.46 from 0-75 and 75-150 ms, respectively; p < 0.05), while more strongly (p < 0.05) correlated with RFD during dynamic contractions (r = 0.69 and 0.73 at 0-75 and 75-150 ms, respectively; p < 0.05). Resting fascicle angle was (very) strongly correlated with architectural gearing (r = 0.51 and 0.73 at 0-75 ms and 0.50 and 0.70 at 75-150 ms; p < 0.05), with gearing in turn also being moderately to strongly correlated with RFD in both contraction conditions (r = 0.38-0.68). CONCLUSION Resting fascicle angle was positively correlated with RFD, with a stronger relationship observed in dynamic than isometric contraction conditions. The stronger relationships observed during dynamic muscle actions likely result from different restrictions on the acute changes in muscle shape and architectural gearing imposed by isometric versus dynamic muscle contractions.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
6
|
Borsdorf M, Papenkort S, Böl M, Siebert T. Influence of muscle length on the three-dimensional architecture and aponeurosis dimensions of rabbit calf muscles. J Mech Behav Biomed Mater 2024; 152:106452. [PMID: 38394765 DOI: 10.1016/j.jmbbm.2024.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
The function of a muscle is highly dependent on its architecture, which is characterized by the length, pennation, and curvature of the fascicles, and the geometry of the aponeuroses. During in vivo function, muscles regularly undergo changes in length, thereby altering their architecture. During passive muscle lengthening, fascicle length (FL) generally increases and the angle of fascicle pennation (FP) and the fascicle curvature (FC) decrease, while the aponeuroses increase in length but decrease in width. Muscles are differently structured, making their change during muscle lengthening complex and multifaceted. To obtain comprehensive data on architectural changes in muscles during passive length, the present study determined the three-dimensional fascicle geometry of rabbit M. gastrocnemius medialis (GM), M. gastrocnemius lateralis (GL), and M. plantaris (PLA). For this purpose, the left and right legs of three rabbits were histologically fixed at targeted ankle joint angles of 95° (short muscle length [SML]) and 60° (long muscle length [LML]), respectively, and the fascicles were tracked by manual three-dimensional digitization. In a second set of experiments, the GM aponeurosis dimensions of ten legs from five rabbits were determined at varying muscle lengths via optical marker tracking. The GM consisted of a uni-pennated compartment, whereas the GL and PLA contained multiple compartments of differently pennated fascicles. In the LML compared to the SML, the GM, GL, and PLA had on average a 41%, 29%, and 41% increased fascicle length, and a 30%, 25%, and 33% decrease in fascicle pennation and a 32%, 11%, and 35% decrease in fascicle curvature, respectively. Architectural properties were also differentiated among the different compartments of the PLA and GL, allowing for a more detailed description of their fascicle structure and changes. It was shown that the compartments change differently with muscle length. It was also shown that for each degree of ankle joint angle reduction, the proximal GM aponeurosis length increased by 0.11%, the aponeurosis width decreased by 0.22%, and the area was decreased by 0.20%. The data provided improve our understanding of muscles and can be used to develop and validate muscle models.
Collapse
Affiliation(s)
- Mischa Borsdorf
- Institute of Sport and Movement Science, Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
| | - Stefan Papenkort
- Institute of Sport and Movement Science, Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tobias Siebert
- Institute of Sport and Movement Science, Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
7
|
Pinto MD, Nosaka K, Blazevich AJ. In vivo human medial gastrocnemius fascicle behaviour and belly gear during submaximal eccentric contractions are not affected by concentric fatiguing exercise. J Biomech 2024; 162:111895. [PMID: 38103313 DOI: 10.1016/j.jbiomech.2023.111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
Changes in muscle geometry and belly gearing during eccentric contractions influence fibre strain and susceptibility to muscle damage. They are modulated by the interaction between connective tissues and intracellular-intrafascicular fluid pressures and external pressures from neighbouring structures. Fatiguing exercise triggers fluid shifts (muscle swelling) and muscle activation changes that may influence these modulators. Our purpose was to measure medial gastrocnemius (MG) geometric changes in vivo during eccentric contractions before and after maximal concentric muscle work to test the hypothesis that fatigue would reduce fascicle rotation and muscle gear and provoke greater fascicle strain. Submaximal eccentric plantar flexor contractions at 40% and 60% of maximal eccentric torque were performed on an isokinetic dynamometer at 5°.s-1 before and immediately after the fatiguing exercise. MG fascicles and muscle-tendon junction were captured using ultrasonography during contractions, allowing quantification of geometric changes, whole-MG length, and belly gear (Δmuscle length/Δfascicle length). Triceps surae (TS) activation was estimated using surface electromyography and the distribution of activations between synergistic muscles was then determined. After exercise, concentric torque decreased ∼39% and resting muscle thickness increased by 4%, indicating muscle fatigue and swelling, respectively. While soleus (Sol) activation and the Sol/TS ratio increased, no changes in MG, MG/TS ratio or fascicle rotation during the contraction were detected. Thus, fascicle lengthening and belly gear remained unaltered. Changes in muscle thickness during contraction was also similar before and after exercise, suggesting that changes in muscle shape were relatively unaffected by the exercise. Consequently, the muscle maintained mechanical integrity after the fatiguing muscle work.
Collapse
Affiliation(s)
- Matheus Daros Pinto
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | | |
Collapse
|
8
|
Nam Y, Yang S, Kim J, Koo B, Song S, Kim Y. Quantification of Comfort for the Development of Binding Parts in a Standing Rehabilitation Robot. SENSORS (BASEL, SWITZERLAND) 2023; 23:2206. [PMID: 36850804 PMCID: PMC9967481 DOI: 10.3390/s23042206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Human-machine interfaces (HMI) refer to the physical interaction between a user and rehabilitation robots. A persisting excessive load leads to soft tissue damage, such as pressure ulcers. Therefore, it is necessary to define a comfortable binding part for a rehabilitation robot with the subject in a standing posture. The purpose of this study was to quantify the comfort at the binding parts of the standing rehabilitation robot. In Experiment 1, cuff pressures of 10-40 kPa were applied to the thigh, shank, and knee of standing subjects, and the interface pressure and pain scale were obtained. In Experiment 2, cuff pressures of 10-20 kPa were applied to the thigh, and the tissue oxygen saturation and the skin temperature were measured. Questionnaire responses regarding comfort during compression were obtained from the subjects using the visual analog scale and the Likert scale. The greatest pain was perceived in the thigh. The musculoskeletal configuration affected the pressure distribution. The interface pressure distribution by the binding part showed higher pressure at the intermuscular septum. Tissue oxygen saturation (StO2) increased to 111.9 ± 6.7% when a cuff pressure of 10 kPa was applied and decreased to 92.2 ± 16.9% for a cuff pressure of 20 kPa. A skin temperature variation greater than 0.2 °C occurred in the compressed leg. These findings would help evaluate and improve the comfort of rehabilitation robots.
Collapse
Affiliation(s)
- Yejin Nam
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sumin Yang
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Jongman Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Bummo Koo
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sunghyuk Song
- Department of Robotics & Mechatronics, Korea Institute of Machinery & Materials, Daejeon 34103, Republic of Korea
| | - Youngho Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
9
|
Kellis E, Blazevich AJ. Hamstrings force-length relationships and their implications for angle-specific joint torques: a narrative review. BMC Sports Sci Med Rehabil 2022; 14:166. [PMID: 36064431 PMCID: PMC9446565 DOI: 10.1186/s13102-022-00555-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Temporal biomechanical and physiological responses to physical activity vary between individual hamstrings components as well as between exercises, suggesting that hamstring muscles operate differently, and over different lengths, between tasks. Nevertheless, the force-length properties of these muscles have not been thoroughly investigated. The present review examines the factors influencing the hamstrings’ force-length properties and relates them to in vivo function. A search in four databases was performed for studies that examined relations between muscle length and force, torque, activation, or moment arm of hamstring muscles. Evidence was collated in relation to force-length relationships at a sarcomere/fiber level and then moment arm-length, activation-length, and torque-joint angle relations. Five forward simulation models were also used to predict force-length and torque-length relations of hamstring muscles. The results show that, due to architectural differences alone, semitendinosus (ST) produces less peak force and has a flatter active (contractile) fiber force-length relation than both biceps femoris long head (BFlh) and semimembranosus (SM), however BFlh and SM contribute greater forces through much of the hip and knee joint ranges of motion. The hamstrings’ maximum moment arms are greater at the hip than knee, so the muscles tend to act more as force producers at the hip but generate greater joint rotation and angular velocity at the knee for a given muscle shortening length and speed. However, SM moment arm is longer than SM and BFlh, partially alleviating its reduced force capacity but also reducing its otherwise substantial excursion potential. The current evidence, bound by the limitations of electromyography techniques, suggests that joint angle-dependent activation variations have minimal impact on force-length or torque-angle relations. During daily activities such as walking or sitting down, the hamstrings appear to operate on the ascending limbs of their force-length relations while knee flexion exercises performed with hip angles 45–90° promote more optimal force generation. Exercises requiring hip flexion at 45–120° and knee extension 45–0° (e.g. sprint running) may therefore evoke greater muscle forces and, speculatively, provide a more optimum adaptive stimulus. Finally, increases in resistance to stretch during hip flexion beyond 45° result mainly from SM and BFlh muscles.
Collapse
Affiliation(s)
- Eleftherios Kellis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, TEFAA Serres, 62100, Serres, Greece.
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Australia
| |
Collapse
|
10
|
Mytidou C, Koutsoulidou A, Zachariou M, Prokopi M, Kapnisis K, Spyrou GM, Anayiotos A, Phylactou LA. Age-Related Exosomal and Endogenous Expression Patterns of miR-1, miR-133a, miR-133b, and miR-206 in Skeletal Muscles. Front Physiol 2021; 12:708278. [PMID: 34867435 PMCID: PMC8637414 DOI: 10.3389/fphys.2021.708278] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle growth and maintenance depend on two tightly regulated processes, myogenesis and muscle regeneration. Both processes involve a series of crucial regulatory molecules including muscle-specific microRNAs, known as myomiRs. We recently showed that four myomiRs, miR-1, miR-133a, miR-133b, and miR-206, are encapsulated within muscle-derived exosomes and participate in local skeletal muscle communication. Although these four myomiRs have been extensively studied for their function in muscles, no information exists regarding their endogenous and exosomal levels across age. Here we aimed to identify any age-related changes in the endogenous and muscle-derived exosomal myomiR levels during acute skeletal muscle growth. The four endogenous and muscle-derived myomiRs were investigated in five skeletal muscles (extensor digitorum longus, soleus, tibialis anterior, gastrocnemius, and quadriceps) of 2-week–1-year-old wild-type male mice. The expression of miR-1, miR-133a, and miR-133b was found to increase rapidly until adolescence in all skeletal muscles, whereas during adulthood it remained relatively stable. By contrast, endogenous miR-206 levels were observed to decrease with age in all muscles, except for soleus. Differential expression of the four myomiRs is also inversely reflected on the production of two protein targets; serum response factor and connexin 43. Muscle-derived exosomal miR-1, miR-133a, and miR-133b levels were found to increase until the early adolescence, before reaching a plateau phase. Soleus was found to be the only skeletal muscle to release exosomes enriched in miR-206. In this study, we showed for the first time an in-depth longitudinal analysis of the endogenous and exosomal levels of the four myomiRs during skeletal muscle development. We showed that the endogenous expression and extracellular secretion of the four myomiRs are associated to the function and size of skeletal muscles as the mice age. Overall, our findings provide new insights for the myomiRs’ significant role in the first year of life in mice.
Collapse
Affiliation(s)
- Chrystalla Mytidou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Margarita Zachariou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marianna Prokopi
- Theramir Ltd., Limassol, Cyprus.,Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Konstantinos Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - George M Spyrou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
11
|
Ateş F, Davies BL, Chopra S, Coleman-Wood K, Litchy W, Kaufman KR. Intramuscular Pressure of Human Tibialis Anterior Muscle Reflects in vivo Muscular Activity. Front Physiol 2019; 10:196. [PMID: 30886588 PMCID: PMC6409299 DOI: 10.3389/fphys.2019.00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Abstract
Intramuscular pressure (IMP) is the fluid hydrostatic pressure generated within a muscle and reflects the mechanical forces produced by a muscle. By providing accurate quantification of interstitial fluid pressure, the measurement of IMP may be useful to detect changes in skeletal muscle function not identified with established techniques. However, the relationship between IMP and muscle activity has never been studied in vivo in healthy human muscles. To determine if IMP is able to evaluate electromechanical performance of muscles in vivo, we tested the following hypotheses on the human tibialis anterior (TA) muscle: (i) IMP increases in proportion to muscle activity as measured by electrical [Compound Muscle Action Potential (CMAP)] and mechanical (ankle torque) responses to activation by nerve stimulation and (ii) the onset delay of IMP (IMPD) is shorter than the ankle torque electromechanical delay (EMD). Twelve healthy adults [six females; mean (SD) = 28.1 (5.0) years old] were recruited. Ankle torque, TA IMP, and CMAP responses were collected during maximal stimulation of the fibular nerve at different intensity levels of electrical stimulation, and at different frequencies of supramaximal stimulation, i.e., at 2, 5, 10, and 20 Hz. The IMP response at different stimulation intensities was correlated with the CMAP amplitude (r2 = 0.94). The area of the IMP response at different stimulation intensities was also significantly correlated with the area of the CMAP (r2 = 0.93). Increasing stimulation intensity resulted in an increase of the IMP response (P < 0.001). Increasing stimulation frequency caused torque (P < 0.001) as well as the IMP (P < 0.001) to increase. The ankle torque EMD [median (interquartile range) = 41.8 (14.4) ms] was later than the IMPD [33.0 (23.6) ms]. These findings support the hypotheses and suggest that IMP captures active mechanical properties of muscle in vivo and can be used to detect muscular changes due to drugs, diseases, or aging.
Collapse
Affiliation(s)
- Filiz Ateş
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Brenda L Davies
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Swati Chopra
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Krista Coleman-Wood
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - William Litchy
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Kenton R Kaufman
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
12
|
Ryan DS, Stutzig N, Siebert T, Wakeling JM. Passive and dynamic muscle architecture during transverse loading for gastrocnemius medialis in man. J Biomech 2019; 86:160-166. [PMID: 30792071 DOI: 10.1016/j.jbiomech.2019.01.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 11/24/2022]
Abstract
External forces from our environment impose transverse loads on our muscles. Studies in rats have shown that transverse loads result in a decrease in the longitudinal muscle force. Changes in muscle architecture during contraction may contribute to the observed force decrease. The aim of this study was to quantify changes in pennation angle, fascicle dimensions, and muscle thickness during contraction under external transverse load. Electrical stimuli were elicited to evoke maximal force twitches in the right calf muscles of humans. Trials were conducted with transverse loads of 2, 4.5, and 10 kg. An ultrasound probe was placed on the medial gastrocnemius in line with the transverse load to quantify muscle characteristics during muscle twitches. Maximum twitch force decreased with increased transverse muscle loading. The 2, 4.5, and 10 kg of transverse load showed a 9, 13, and 16% decrease in longitudinal force, respectively. Within the field of view of the ultrasound images, and thus directly beneath the external load, loading of the muscle resulted in a decrease in the muscle thickness and pennation angle, with higher loads causing greater decreases. During twitches the muscle transiently increased in thickness and pennation angle, as did fascicle thickness. Higher transverse loads showed a reduced increase in muscle thickness. Smaller increases in pennation angle and fascicle thickness strain also occurred with higher transverse loads. This study shows that increased transverse loading caused a decrease in ankle moment, muscle thickness, and pennation angle, as well as transverse deformation of the fascicles.
Collapse
Affiliation(s)
- David S Ryan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.
| | - Norman Stutzig
- Department of Motion and Exercise Science, University of Stuttgart, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Germany
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
13
|
Stutzig N, Ryan D, Wakeling JM, Siebert T. Impact of transversal calf muscle loading on plantarflexion. J Biomech 2019; 85:37-42. [PMID: 30660380 DOI: 10.1016/j.jbiomech.2019.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 11/22/2018] [Accepted: 01/03/2019] [Indexed: 11/29/2022]
Abstract
Muscle compression commonly occurs in daily life (for instance wearing backpacks or compression garments, and during sitting). However, the effects of the compression on contraction dynamics in humans are not well examined. The aim of the study was to quantify the alterations of contraction dynamics and muscle architecture in human muscle with external transverse loads. The posterior tibialis nerve of 29 subjects was stimulated to obtain the maximal double-twitch force of the gastrocnemius muscle with and without transverse compression that was generated using an indentor. The muscle architecture was determined by a sonographic probe that was embedded within the indentor. Five stimulations each were conducted at 5 conditions: (1) pretest (unloaded), (2) indentor loading with 2 kg, (3) 4.5 kg, (4) 10 kg, and (5) posttest (unloaded). Compared to the pretest maximal force decreased by 9%, 13% and 16% for 2 kg, 4.5 kg and 10 kg, respectively. The half-relaxation time increased with increased transverse load whereas the rate of force development decreased from pretest to 2 kg and from 4.5 kg to 10 kg. The lifting height of the indentor increased with transverse load from 2 kg to 4.5 kg but decreased from 4.5 kg to 10 kg. Increases in pennation during the twitches were reduced at the highest transverse load. The results demonstrate changes of the contraction dynamics due to transversal muscle loading. Those alterations are associated with the applied pressure, changes in muscle architecture and partitioning of muscle force in transversal and longitudinal direction.
Collapse
Affiliation(s)
- Norman Stutzig
- Department of Motion and Exercise Science, University of Stuttgart, Germany.
| | - David Ryan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, Canada
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, Canada
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Germany
| |
Collapse
|
14
|
de Brito Fontana H, de Campos D, Sawatsky A, Han SW, Herzog W. Why do muscles lose torque potential when activated within their agonistic group? J Exp Biol 2019; 223:jeb.213843. [DOI: 10.1242/jeb.213843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/26/2019] [Indexed: 11/20/2022]
Abstract
Agonistic muscles lose approximately 20% of their individual torque generating capacity when activated with their agonistic muscles compared to when stimulated in isolation. In this study, we (i) tested if this loss in torque was accompanied by a corresponding loss in force, thereby testing the potential role of changes in moment arms between conditions; (ii) removed all inter-muscular connections between the quadriceps muscles, thus determining the potential role of inter-muscular force transmission; and (iii) systematically changed the inter-muscular pressure by performing experiments at different activation/force levels, thereby exploring the possible role of inter-muscular pressure in the loss of torque capacity with simultaneous muscle activation. Experiments were performed in a New Zealand White rabbit quadriceps model (n=5). Torque and force were measured during activation of femoral nerve branches that supply the individual quadriceps muscles while activating these branches simultaneously and in isolation. Regardless of joint angle and inter-muscular connections between muscles, the differences in torque values between the simultaneous and the isolated activation of the quadriceps muscles were also observed for the directly measured force values. Mean differences in simultaneous and isolated muscle activation remained similar between the intact and separated conditions: torque difference (21±5% of maximum isometric torque of intact condition [MICtorque], versus 19±6% MICtorque respectively) and for force (18±3% MICforce versus 19±7% MICforce respectively). The absolute torque loss was independent of the force, and thus presumably the inter-muscular pressures. Based on these results, we conclude that neither moment arm, inter-muscular pressure nor inter-muscular force transmission seems to be the primary cause for the torque deficit observed during simultaneous compared to isolated muscle activation. The mechanisms underlying loss of force capacity during agonistic muscle contraction remain unknown.
Collapse
Affiliation(s)
- Heiliane de Brito Fontana
- Department of Morphological Sciences, School of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daiani de Campos
- Biomechanics Laboratory, School of Sport Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Andrew Sawatsky
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Seong-won Han
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
de Brito Fontana H, Han SW, Sawatsky A, Herzog W. The mechanics of agonistic muscles. J Biomech 2018; 79:15-20. [DOI: 10.1016/j.jbiomech.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/20/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
|
16
|
Siebert T, Eb M, Ryan DS, Wakeling JM, Stutzig N. Impact of Multidirectional Transverse Calf Muscle Loading on Calf Muscle Force in Young Adults. Front Physiol 2018; 9:1148. [PMID: 30174622 PMCID: PMC6107699 DOI: 10.3389/fphys.2018.01148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
It has been demonstrated that unidirectional transversal muscle loading induced by a plunger influences muscle shape and reduces muscle force. The interaction between muscle and transversal forces may depend on specific neuromuscular properties that change during a lifetime. Compression garments, applying forces from all directions in the transverse plane, are widely used in sports for example to improve performance. Differences in the loading direction (unidirectional vs. multidirectional) may have an impact on force generating capacity of muscle and, thus, on muscle performance. The aim of this study was to examine the effect of multidirectional transversal loads, using a sling looped around the calf, on the isometric force during plantarflexions. Young male adults (25.7 ± 1.5 years, n = 15) were placed in a prone position in a calf press apparatus. The posterior tibial nerve was stimulated to obtain the maximal double-twitch force of the calf muscles with (59.4 and 108.4 N) and without multidirectional transverse load. Compared to the unloaded condition, the rate of force development (RFD) was reduced by 5.0 ± 8.1% (p = 0.048) and 6.9 ± 10.7% (p = 0.008) for the 59.4 and 108.4 N load, respectively. No significant reduction (3.2 ± 4.8%, p = 0.141) in maximum muscle force (Fm ) was found for the lower load (59.4 N), but application of the higher load (108.4 N) resulted in a significant reduction of Fm by 4.8 ± 7.0% (p = 0.008). Mean pressures induced in this study (14.3 and 26.3 mm Hg corresponding to the 59.4 and 108.4 N loads, respectively) are within the pressure range reported for compression garments. Taking the results of the present study into account, a reduction in maximum muscle force would be expected for compression garments with pressures ≥26.3 mm Hg. However, it should be noted that the loading condition (sling vs. compression garment) differs and that compression garments may influence other mechanisms contributing to force generation. For example, wearing compression garments may enhance sport performance by enhanced proprioception and reduced muscle oscillation. Thus, superposition of several effects should be considered when analyzing the impact of compression garments on more complex sport performance.
Collapse
Affiliation(s)
- Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Manuel Eb
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - David S. Ryan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, BC, Canada
| | - James M. Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, BC, Canada
| | - Norman Stutzig
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
17
|
Wick C, Böl M, Müller F, Blickhan R, Siebert T. Packing of muscles in the rabbit shank influences three-dimensional architecture of M. soleus. J Mech Behav Biomed Mater 2018; 83:20-27. [DOI: 10.1016/j.jmbbm.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022]
|
18
|
Raiteri BJ. Aponeurosis behaviour during muscular contraction: A narrative review. Eur J Sport Sci 2018; 18:1128-1138. [DOI: 10.1080/17461391.2018.1472299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Brent James Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
19
|
Dick TJM, Wakeling JM. Geometric models to explore mechanisms of dynamic shape change in skeletal muscle. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172371. [PMID: 29892420 PMCID: PMC5990834 DOI: 10.1098/rsos.172371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/06/2018] [Indexed: 05/29/2023]
Abstract
Skeletal muscle bulges when it contracts. These three-dimensional (3D) dynamic shape changes play an important role in muscle performance by altering the range of fascicle velocities over which a muscle operates. However traditional muscle models are one-dimensional (1D) and cannot fully explain in vivo shape changes. In this study we compared medial gastrocnemius behaviour during human cycling (fascicle length changes and rotations) predicted by a traditional 1D Hill-type model and by models that incorporate two-dimensional (2D) and 3D geometric constraints to in vivo measurements from B-mode ultrasound during a range of mechanical conditions ranging from 14 to 44 N m and 80 to 140 r.p.m. We found that a 1D model predicted fascicle lengths and pennation angles similar to a 2D model that allowed the aponeurosis to stretch, and to a 3D model that allowed for aponeurosis stretch and variable shape changes to occur. This suggests that if the intent of a model is to predict fascicle behaviour alone, then the traditional 1D Hill-type model may be sufficient. Yet, we also caution that 1D models are limited in their ability to infer the mechanisms by which shape changes influence muscle mechanics. To elucidate the mechanisms governing muscle shape change, future efforts should aim to develop imaging techniques able to characterize whole muscle 3D geometry in vivo during active contractions.
Collapse
Affiliation(s)
- Taylor J. M. Dick
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - James M. Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
20
|
Ateş F, Davies BL, Chopra S, Coleman-Wood K, Litchy WJ, Kaufman KR. Intramuscular Pressure of Tibialis Anterior Reflects Ankle Torque but Does Not Follow Joint Angle-Torque Relationship. Front Physiol 2018; 9:22. [PMID: 29416514 PMCID: PMC5787576 DOI: 10.3389/fphys.2018.00022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/09/2018] [Indexed: 11/21/2022] Open
Abstract
Intramuscular pressure (IMP) is the hydrostatic fluid pressure that is directly related to muscle force production. Electromechanical delay (EMD) provides a link between mechanical and electrophysiological quantities and IMP has potential to detect local electromechanical changes. The goal of this study was to assess the relationship of IMP with the mechanical and electrical characteristics of the tibialis anterior muscle (TA) activity at different ankle positions. We hypothesized that (1) the TA IMP and the surface EMG (sEMG) and fine-wire EMG (fwEMG) correlate to ankle joint torque, (2) the isometric force of TA increases at increased muscle lengths, which were imposed by a change in ankle angle and IMP follows the length-tension relationship characteristics, and (3) the electromechanical delay (EMD) is greater than the EMD of IMP during isometric contractions. Fourteen healthy adults [7 female; mean (SD) age = 26.9 (4.2) years old with 25.9 (5.5) kg/m2 body mass index] performed (i) three isometric dorsiflexion (DF) maximum voluntary contraction (MVC) and (ii) three isometric DF ramp contractions from 0 to 80% MVC at rate of 15% MVC/second at DF, Neutral, and plantarflexion (PF) positions. Ankle torque, IMP, TA fwEMG, and TA sEMG were measured simultaneously. The IMP, fwEMG, and sEMG were significantly correlated to the ankle torque during ramp contractions at each ankle position tested. This suggests that IMP captures in vivo mechanical properties of active muscles. The ankle torque changed significantly at different ankle positions however, the IMP did not reflect the change. This is explained with the opposing effects of higher compartmental pressure at DF in contrast to the increased force at PF position. Additionally, the onset of IMP activity is found to be significantly earlier than the onset of force which indicates that IMP can be designed to detect muscular changes in the course of neuromuscular diseases impairing electromechanical transmission.
Collapse
Affiliation(s)
- Filiz Ateş
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Brenda L Davies
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Swati Chopra
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Krista Coleman-Wood
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - William J Litchy
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Kenton R Kaufman
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
21
|
Siebert T, Stutzig N, Rode C. A hill-type muscle model expansion accounting for effects of varying transverse muscle load. J Biomech 2018; 66:57-62. [PMID: 29154088 DOI: 10.1016/j.jbiomech.2017.10.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/21/2017] [Accepted: 10/28/2017] [Indexed: 11/29/2022]
Abstract
Recent studies demonstrated that uniaxial transverse loading (FG) of a rat gastrocnemius medialis muscle resulted in a considerable reduction of maximum isometric muscle force (ΔFim). A hill-type muscle model assuming an identical gearing G between both ΔFim and FG as well as lifting height of the load (Δh) and longitudinal muscle shortening (ΔlCC) reproduced experimental data for a single load. Here we tested if this model is able to reproduce experimental changes in ΔFim and Δh for increasing transverse loads (0.64 N, 1.13 N, 1.62 N, 2.11 N, 2.60 N). Three different gearing ratios were tested: (I) constant Gc representing the idea of a muscle specific gearing parameter (e.g. predefined by the muscle geometry), (II) Gexp determined in experiments with varying transverse load, and (III) Gf that reproduced experimental ΔFim for each transverse load. Simulations using Gc overestimated ΔFim (up to 59%) and Δh (up to 136%) for increasing load. Although the model assumption (equal G for forces and length changes) held for the three lower loads using Gexp and Gf, simulations resulted in underestimation of ΔFim by 38% and overestimation of Δh by 58% for the largest load, respectively. To simultaneously reproduce experimental ΔFim and Δh for the two larger loads, it was necessary to reduce Fim by 1.9% and 4.6%, respectively. The model seems applicable to account for effects of muscle deformation within a range of transverse loading when using a linear load-dependent function for G.
Collapse
Affiliation(s)
- Tobias Siebert
- Institute of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.
| | - Norman Stutzig
- Institute of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Christian Rode
- Department of Motion Science, Friedrich-Schiller University Jena, Jena, Germany
| |
Collapse
|
22
|
Driscoll M. Fascia – The unsung hero of spine biomechanics. J Bodyw Mov Ther 2018; 22:90-91. [DOI: 10.1016/j.jbmt.2017.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/24/2022]
|
23
|
Changes in three-dimensional muscle structure of rabbit gastrocnemius, flexor digitorum longus, and tibialis anterior during growth. J Mech Behav Biomed Mater 2017; 74:507-519. [DOI: 10.1016/j.jmbbm.2017.07.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023]
|