1
|
Bowers R, Burgos N, Meshanko R, Thaker S, Yan A, O'Fallon S, Blumstein DT. Does visual or mechanosensory disruption influence risk assessment in coral reef fishes: a preliminary study. JOURNAL OF FISH BIOLOGY 2024; 105:1919-1928. [PMID: 39305098 DOI: 10.1111/jfb.15941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 09/05/2024] [Indexed: 12/18/2024]
Abstract
Interpreting and responding to environmental cues from different modalities has survival value. In fish, the role of multimodal perception has been studied in regard to both foraging and risk assessment, with modalities including vision, olfaction, and mechanoreception via lateral lines. We studied reef fish boldness by placing novel objects that obstructed vision, lateral line use, or both into a coral reef environment with native algal samples inside, and then quantifying exploration as a function of obstruction type and as a function of functional diet groups (herbivores, omnivores, carnivores). Fish were more neophobic with more sensory obstructions, displaying longer latencies to visitation across all novel objects. Fish were also less likely to pass by objects that blocked multiple perceptual modalities. Across diets, there is early evidence that different functional groups respond differently to novelty. However, this conclusion requires further study. Overall, our findings provide key insights into perceptual ecology. In turn, this knowledge can be applied to understanding the effects of novel anthropogenic modifications in the marine environment. Such modifications may include positive activities like the construction of substrates to restore coral reefs, coral transplantation to restore reefs, as well as the negative consequences of construction and pollution.
Collapse
Affiliation(s)
- Riley Bowers
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Nicholas Burgos
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Ryan Meshanko
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Sapna Thaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Allison Yan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Sean O'Fallon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
2
|
Jones AE, Maia A, Conway KW, Webb JF. The Silverjaw Minnow, Ericymba buccata: An Extraordinary Lateral Line System and its Contribution to Prey Detection. Integr Comp Biol 2024; 64:459-479. [PMID: 38992208 PMCID: PMC11406156 DOI: 10.1093/icb/icae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Fishes use their mechanosensory lateral line (LL) system to detect local water flows in different behavioral contexts, including the detection of prey. The LL system is comprised of neuromast receptor organs on the skin (superficial neuromasts) and within bony canals (canal neuromasts). Most fishes have one cranial LL canal phenotype, but the silverjaw minnow (Ericymba buccata) has two: narrow canals dorsal and caudal to the eye and widened canals ventral to the eye and along the mandible. The ventrally directed widened LL canals have been hypothesized to be an adaptation for detection of their benthic prey. Multiple morphological methods were used to describe the narrow and widened canals and canal neuromasts in detail. The primary distribution of hundreds of superficial neuromasts and taste buds ventral to the eye and on the mandible (described here for the first time) suggests additional sensory investment for detecting flow and chemical stimuli emanating from benthic prey. The hypothesis that the LL system mediates prey localization was tested by measuring five parameters in behavioral trials in which the combination of sensory modalities available to fish was manipulated (four experimental treatments). Fish detected and localized prey regardless of available sensory modalities and they were able to detect prey in the dark in the absence of LL input (LL ablation with neomycin sulfate) revealing that chemoreception was sufficient to mediate benthic prey detection, localization, and consumption. However, elimination of LL input resulted in a change in the angle of approach to live (mobile) prey even when visual input was available, suggesting that mechanosensory input contributes to the successful detection and localization of prey. The results of this study demonstrate that the extraordinary LL canal system of the silverjaw minnow, in addition to the large number of superficial neuromasts, and the presence of numerous extraoral taste buds, likely represent adaptations for multimodal integration of sensory inputs contributing to foraging behavior in this species. The morphological and behavioral results of this study both suggest that this species would be an excellent model for future comparative structural and functional studies of sensory systems in fishes.
Collapse
Affiliation(s)
- Aubree E Jones
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Anabela Maia
- Department of Biology, Rhode Island College, 600 Mount Pleasant Avenue Providence, RI 02908, USA
| | - Kevin W Conway
- Department of Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Blvd, College Station, TX 77843, USA
| | - Jacqueline F Webb
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| |
Collapse
|
3
|
Webb JF. Structural and functional evolution of the mechanosensory lateral line system of fishesa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3526-3542. [PMID: 38171014 PMCID: PMC10908562 DOI: 10.1121/10.0022565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
The mechanosensory lateral line system is the flow sensing system present in all 34 000+ species of fishes. Its neuromast receptor organs, located on the skin or in bony canals on the head and tubed scales on the trunk, respond to the near field component of acoustic stimuli as well as short range, low frequency (0-200 Hz) water flows of biotic and abiotic origin. Here, I discuss the genesis of my research career and its focus on the structural and functional evolution of the lateral line system among a wide taxonomic range of fishes including those from different aquatic habitats (tropical lakes to coral reefs and the deep sea). I discuss the importance of investigating structure before function, using investigations in my laboratory that had unexpected outcomes, as well as the role of serendipity in the evolution of a career and in the nature of scientific discovery.
Collapse
Affiliation(s)
- Jacqueline F Webb
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
4
|
Brown AD, Hayward T, Portfors CV, Coffin AB. On the value of diverse organisms in auditory research: From fish to flies to humans. Hear Res 2023; 432:108754. [PMID: 37054531 PMCID: PMC10424633 DOI: 10.1016/j.heares.2023.108754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Historically, diverse organisms have contributed to our understanding of auditory function. In recent years, the laboratory mouse has become the prevailing non-human model in auditory research, particularly for biomedical studies. There are many questions in auditory research for which the mouse is the most appropriate (or the only) model system available. But mice cannot provide answers for all auditory problems of basic and applied importance, nor can any single model system provide a synthetic understanding of the diverse solutions that have evolved to facilitate effective detection and use of acoustic information. In this review, spurred by trends in funding and publishing and inspired by parallel observations in other domains of neuroscience, we highlight a few examples of the profound impact and lasting benefits of comparative and basic organismal research in the auditory system. We begin with the serendipitous discovery of hair cell regeneration in non-mammalian vertebrates, a finding that has fueled an ongoing search for pathways to hearing restoration in humans. We then turn to the problem of sound source localization - a fundamental task that most auditory systems have been compelled to solve despite large variation in the magnitudes and kinds of spatial acoustic cues available, begetting varied direction-detecting mechanisms. Finally, we consider the power of work in highly specialized organisms to reveal exceptional solutions to sensory problems - and the diverse returns of deep neuroethological inquiry - via the example of echolocating bats. Throughout, we consider how discoveries made possible by comparative and curiosity-driven organismal research have driven fundamental scientific, biomedical, and technological advances in the auditory field.
Collapse
Affiliation(s)
- Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St, Seattle, WA, 98105 USA; Virginia-Merrill Bloedel Hearing Research Center, University of Washington, 1701 NE Columbia Rd, Seattle, WA, 98195 USA.
| | - Tamasen Hayward
- College of Arts and Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Christine V Portfors
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Allison B Coffin
- College of Arts and Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA; School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA; Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA.
| |
Collapse
|
5
|
Scott E, Edgley DE, Smith A, Joyce DA, Genner MJ, Ioannou CC, Hauert S. Lateral line morphology, sensory perception and collective behaviour in African cichlid fish. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221478. [PMID: 36704254 PMCID: PMC9874273 DOI: 10.1098/rsos.221478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
The lateral line system of fishes provides cues for collective behaviour, such as shoaling, but it remains unclear how anatomical lateral line variation leads to behavioural differences among species. Here we studied associations between lateral line morphology and collective behaviour using two morphologically divergent species and their second-generation hybrids. We identify collective behaviours associated with variation in canal and superficial lateral line morphology, with closer proximities to neighbouring fish associated with larger canal pore sizes and fewer superficial neuromasts. A mechanistic understanding of the observed associations was provided by hydrodynamic modelling of an artificial lateral line sensor, which showed that simulated canal-based neuromasts were less susceptible to saturation during unidirectional movement than simulated superficial neuromasts, while increasing the canal pore size of the simulated lateral line sensor elevated sensitivity to vortices shed by neighbouring fish. Our results propose a mechanism behind lateral line flow sensing during collective behaviour in fishes.
Collapse
Affiliation(s)
- Elliott Scott
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Duncan E. Edgley
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Alan Smith
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK
| | - Domino A. Joyce
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK
| | - Martin J. Genner
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| |
Collapse
|
6
|
Mekdara PJ, Tirmizi S, Schwalbe MAB, Tytell ED. Comparison of Aminoglycoside Antibiotics and Cobalt Chloride for Ablation of the Lateral Line System in Giant Danios. Integr Org Biol 2022; 4:obac012. [PMID: 35359665 PMCID: PMC8964175 DOI: 10.1093/iob/obac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synopsis
The mechanoreceptive lateral line system in fish is composed of neuromasts containing hair cells, which can be temporarily ablated by aminoglycoside antibiotics and heavy metal ions. These chemicals have been used for some time in studies exploring the functional role of the lateral line system in many fish species. However, little information on the relative effectiveness and rate of action of these chemicals for ablation is available. In particular, aminoglycoside antibiotics are thought to affect canal neuromasts, which sit in bony or trunk canals, differently from superficial neuromasts, which sit directly on the skin. This assumed ablation pattern has not been fully quantified for commonly used lateral line ablation agents. This study provides a detailed characterization of the effects of two aminoglycoside antibiotics, streptomycin sulfate and neomycin sulfate, and a heavy metal salt, cobalt (II) chloride hexahydrate (CoCl2), on the ablation of hair cells in canal and superficial neuromasts in the giant danio (Devario aequipinnatus) lateral line system, as a model for adult teleost fishes. We also quantified the regeneration of hair cells after ablation using CoCl2 and gentamycin sulfate to verify the time course to full recovery, and whether the ablation method affects the recovery time. Using a fluorescence stain, 4-Di-2-ASP, we verified the effectiveness of each chemical by counting the number of fluorescing canal and superficial neuromasts present throughout the time course of ablation and regeneration of hair cells. We found that streptomycin and neomycin were comparably effective at ablating all neuromasts in less than 12 h using a 250 μM dosage and in less than 8 h using a 500 μM dosage. The 500 μM dosage of either streptomycin or neomycin can ablate hair cells in superficial neuromasts within 2–4 h, while leaving those in canal neuromasts mostly intact. CoCl2 (0.1 mM) worked the fastest, ablating all of the hair cells in less than 6 h. Complete regeneration of the neuromasts in the lateral line system took 7 days regardless of chemicals used to ablate the hair cells. This study adds to the growing knowledge in hearing research about how effective specific chemicals are at ablating hair cells in the acoustic system of vertebrates.
Collapse
Affiliation(s)
- P J Mekdara
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35, 2B-1004, Bethesda, MD 20892, USA
| | - S Tirmizi
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - M A B Schwalbe
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
- Department of Biology, Lake Forest College, 555 N Sheridan Road, Lake Forest, IL 60045, USA
| | - E D Tytell
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| |
Collapse
|
7
|
Mekdara PJ, Nasimi F, Schwalbe MAB, Tytell ED. Tail Beat Synchronization during Schooling Requires a Functional Posterior Lateral Line System in Giant Danios, Devario aequipinnatus. Integr Comp Biol 2021; 61:427-441. [PMID: 33982077 DOI: 10.1093/icb/icab071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Swimming in schools has long been hypothesized to allow fish to save energy. Fish must exploit the energy from the wakes of their neighbors for maximum energy savings, a feat that requires them to both synchronize their tail movements and stay in certain positions relative to their neighbors. To maintain position in a school, we know that fish use multiple sensory systems, mainly their visual and flow sensing lateral line system. However, how fish synchronize their swimming movements in a school is still not well understood. Here, we test the hypothesis that this synchronization may depend on functional differences in the two branches of the lateral line sensory system that detects water movements close to the fish's body. The anterior branch, located on the head, encounters largely undisturbed free-stream flow, while the posterior branch, located on the trunk and tail, encounters flow that has been affected strongly by the tail movement. Thus, we hypothesize that the anterior branch may be more important for regulating position within the school, while the posterior branch may be more important for synchronizing tail movements. Our study examines functional differences in the anterior and posterior lateral line in the structure and tail synchronization of fish schools. We used a widely available aquarium fish that schools, the giant danio, Devario equipinnatus. Fish swam in a large circular tank where stereoscopic videos recordings were used to reconstruct the 3D position of each individual within the school and to track tail kinematics to quantify synchronization. For one fish in each school, we ablated using cobalt chloride either the anterior region only, the posterior region only, or the entire lateral line system. We observed that ablating any region of the lateral line system causes fish to swim in a "box" or parallel swimming formation, which was different from the diamond formation observed in normal fish. Ablating only the anterior region did not substantially reduce tail beat synchronization but ablating only the posterior region caused fish to stop synchronizing their tail beats, largely because the tail beat frequency increased dramatically. Thus, the anterior and posterior lateral line system appears to have different behavioral functions in fish. Most importantly, we showed that the posterior lateral line system played a major role in determining tail beat synchrony in schooling fish. Without synchronization, swimming efficiency decreases, which can have an impact on the fitness of the individual fish and group.
Collapse
Affiliation(s)
- Prasong J Mekdara
- Department of Biology, Tufts University, 200 Boston Ave Ste 4700, Medford, MA 02155, USA.,National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD, USA
| | - Fazila Nasimi
- Department of Biology, Tufts University, 200 Boston Ave Ste 4700, Medford, MA 02155, USA
| | - Margot A B Schwalbe
- Department of Biology, Lake Forest College, 555 N Sheridan Road, Lake Forest, IL 60045, USA
| | - Eric D Tytell
- Department of Biology, Tufts University, 200 Boston Ave Ste 4700, Medford, MA 02155, USA
| |
Collapse
|
8
|
Body-generated hydrodynamic flows influence male–male contests and female mate choice in a freshwater fish. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Mogdans J. Sensory ecology of the fish lateral-line system: Morphological and physiological adaptations for the perception of hydrodynamic stimuli. JOURNAL OF FISH BIOLOGY 2019; 95:53-72. [PMID: 30873616 DOI: 10.1111/jfb.13966] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Fishes are able to detect and perceive the hydrodynamic and physical environment they inhabit and process this sensory information to guide the resultant behaviour through their mechanosensory lateral-line system. This sensory system consists of up to several thousand neuromasts distributed across the entire body of the animal. Using the lateral-line system, fishes perceive water movements of both biotic and abiotic origin. The anatomy of the lateral-line system varies greatly between and within species. It is still a matter of debate as to how different lateral-line anatomies reflect adaptations to the hydrodynamic conditions to which fishes are exposed. While there are many accounts of lateral-line system adaptations for the detection of hydrodynamic signals in distinct behavioural contexts and environments for specific fish species, there is only limited knowledge on how the environment influences intra and interspecific variations in lateral-line morphology. Fishes live in a wide range of habitats with highly diverse hydrodynamic conditions, from pools and lakes and slowly moving deep-sea currents to turbulent and fast running rivers and rough coastal surf regions. Perhaps surprisingly, detailed characterisations of the hydrodynamic properties of natural water bodies are rare. In particular, little is known about the spatio-temporal patterns of the small-scale water motions that are most relevant for many fish behaviours, making it difficult to relate environmental stimuli to sensory system morphology and function. Humans use bodies of water extensively for recreational, industrial and domestic purposes and in doing so often alter the aquatic environment, such as through the release of toxicants, the blocking of rivers by dams and acoustic noise emerging from boats and construction sites. Although the effects of anthropogenic interferences are often not well understood or quantified, it seems obvious that they change not only water quality and appearance but also, they alter hydrodynamic conditions and thus the types of hydrodynamic stimuli acting on fishes. To date, little is known about how anthropogenic influences on the aquatic environment affect the morphology and function of sensory systems in general and the lateral-line system in particular. This review starts out by briefly describing naturally occurring hydrodynamic stimuli and the morphology and neurobiology of the fish lateral-line system. In the main part, adaptations of the fish lateral-line system for the detection and analysis of water movements during various behaviours are presented. Finally, anthropogenic influences on the aquatic environment and potential effects on the fish lateral-line system are discussed.
Collapse
|
10
|
Mekdara PJ, Schwalbe MAB, Coughlin LL, Tytell ED. The effects of lateral line ablation and regeneration in schooling giant danios. ACTA ACUST UNITED AC 2018. [PMID: 29530974 DOI: 10.1242/jeb.175166] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fish use multiple sensory systems, including vision and their lateral line system, to maintain position and speed within a school. Although previous studies have shown that ablating the lateral line alters schooling behavior, no one has examined how the behavior recovers as the sensory system regenerates. We studied how schooling behavior changes in giant danios, Devario aequipinnatus, when their lateral line system is chemically ablated and after the sensory hair cells regenerate. We found that fish could school normally immediately after chemical ablation, but that they had trouble schooling 1-2 weeks after the chemical treatment, when the hair cells had fully regenerated. We filmed groups of giant danios with two high-speed cameras and reconstructed the three-dimensional positions of each fish within a group. One fish in the school was treated with gentamycin to ablate all hair cells. Both types of neuromasts (canal and superficial) were completely ablated after treatment, but fully regenerated after 1 week. We quantified the structure of the school using nearest neighbor distance, bearing, elevation, and the cross-correlation of velocity between each pair of fish. Treated fish maintained a normal position within the school immediately after the lateral line ablation, but could not school normally 1 or 2 weeks after treatment, even though the neuromasts had fully regenerated. By 4-8 weeks post-treatment, the treated fish could again school normally. These results demonstrate that the behavioral recovery after lateral line ablation is a longer process than the regeneration of the hair cells themselves.
Collapse
Affiliation(s)
- Prasong J Mekdara
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - Margot A B Schwalbe
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - Laura L Coughlin
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - Eric D Tytell
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| |
Collapse
|
11
|
Niesterok B, Krüger Y, Wieskotten S, Dehnhardt G, Hanke W. Hydrodynamic detection and localization of artificial flatfish breathing currents by harbour seals (Phoca vitulina). ACTA ACUST UNITED AC 2017; 220:174-185. [PMID: 28100802 DOI: 10.1242/jeb.148676] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022]
Abstract
Harbour seals are known to be opportunistic feeders, whose diet consists mainly of pelagic and benthic fish, such as flatfish. As flatfish are often cryptic and do not produce noise, we hypothesized that harbour seals are able to detect and localize flatfish using their hydrodynamic sensory system (vibrissae), as fish emit water currents through their gill openings (breathing currents). To test this hypothesis, we created an experimental platform where an artificial breathing current was emitted through one of eight different openings. Three seals were trained to search for the active opening and station there for 5 s. Half of the trials were conducted with the seal blindfolded with an eye mask. In blindfolded and non-blindfolded trials, all seals performed significantly better than chance. The seals crossed the artificial breathing current (being emitted into the water column at an angle of 45 deg to the ground) from different directions. There was no difference in performance when the seals approached from in front, from behind or from the side. All seals responded to the artificial breathing currents by directly moving their snout towards the opening from which the hydrodynamic stimulus was emitted. Thus, they were also able to extract directional information from the hydrodynamic stimulus. Hydrodynamic background noise and the swimming speed of the seals were also considered in this study as these are aggravating factors that seals in the wild have to face during foraging. By creating near-natural conditions, we show that harbour seals have the ability to detect a so-far overlooked type of stimulus.
Collapse
Affiliation(s)
- Benedikt Niesterok
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, Rostock 18059, Germany
| | - Yvonne Krüger
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, Rostock 18059, Germany
| | - Sven Wieskotten
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, Rostock 18059, Germany
| | - Guido Dehnhardt
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, Rostock 18059, Germany
| | - Wolf Hanke
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, Rostock 18059, Germany
| |
Collapse
|
12
|
Niesterok B, Dehnhardt G, Hanke W. Hydrodynamic sensory threshold in harbour seals (Phoca vitulina) for artificial flatfish breathing currents. J Exp Biol 2017; 220:2364-2371. [DOI: 10.1242/jeb.158055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Harbour seals have the ability to detect benthic fish such as flatfish using the water currents these fish emit through their gills (breathing currents). We investigated the sensory threshold in harbour seals for this specific hydrodynamic stimulus under conditions which are realistic for seals hunting in the wild. We used an experimental platform where an artificial breathing current was emitted through one of eight different nozzles. Two seals were trained to search for the active nozzle. Each experimental session consisted of eight test trials of a particular stimulus intensity and 16 supra-threshold trials of high stimulus intensity. Test trials were conducted with the animals blindfolded. To determine the threshold, a series of breathing currents differing in intensity was used. For each intensity, three sessions were run. The threshold in terms of maximum water velocity within the breathing current was 4.2 cm s−1 for one seal and 3.7 cm s−1 for the other. We measured background flow velocities from 1.8 to 3.4 cm s−1. Typical swimming speeds for both animals were around 0.5 m s−1. Swimming speed differed between successful and unsuccessful trials. It appears that swimming speed is restricted for the successful detection of a breathing current close to the threshold. Our study is the first to assess a sensory threshold of the vibrissal system for a moving harbour seal under near-natural conditions. Furthermore, this threshold was defined for a natural type of stimulus differing from classical dipole stimuli which have been widely used in threshold determination so far.
Collapse
Affiliation(s)
- Benedikt Niesterok
- University of Rostock, Institute for Biosciences, Department of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Guido Dehnhardt
- University of Rostock, Institute for Biosciences, Department of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Wolf Hanke
- University of Rostock, Institute for Biosciences, Department of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| |
Collapse
|
13
|
Butler JM, Maruska KP. Mechanosensory signaling as a potential mode of communication during social interactions in fishes. ACTA ACUST UNITED AC 2016; 219:2781-2789. [PMID: 27655819 DOI: 10.1242/jeb.133801] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Signals produced during social interactions convey crucial information about the sender's identity, quality, reproductive state and social status. Fishes can detect near-body water movements via the mechanosensory lateral line system, and this sense is used during several common fish behaviors, such as schooling, rheotaxis and predator-prey interactions. In addition, many fish behaviors, such as aggressive lateral displays and reproductive body quivers, involve fin and body motions that generate water movements that can be detected by the lateral line system of nearby fish. This mechanosensory system is well studied for its role in obstacle avoidance and detection of inadvertent hydrodynamic cues generated during schooling and predator-prey interactions; however, little research has focused on the role of mechanosensory communication during social interactions. Here, we summarize the current literature on the use of mechanosensation-mediated behaviors during agonistic and reproductive encounters, as well as during parental care. Based on these studies, we hypothesize that mechanosensory signaling is an important but often overlooked mode of communication during conspecific social interactions in many fish species, and we highlight its importance during multimodal communication. Finally, we suggest potential avenues of future research that would allow us to better understand the role of mechanosensation in fish communication.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
14
|
Becker EA, Bird NC, Webb JF. Post-embryonic development of canal and superficial neuromasts and the generation of two cranial lateral line phenotypes. J Morphol 2016; 277:1273-91. [DOI: 10.1002/jmor.20574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 05/23/2016] [Accepted: 06/18/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Emily A. Becker
- Department of Biological Sciences; University of Rhode Island; 120 Flagg Road Kingston Rhode Island 02881
| | - Nathan C. Bird
- Department of Biological Sciences; University of Rhode Island; 120 Flagg Road Kingston Rhode Island 02881
| | - Jacqueline F. Webb
- Department of Biological Sciences; University of Rhode Island; 120 Flagg Road Kingston Rhode Island 02881
| |
Collapse
|
15
|
Butler JM, Field KE, Maruska KP. Cobalt Chloride Treatment Used to Ablate the Lateral Line System Also Impairs the Olfactory System in Three Freshwater Fishes. PLoS One 2016; 11:e0159521. [PMID: 27416112 PMCID: PMC4944935 DOI: 10.1371/journal.pone.0159521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022] Open
Abstract
Fishes use multimodal signals during both inter- and intra-sexual displays to convey information about their sex, reproductive state, and social status. These complex behavioral displays can include visual, auditory, olfactory, tactile, and hydrodynamic signals, and the relative role of each sensory channel in these complex multi-sensory interactions is a common focus of neuroethology. The mechanosensory lateral line system of fishes detects near-body water movements and is implicated in a variety of behaviors including schooling, rheotaxis, social communication, and prey detection. Cobalt chloride is commonly used to chemically ablate lateral line neuromasts, thereby eliminating water-movement cues to test for mechanosensory-mediated behavioral functions. However, cobalt acts as a nonspecific calcium channel antagonist and could potentially disrupt function of all superficially located sensory receptor cells, including those for chemosensing. Here, we examined whether CoCl2 treatment used to ablate the lateral line system also impairs olfaction in three freshwater fishes, the African cichlid fish Astatotilapia burtoni, goldfish Carassius auratus, and the Mexican blind cavefish Astyanax mexicanus. To examine the impact of CoCl2 on the activity of peripheral receptors, we quantified DASPEI fluorescence intensity of the olfactory epithelium from fish exposed to control and CoCl2 solutions. In addition, we examined brain activation in olfactory processing regions of A. burtoni immersed in either control or cobalt solutions. All three species exposed to CoCl2 had decreased DASPEI staining of the olfactory epithelium, and in A. burtoni, cobalt treatment caused reduced neural activation in olfactory processing regions of the brain. To our knowledge this is the first empirical evidence demonstrating that the same CoCl2 treatment used to ablate the lateral line system also impairs olfactory function. These data have important implications for the use of CoCl2 in future research and suggest that previous studies using CoCl2 should be reinterpreted in the context of both impaired mechanoreception and olfaction.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, 107 Life Sciences Bldg., Baton Rouge, LA, 70803, United States of America
| | - Karen E Field
- Department of Biological Sciences, Louisiana State University, 107 Life Sciences Bldg., Baton Rouge, LA, 70803, United States of America
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 107 Life Sciences Bldg., Baton Rouge, LA, 70803, United States of America
| |
Collapse
|