1
|
Han T, Lombardelli G, Peterson SD, Porfiri M. Inferring the metabolic rate of zebrafish from ventilation frequency. JOURNAL OF FISH BIOLOGY 2024; 105:1939-1950. [PMID: 39319507 DOI: 10.1111/jfb.15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Fish schooling has attracted the interest of the scientific community for centuries. Energy savings have been long posited to be a key determinant for the emergence of schooling patterns. Yet, current methodologies do not allow the precise quantification of the metabolic rate of specific individuals within the school, typically leaving researchers with only a single, global measurement of metabolic rate for the collective. In this paper, we demonstrate the feasibility of inferring metabolic rate of swimming fish using the mouth-opening frequency, a simple proxy that can be scored utilizing video recordings in the laboratory or in the field, even for small fish. The mouth-opening frequency is independent of hydrodynamic interactions within the school, thereby mitigating potential confounding factors that arise when using locomotory measures associated with tail-beat motion. We assessed the reliability of mouth-opening frequency as a proxy for metabolic rate by conducting experiments on zebrafish (Danio rerio) using swimming respirometry. We varied the flow speed from 0.8 to 3.2 body lengths per second and extracted tail-beat motion and mouth opening from video recordings. Our results revealed a strong correlation between oxygen uptake and mouth-opening frequency for nonzero flow speeds but not in quiescent water. Contrary to our expectations, we did not find evidence in favor of the use of tail-beat frequency as a proxy for metabolic rate. Overall, our results open the door to the study of individual metabolic rates in fish schools without confounding factors related to hydrodynamic interactions.
Collapse
Affiliation(s)
- Tianjun Han
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
- Center for Urban Science and Progress, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| | - Giulia Lombardelli
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
- Center for Urban Science and Progress, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| | - Sean D Peterson
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
- Center for Urban Science and Progress, Tandon School of Engineering, New York University, Brooklyn, New York, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| |
Collapse
|
2
|
Gabler-Smith MK, Coughlin DJ, Fish FE. Morphological and histochemical characterization of the pectoral fin muscle of batoids. J Morphol 2023; 284:e21548. [PMID: 36538574 DOI: 10.1002/jmor.21548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Batoids differ from other elasmobranch fishes in that they possess dorsoventrally flattened bodies with enlarged muscled pectoral fins. Most batoids also swim using either of two modes of locomotion: undulation or oscillation of the pectoral fins. In other elasmobranchs (e.g., sharks), the main locomotory muscle is located in the axial myotome; in contrast, the main locomotory muscle in batoids is found in the enlarged pectoral fins. The pectoral fin muscles of sharks have a simple structure, confined to the base of the fin; however, little to no data are available on the more complex musculature within the pectoral fins of batoids. Understanding the types of fibers and their arrangement within the pectoral fins may elucidate how batoid fishes are able to utilize such unique swimming modes. In the present study, histochemical methods including succinate dehydrogenase (SDH) and immunofluoresence were used to determine the different fiber types comprising these muscles in three batoid species: Atlantic stingray (Dasyatis sabina), ocellate river stingray (Potamotrygon motoro) and cownose ray (Rhinoptera bonasus). All three species had muscles comprised of two muscle fiber types (slow-red and fast-white). The undulatory species, D. sabina and P. motoro, had a larger proportion of fast-white muscle fibers compared to the oscillatory species, R. bonasus. The muscle fiber sizes were similar between each species, though generally smaller compared to the axial musculature in other elasmobranch fishes. These results suggest that batoid locomotion can be distinguished using muscle fiber type proportions. Undulatory species are more benthic with fast-white fibers allowing them to contract their muscles quickly, as a possible means of escape from potential predators. Oscillatory species are pelagic and are known to migrate long distances with muscles using slow-red fibers to aid in sustained swimming.
Collapse
Affiliation(s)
- Molly K Gabler-Smith
- Department of Biology, West Chester University, West Chester, Pennsylvania, USA.,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - David J Coughlin
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | - Frank E Fish
- Department of Biology, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
3
|
Convergence of undulatory swimming kinematics across a diversity of fishes. Proc Natl Acad Sci U S A 2021; 118:2113206118. [PMID: 34853171 DOI: 10.1073/pnas.2113206118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 11/18/2022] Open
Abstract
Fishes exhibit an astounding diversity of locomotor behaviors from classic swimming with their body and fins to jumping, flying, walking, and burrowing. Fishes that use their body and caudal fin (BCF) during undulatory swimming have been traditionally divided into modes based on the length of the propulsive body wave and the ratio of head:tail oscillation amplitude: anguilliform, subcarangiform, carangiform, and thunniform. This classification was first proposed based on key morphological traits, such as body stiffness and elongation, to group fishes based on their expected swimming mechanics. Here, we present a comparative study of 44 diverse species quantifying the kinematics and morphology of BCF-swimming fishes. Our results reveal that most species we studied share similar oscillation amplitude during steady locomotion that can be modeled using a second-degree order polynomial. The length of the propulsive body wave was shorter for species classified as anguilliform and longer for those classified as thunniform, although substantial variability existed both within and among species. Moreover, there was no decrease in head:tail amplitude from the anguilliform to thunniform mode of locomotion as we expected from the traditional classification. While the expected swimming modes correlated with morphological traits, they did not accurately represent the kinematics of BCF locomotion. These results indicate that even fish species differing as substantially in morphology as tuna and eel exhibit statistically similar two-dimensional midline kinematics and point toward unifying locomotor hydrodynamic mechanisms that can serve as the basis for understanding aquatic locomotion and controlling biomimetic aquatic robots.
Collapse
|
4
|
Tuya F, Aguilar R, Espino F, Bosch NE, Meyers EKM, Jiménez‐Alvarado D, Castro JJ, Otero‐Ferrer F, Haroun R. Differences in the occurrence and abundance of batoids across an oceanic archipelago using complementary data sources: Implications for conservation. Ecol Evol 2021; 11:16704-16715. [PMID: 34938467 PMCID: PMC8668743 DOI: 10.1002/ece3.8290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/05/2022] Open
Abstract
Batoids, distributed from shallow to abyssal depths, are considerably vulnerable to anthropogenic threats. Data deficiencies on the distribution patterns of batoids, however, challenge their effective management and conservation. In this study, we took advantage of the particular geological and geomorphological configuration of the Canary Islands, across an east-to-west gradient in the eastern Atlantic Ocean, to assess whether patterns in the occurrence and abundance of batoids varied between groups of islands (western, central, and eastern). Data were collected from shallow (<40 m, via underwater visual counts and by a local community science program) and deep waters (60-700 m, via ROV deployments). Eleven species of batoids, assessed by the IUCN Red List of Threatened Species, were registered, including three "Critically Endangered" (Aetomylaeus bovinus, Dipturus batis, and Myliobatis aquila), three "Endangered" (Gymnura altavela, Mobula mobular, and Rostroraja alba), two "Vulnerable" (Dasyatis pastinaca and Raja maderenseis), and two "Data Deficient" (Taeniurops grabata and Torpedo marmorata). Also, a "Least Concern" species (Bathytoshia lata) was observed. Overall, batoids were ~1 to 2 orders of magnitude more abundant in the central and eastern islands, relative to the western islands. This pattern was consistent among the three sources of data and for both shallow and deep waters. This study, therefore, shows differences in the abundance of batoids across an oceanic archipelago, likely related to varying insular shelf area, availability of habitats, and proximity to the nearby continental (African) mass. Large variation in population abundances among islands suggests that "whole" archipelago management strategies are unlikely to provide adequate conservation. Instead, management plans should be adjusted individually per island and complemented with focused research to fill data gaps on the spatial use and movements of these iconic species.
Collapse
Affiliation(s)
- Fernando Tuya
- Grupo en Biodiversidad y ConservaciónIU‐ECOAQUAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | | | - Fernando Espino
- Grupo en Biodiversidad y ConservaciónIU‐ECOAQUAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | - Nestor E. Bosch
- School of Biological SciencesOceans InstituteUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | | | - David Jiménez‐Alvarado
- Grupo en Biodiversidad y ConservaciónIU‐ECOAQUAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | - Jose J. Castro
- Grupo en Biodiversidad y ConservaciónIU‐ECOAQUAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | - Francisco Otero‐Ferrer
- Grupo en Biodiversidad y ConservaciónIU‐ECOAQUAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | - Ricardo Haroun
- Grupo en Biodiversidad y ConservaciónIU‐ECOAQUAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| |
Collapse
|
5
|
Kim HS, Heo JK, Choi IG, Ahn SH, Chu WS. Shape memory alloy-driven undulatory locomotion of a soft biomimetic ray robot. BIOINSPIRATION & BIOMIMETICS 2021; 16:066006. [PMID: 34020436 DOI: 10.1088/1748-3190/ac03bc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to imitate undulatory motion, which is a commonly observed swimming mechanism of rays, using a soft morphing actuator. To achieve the undulatory motion, an artificial muscle built with shape memory alloy-based soft actuators was exploited to control the shape-changing behavior of a soft fin membrane. Artificial undulating fins were divided into two categories according to the method of generating the wave motion: single and multiple actuator-driven fins. For empirical research on the transformation and propulsion behavior of each fin type, the design and construction of bound propulsors were undertaken to mimic the structural and behavioral aspects of animals. To visualize the effect of undulatory motion on the swimming efficiency test of the fin beat frequency, a simplified soft undulating fin with a rectangular propulsor was constructed and tested. Additionally, dynamic modeling of the fin tip in wave-traveling was conducted for comparison and optimization. To optimize the thrust and propulsion efficiency of robot speed, the effects of the wave amplitude control and actuator sequence on the fin behavior were examined. An untethered robot was constructed according to the experimental results of the propulsors. Both exhibited exceptional swimming efficiency and maneuverability. The multiple actuator-driven ray robot exhibited a maximum swimming speed of 0.25 body lengths per second which is almost a similar swimming speed with previously reported robots. The developed robot achieved directional swimming (forward and backward) and turning (including rotation). Underwater exploration in an artificial environment was performed using the robot.
Collapse
Affiliation(s)
- Hyung-Soo Kim
- Department of Mechanical Engineering, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jae-Kyung Heo
- Department of Mechanical Engineering, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - In-Gyu Choi
- Department of Mechanical Engineering, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sung-Hoon Ahn
- Department of Mechanical Engineering, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Advanced Machinery and Design, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Won-Shik Chu
- Department of Mechanical Convergence Engineering, Gyeongsang National University, 54, 48-Bun-gil Charyong-ro, Uichang-gu, Changwon, Gyeongnam 51391, Republic of Korea
| |
Collapse
|
6
|
Abstract
Walking is a common bipedal and quadrupedal gait and is often associated with terrestrial and aquatic organisms. Inspired by recent evidence of the neural underpinnings of primitive aquatic walking in the little skate Leucoraja erinacea, we introduce a theoretical model of aquatic walking that reveals robust and efficient gaits with modest requirements for body morphology and control. The model predicts undulatory behaviour of the system body with a regular foot placement pattern, which is also observed in the animal, and additionally predicts the existence of gait bistability between two states, one with a large energetic cost for locomotion and another associated with almost no energetic cost. We show that these can be discovered using a simple reinforcement learning scheme. To test these theoretical frameworks, we built a bipedal robot and show that its behaviours are similar to those of our minimal model: its gait is also periodic and exhibits bistability, with a low efficiency mode separated from a high efficiency mode by a 'jump' transition. Overall, our study highlights the physical constraints on the evolution of walking and provides a guide for the design of efficient biomimetic robots.
Collapse
Affiliation(s)
- F Giardina
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - L Mahadevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Physics, Harvard University, Cambridge, MA, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
7
|
Hutchison ZL, Gill AB, Sigray P, He H, King JW. Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Sci Rep 2020; 10:4219. [PMID: 32144341 PMCID: PMC7060209 DOI: 10.1038/s41598-020-60793-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/27/2020] [Indexed: 01/19/2023] Open
Abstract
Many marine animals have evolved sensory abilities to use electric and magnetic cues in essential aspects of life history, such as to detect prey, predators and mates as well as to orientate and migrate. Potential disruption of vital cues by human activities must be understood in order to mitigate potential negative influences. Cable deployments in coastal waters are increasing worldwide, in capacity and number, owing to growing demands for electrical power and telecommunications. Increasingly, the local electromagnetic environment used by electro- and magneto-sensitive species will be altered. We quantified biologically relevant behavioural responses of the presumed, magneto-receptive American lobster and the electro-sensitive Little skate to electromagnetic field (EMF) emissions of a subsea high voltage direct current (HVDC) transmission cable for domestic electricity supply. We demonstrate a striking increase in exploratory/foraging behaviour in skates in response to EMF and a more subtle exploratory response in lobsters. In addition, by directly measuring both the magnetic and electric field components of the EMF emitted by HVDC cables we found that there were DC and unexpectedly AC components. Modelling, restricted to the DC component, showed good agreement with measured results. Our cross-disciplinary study highlights the need to integrate an understanding of the natural and anthropogenic EMF environment together with the responses of sensitive animals when planning future cable deployments and predicting their environmental effects.
Collapse
Affiliation(s)
- Zoë L Hutchison
- Graduate School of Oceanography, University of Rhode Island, South Kingstown, USA.
| | - Andrew B Gill
- PANGALIA Environmental, Bedfordshire, England, UK. .,Cefas, Centre for Environment, Fisheries and Aquaculture Science, Suffolk, England, UK.
| | - Peter Sigray
- FOI, Department of Underwater Research, Stockholm, Sweden
| | - Haibo He
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, South Kingstown, USA
| | - John W King
- Graduate School of Oceanography, University of Rhode Island, South Kingstown, USA
| |
Collapse
|
8
|
Di Santo V. Ocean acidification and warming affect skeletal mineralization in a marine fish. Proc Biol Sci 2020; 286:20182187. [PMID: 30963862 DOI: 10.1098/rspb.2018.2187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ocean acidification and warming are known to alter, and in many cases decrease, calcification rates of shell and reef building marine invertebrates. However, to date, there are no datasets on the combined effect of ocean pH and temperature on skeletal mineralization of marine vertebrates, such as fishes. Here, the embryos of an oviparous marine fish, the little skate ( Leucoraja erinacea), were developmentally acclimatized to current and increased temperature and CO2 conditions as expected by the year 2100 (15 and 20°C, approx. 400 and 1100 µatm, respectively), in a fully crossed experimental design. Using micro-computed tomography, hydroxyapatite density was estimated in the mineralized portion of the cartilage in jaws, crura, vertebrae, denticles and pectoral fins of juvenile skates. Mineralization increased as a consequence of high CO2 in the cartilage of crura and jaws, while temperature decreased mineralization in the pectoral fins. Mineralization affects stiffness and strength of skeletal elements linearly, with implications for feeding and locomotion performance and efficiency. This study is, to my knowledge, the first to quantify a significant change in mineralization in the skeleton of a fish and shows that changes in temperature and pH of the oceans have complex effects on fish skeletal morphology.
Collapse
Affiliation(s)
- Valentina Di Santo
- Museum of Comparative Zoology, Harvard University , 26 Oxford Street, Cambridge, MA , USA
| |
Collapse
|
9
|
Zhu J, White C, Wainwright DK, Di Santo V, Lauder GV, Bart-Smith H. Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes. Sci Robot 2019; 4:4/34/eaax4615. [PMID: 33137777 DOI: 10.1126/scirobotics.aax4615] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/20/2019] [Indexed: 11/02/2022]
Abstract
Tuna and related scombrid fishes are high-performance swimmers that often operate at high frequencies, especially during behaviors such as escaping from predators or catching prey. This contrasts with most fish-like robotic systems that typically operate at low frequencies (< 2 hertz). To explore the high-frequency fish swimming performance space, we designed and tested a new platform based on yellowfin tuna (Thunnus albacares) and Atlantic mackerel (Scomber scombrus). Body kinematics, speed, and power were measured at increasing tail beat frequencies to quantify swimming performance and to study flow fields generated by the tail. Experimental analyses of freely swimming tuna and mackerel allow comparison with the tuna-like robotic system. The Tunabot (255 millimeters long) can achieve a maximum tail beat frequency of 15 hertz, which corresponds to a swimming speed of 4.0 body lengths per second. Comparison of midline kinematics between scombrid fish and the Tunabot shows good agreement over a wide range of frequencies, with the biggest discrepancy occurring at the caudal fin, primarily due to the rigid propulsor used in the robotic model. As frequency increases, cost of transport (COT) follows a fish-like U-shaped response with a minimum at ~1.6 body lengths per second. The Tunabot has a range of ~9.1 kilometers if it swims at 0.4 meter per second or ~4.2 kilometers at 1.0 meter per second, assuming a 10-watt-hour battery pack. These results highlight the capabilities of high-frequency biological swimming and lay the foundation to explore a fish-like performance space for bio-inspired underwater vehicles.
Collapse
Affiliation(s)
- J Zhu
- Bio-Inspired Engineering Research Laboratory (BIERL), Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22903, USA
| | - C White
- Bio-Inspired Engineering Research Laboratory (BIERL), Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22903, USA
| | - D K Wainwright
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - V Di Santo
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - G V Lauder
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - H Bart-Smith
- Bio-Inspired Engineering Research Laboratory (BIERL), Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22903, USA.
| |
Collapse
|
10
|
O'Connell KA, Santo VD, Maldonado J, Molina E, Fujita MK. A Tale of Two Skates: Comparative Phylogeography of North American Skate Species with Implications for Conservation. COPEIA 2019. [DOI: 10.1643/cg-18-114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kyle A. O'Connell
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas 76019; (KAO) ; (JM) ; and (MKF) . Send reprint request
| | - Valentina Di Santo
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
| | - Jose Maldonado
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas 76019; (KAO) ; (JM) ; and (MKF) . Send reprint request
| | - Erika Molina
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas 76019; (KAO) ; (JM) ; and (MKF) . Send reprint request
| | - Matthew K. Fujita
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas 76019; (KAO) ; (JM) ; and (MKF) . Send reprint request
| |
Collapse
|
11
|
Whitlow KR, Santini F, Oufiero CE. Convergent evolution of locomotor morphology but not performance in gymnotiform swimmers. J Evol Biol 2018; 32:76-88. [DOI: 10.1111/jeb.13399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 11/29/2022]
|
12
|
Bartol IK, Krueger PS, York CA, Thompson JT. New approaches for assessing squid fin motions: coupling proper orthogonal decomposition with volumetric particle tracking velocimetry. J Exp Biol 2018; 221:jeb.176750. [PMID: 29789404 DOI: 10.1242/jeb.176750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
Abstract
Squid, which swim using a coupled fin/jet system powered by muscular hydrostats, pose unique challenges for the study of locomotion. The high flexibility of the fins and complex flow fields generated by distinct propulsion systems require innovative techniques for locomotive assessment. For this study, we used proper orthogonal decomposition (POD) to decouple components of the fin motions and defocusing digital particle tracking velocimetry (DDPTV) to quantify the resultant 3D flow fields. Kinematic footage and DDPTV data were collected from brief squid, Lolliguncula brevis [3.1-6.5 cm dorsal mantle length (DML)], swimming freely in a water tunnel at speeds of 0.39-7.20 DML s-1 Both flap and wave components were present in all fin motions, but the relative importance of the wave components was higher for arms-first swimming than for tail-first swimming and for slower versus higher speed swimming. When prominent wave components were present, more complex interconnected vortex ring wakes were observed, while fin movements dominated by flapping resulted in more spatially separated vortex ring patterns. Although the jet often produced the majority of the thrust for steady rectilinear swimming, our results demonstrated that the fins can contribute more thrust than the jet at times, consistently produce comparable levels of lift to the jet during arms-first swimming, and can boost overall propulsive efficiency. By producing significant drag signatures, the fins can also aid in stabilization and maneuvering. Clearly, fins play multiple roles in squid locomotion, and when coupled with the jet, allow squid to perform a range of swimming behaviors integral to their ecological success.
Collapse
Affiliation(s)
- Ian K Bartol
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Paul S Krueger
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA
| | - Carly A York
- Department of Biology, Lenoir-Rhyne University, Hickory, NC 28601, USA
| | - Joseph T Thompson
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17603, USA
| |
Collapse
|
13
|
Di Santo V, Kenaley CP, Lauder GV. High postural costs and anaerobic metabolism during swimming support the hypothesis of a U-shaped metabolism-speed curve in fishes. Proc Natl Acad Sci U S A 2017; 114:13048-13053. [PMID: 29158392 PMCID: PMC5724281 DOI: 10.1073/pnas.1715141114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Swimming performance is considered a key trait determining the ability of fish to survive. Hydrodynamic theory predicts that the energetic costs required for fishes to swim should vary with speed according to a U-shaped curve, with an expected energetic minimum at intermediate cruising speeds and increasing expenditure at low and high speeds. However, to date no complete datasets have shown an energetic minimum for swimming fish at intermediate speeds rather than low speeds. To address this knowledge gap, we used a negatively buoyant fish, the clearnose skate Raja eglanteria, and took two approaches: a classic critical swimming speed protocol and a single-speed exercise and recovery procedure. We found an anaerobic component at each velocity tested. The two approaches showed U-shaped, though significantly different, speed-metabolic relationships. These results suggest that (i) postural costs, especially at low speeds, may result in J- or U-shaped metabolism-speed curves; (ii) anaerobic metabolism is involved at all swimming speeds in the clearnose skate; and (iii) critical swimming protocols might misrepresent the true costs of locomotion across speeds, at least in negatively buoyant fish.
Collapse
Affiliation(s)
| | | | - George V Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
14
|
Kim HS, Lee JY, Chu WS, Ahn SH. Design and Fabrication of Soft Morphing Ray Propulsor: Undulator and Oscillator. Soft Robot 2017; 4:49-60. [DOI: 10.1089/soro.2016.0033] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hyung-Soo Kim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Jang-Yeob Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Won-Shik Chu
- Institute of Advanced Machinery and Design, Seoul National University, Seoul, Korea
| | - Sung-Hoon Ahn
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
- Institute of Advanced Machinery and Design, Seoul National University, Seoul, Korea
| |
Collapse
|
15
|
Park SJ, Gazzola M, Park KS, Park S, Di Santo V, Blevins EL, Lind JU, Campbell PH, Dauth S, Capulli AK, Pasqualini FS, Ahn S, Cho A, Yuan H, Maoz BM, Vijaykumar R, Choi JW, Deisseroth K, Lauder GV, Mahadevan L, Parker KK. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 2016; 353:158-62. [PMID: 27387948 DOI: 10.1126/science.aaf4292] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022]
Abstract
Inspired by the relatively simple morphological blueprint provided by batoid fish such as stingrays and skates, we created a biohybrid system that enables an artificial animal--a tissue-engineered ray--to swim and phototactically follow a light cue. By patterning dissociated rat cardiomyocytes on an elastomeric body enclosing a microfabricated gold skeleton, we replicated fish morphology at 1/10 scale and captured basic fin deflection patterns of batoid fish. Optogenetics allows for phototactic guidance, steering, and turning maneuvers. Optical stimulation induced sequential muscle activation via serpentine-patterned muscle circuits, leading to coordinated undulatory swimming. The speed and direction of the ray was controlled by modulating light frequency and by independently eliciting right and left fins, allowing the biohybrid machine to maneuver through an obstacle course.
Collapse
Affiliation(s)
- Sung-Jin Park
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mattia Gazzola
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Kyung Soo Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea. Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul 121-742, Korea
| | - Shirley Park
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Valentina Di Santo
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Erin L Blevins
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Johan U Lind
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie Dauth
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Andrew K Capulli
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Francesco S Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Seungkuk Ahn
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Cho
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Hongyan Yuan
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ben M Maoz
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ragu Vijaykumar
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea. Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul 121-742, Korea
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Department of Psychiatry and Behavioral Sciences and the Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - George V Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - L Mahadevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. Department of Organismic and Evolutionary Biology, Department of Physics, Wyss Institute for Biologically Inspired Engineering, Kavli Institute for Nanobio Science and Technology, Harvard University, Cambridge, MA 02138S, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul 121-742, Korea.
| |
Collapse
|
16
|
Di Santo V, Blevins EL, Lauder GV. Batoid fish locomotion: effects of speed on pectoral fin deformation in the little skate Leucoraja erinacea. J Exp Biol 2016; 220:705-712. [DOI: 10.1242/jeb.148767] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/04/2016] [Indexed: 01/25/2023]
Abstract
Most batoid fishes have a unique swimming mode in which thrust is generated by either oscillating or undulating expanded pectoral fins that form a disc. Only one previous study of the freshwater stingray has quantified three-dimensional motions of the wing, and no comparable data are available for marine batoid species that may differ considerably in their mode of locomotion. Here we investigate three-dimensional kinematics of the pectoral wing of the little skate, Leucoraja erinacea, swimming steadily at two speeds (1 and 2 body lengths per second, BL×s−1). We measured the motion of nine points in three dimensions during wing oscillation and determined that there are significant differences in movement amplitude among wing locations, as well as significant differences as speed increases in body angle, wing beat frequency, and speed of the traveling wave on the wing. In addition, we analyzed differences in wing curvature with swimming speed. At 1 BL×s−1, the pectoral wing is convex in shape during the downstroke along the medio-lateral fin midline, but at 2 BL×s−1 the pectoral fin at this location cups into the flow indicating active curvature control and fin stiffening. Wing kinematics of the little skate differed considerably from previous work on the freshwater stingray, which does not show active cupping of the whole fin on the downstroke.
Collapse
Affiliation(s)
- Valentina Di Santo
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Erin L. Blevins
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- The Winsor School, Boston, MA, 02215, USA
| | - George V. Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|