1
|
Laursen WJ, Tang R, Garrity PA. Hunting with heat: thermosensory-driven foraging in mosquitoes, snakes and beetles. J Exp Biol 2023; 226:jeb229658. [PMID: 37382467 PMCID: PMC10323236 DOI: 10.1242/jeb.229658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Animals commonly use thermosensation, the detection of temperature and its variation, for defensive purposes: to maintain appropriate body temperature and to avoid tissue damage. However, some animals also use thermosensation to go on the offensive: to hunt for food. The emergence of heat-dependent foraging behavior has been accompanied by the evolution of diverse thermosensory organs of often exquisite thermosensitivity. These organs detect the heat energy emitted from food sources that range from nearby humans to trees burning in a forest kilometers away. Here, we examine the biophysical considerations, anatomical specializations and molecular mechanisms that underlie heat-driven foraging. We focus on three groups of animals that each meet the challenge of detecting heat from potential food sources in different ways: (1) disease-spreading vector mosquitoes, which seek blood meals from warm-bodied hosts at close range, using warming-inhibited thermosensory neurons responsive to conductive and convective heat flow; (2) snakes (vipers, pythons and boas), which seek warm-blooded prey from ten or more centimeters away, using warmth-activated thermosensory neurons housed in an organ specialized to harvest infrared radiation; and (3) fire beetles, which maximize their offspring's feeding opportunities by seeking forest fires from kilometers away, using mechanosensory neurons housed in an organ specialized to convert infrared radiation into mechanosensory stimuli. These examples highlight the diverse ways in which animals exploit the heat emanating from potential food sources, whether this heat reflects ongoing metabolic activity or a recent lightning strike, to secure a nutritious meal for themselves or for their offspring.
Collapse
Affiliation(s)
- Willem J. Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Ruocong Tang
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Paul A. Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
2
|
Ashbrook AR, Feder JL, Scharf ME, Bennett GW, Gondhalekar AD. Characterization of heat exposure-associated escape behaviors and HSP gene expression in bed bugs (Cimex lectularius L.). PEST MANAGEMENT SCIENCE 2022; 78:205-216. [PMID: 34468070 DOI: 10.1002/ps.6620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Heat can be effective for bed bug elimination. However, in some cases bed bugs survive heat treatments. The objectives of this study were to determine the behavioral responses of bed bugs to rising harborage temperatures (23.0-49.0 °C) and identify which heat shock protein (HSP) genes are expressed after heat exposure. First, a custom-made copper arena and harborage were used to determine the escape behaviors of six bed bug populations. Next, HSP gene expression responses of select populations were determined after heat exposure using real time quantitative polymerase chain reaction (RT-qPCR). RESULTS Analysis of the 25 min behavioral experiment data found that harborage top temperatures associated with 25%, 50% and 75% probabilities of bed bugs to flee the harborage did not differ significantly between populations. Also, the percentage of insects that escaped from heated areas and survived (4.0-12.0%) was not different between populations. However, when specific temperatures at which successful escapes occurred were statistically compared, the Poultry House population was found to flee the harborage at statistically higher temperatures (43.6 ± 0.5 °C) than others (40.5 ± 0.6-42.0 ± 0.7 °C). The RT-qPCR experiments revealed that the HSP70.1, HSP70.3, and Putative Small HSP genes were significantly up-regulated 15 min, 2, and 4 h post-heat exposure and decreased back to baseline levels by 24 h. CONCLUSIONS This study shows that when harborage top temperatures approach 40.0-43.0 °C, bed bugs will disperse in search for cooler areas. This work implicates the HSP70.1, HSP70.3, and Putative Small HSP genes in heat induced stress recovery of bed bugs. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aaron R Ashbrook
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Gary W Bennett
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
3
|
Gaire S, DeVries ZC, Mick R, Santangelo RG, Bottillo G, Camera E, Schal C. Human skin triglycerides prevent bed bug (Cimex lectularius L.) arrestment. Sci Rep 2021; 11:22906. [PMID: 34880281 PMCID: PMC8654864 DOI: 10.1038/s41598-021-01981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022] Open
Abstract
Bed bugs (Cimex lectularius) have proliferated globally and have become one of the most challenging pests to control indoors. They are nocturnal and use multiple sensory cues to detect and orient towards their human hosts. After feeding, usually on a sleeping human, they return to a shelter on or around the sleeping surface, but not directly on the host. We hypothesized that although human skin odors attract hungry bed bugs, human skin compounds may also prevent arrestment on hosts. We used arrestment assays to test human skin swabs, extracts from human skin swabs, and pure compounds identified from human skin swabs. When given a choice, bed bugs preferred to arrest on substrates not previously conditioned by humans. These responses were consistent among laboratory-reared and apartment-collected bed bugs. The compounds responsible for this behavior were found to be extractable in hexane, and bed bugs responded to such extracts in a dose-dependent manner. Bioassay-guided fractionation paired with thin-layer chromatography, GC-MS, and LC-MS analyses suggested that triglycerides (TAGs), common compounds found on human skin, were preventing arrestment on shelters. Bed bugs universally avoided sheltering in TAG-treated shelters, which was independent of the number of carbons or the number of double bonds in the TAG. These results provide strong evidence that the complex of human skin compounds serve as multifunctional semiochemicals for bed bugs, with some odorants attracting host-seeking stages, and others (TAGs and possibly other compounds) preventing bed bug arrestment. Host chemistry, environmental conditions and the physiological state of bed bugs likely influence the dual nature behavioral responses of bed bugs to human skin compounds.
Collapse
Affiliation(s)
- Sudip Gaire
- Department of Entomology, University of Kentucky, 1100 S. Limestone, S-225 Ag North, Lexington, KY, 40546-0091, USA.
| | - Zachary C DeVries
- Department of Entomology, University of Kentucky, 1100 S. Limestone, S-225 Ag North, Lexington, KY, 40546-0091, USA.
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
| | - Russell Mick
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Richard G Santangelo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Grazia Bottillo
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Crawley SE, Borden JH. Detection and monitoring of bed bugs (Hemiptera: Cimicidae): review of the underlying science, existing products and future prospects. PEST MANAGEMENT SCIENCE 2021; 77:5334-5346. [PMID: 34312971 DOI: 10.1002/ps.6574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Bed bugs, Cimex lectularius L. and C. hemipterus (F.) (Hemiptera: Cimicidae) are hematophagous ectoparasites of humans. Since the resurgence of bed bugs in the late 1990s there has been a corresponding emphasis on development and implementation of integrated pest management (IPM) programs to manage infestations. One critical requirement of IPM is the ability to detect and monitor the target pest. We outline and describe the majority of all known existing devices and technologies developed for bed bug detection and monitoring as well as much of the underlying science. Almost 40 detection and monitoring products have flooded the marketplace, but for various reasons, including price, size, complexity and lack of independent scientific evaluation, they have not been widely adopted for IPM in structures. One product, the ClimbUp® Insect Interceptor, has nine competitors that utilize a similar design. This review also discloses many other technologies and products that are either too expensive or too impractical for use as either consumer or industrial products. We conclude that there is a critical need for inexpensive and effective detection and monitoring traps and lures suitable for widespread adoption by the urban pest control industry. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sydney E Crawley
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
5
|
Berry R. The Behavioral Response to Heat in the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1626-1637. [PMID: 33704449 PMCID: PMC8285017 DOI: 10.1093/jme/tjab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 06/12/2023]
Abstract
The bed bug, Cimex lectularius L., is a common ectoparasite found to live among its vertebrate hosts. Antennal segments in bugs are critical for sensing multiple cues in the environment for survival. To determine whether the thermo receptors of bed bugs are located on their antennae; innovative bioassays were created to observe the choice between heated and unheated stimuli and to characterize the response of bugs to a heat source. Additionally, the effect of complete antenectomized segments on heat detection were evaluated. Heat, carbon dioxide, and moisture are cues that are found to activate bed bug behavior; a temperature at 38°C was used to assess the direction/degree at which the insect reacts to the change in distance from said stimulus. Using a lightweight spherical ball suspended by air through a vacuum tube, bed bugs and other insects are able to move in 360° while on a stationary point. Noldus EthoVision XT was used to capture video images and to track the bed bugs during 5-min bioassays. A bioassay was created using four Petri dish arenas to observe bed bug attraction to heat based on antennae segments at 40°C. The purpose of this study was to evaluate the effects of heat on complete antenectomized segments of the antennae. The results in this experiment suggest that bed bugs detect and are attracted to heat modulated by nutritional status. Learning the involvement of antennae segments in heat detection will help identify the location and role of thermoreceptors for bed bug host interaction.
Collapse
Affiliation(s)
- Raymond Berry
- Department of Biology, New Mexico State University, Las Cruces, NM
| |
Collapse
|
6
|
Artificial Feeding of All Consecutive Life Stages of Ixodes ricinus. Vaccines (Basel) 2021; 9:vaccines9040385. [PMID: 33919961 PMCID: PMC8070929 DOI: 10.3390/vaccines9040385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 01/19/2023] Open
Abstract
The hard tick Ixodes ricinus is an obligate hematophagous arthropod and the main vector for several zoonotic diseases. The life cycle of this three-host tick species was completed for the first time in vitro by feeding all consecutive life stages using an artificial tick feeding system (ATFS) on heparinized bovine blood supplemented with glucose, adenosine triphosphate, and gentamicin. Relevant physiological parameters were compared to ticks fed on cattle (in vivo). All in vitro feedings lasted significantly longer and the mean engorgement weight of F0 adults and F1 larvae and nymphs was significantly lower compared to ticks fed in vivo. The proportions of engorged ticks were significantly lower for in vitro fed adults and nymphs as well, but higher for in vitro fed larvae. F1-females fed on blood supplemented with vitamin B had a higher detachment proportion and engorgement weight compared to F1-females fed on blood without vitamin B, suggesting that vitamin B supplementation is essential in the artificial feeding of I. ricinus ticks previously exposed to gentamicin.
Collapse
|
7
|
González-Morales MA, Terán M, Romero A. Behavioral Responses of the Common Bed Bug to Essential Oil Constituents. INSECTS 2021; 12:insects12020184. [PMID: 33670065 PMCID: PMC7926421 DOI: 10.3390/insects12020184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Bed bugs (Cimex lectularius L.) are blood-sucking insects that have emerged worldwide in the last two decades causing serious public health and economic impact. Today, control of bed bug infestations relies on the use of synthetic insecticides, but their frequent use has led to the development of resistance in bed bug populations. Therefore, there is a growing demand for the development of safer, green, and more effective tools for bed bug control. Plant-derived pesticides are part of the proposed “green” methods for bed bug control. We evaluated behavioral responses of bed bugs to essential oil constituents (EOCs) and detected that bed bugs did not rest on areas treated with geraniol, eugenol, citronellic acid, and carvacrol. Barriers of these constituents did not deter bed bugs from reaching warmed blood meal and feeding. Our results show that novel formulations of natural product insecticides that include geraniol, eugenol, carvacrol, or citronellic acid have potential to repel bed bugs. However, little benefit of protection against bed bug bites can be expected when EOC-based products are applied to items present in close proximity to a sleeping host such as mattress covers, liners, or around the bed. Abstract Botanical-derived pesticides have arisen as an attractive alternative to synthetic insecticides to effectively manage infestations of bed bugs (Cimex lectularius L.). While information on contact, residual, and fumigant toxicity of plant-essential oils against bed bugs have been recently published, there is a gap of information regarding the repellent activity of these products and their constituents. Identification of essential oil constituents (EOCs) with repellent activity will help develop potentially efficacious essential oil-based formulations for use in bed bug management programs. In this study, we first screened fresh and 24 h-aged residues of geraniol, eugenol, carvacrol, thymol, citronellic acid, linalool, menthone, trans-cinnamaldehyde, α-pinene, β-pinene, and limonene for avoidance behavior from individual bed bugs with a video-tracking system. Six EOCs, geraniol, eugenol, citronellic acid, thymol, carvacrol, and linalool were further evaluated overnight in choice tests to determine whether 24-h aged residues were still avoided by groups of bed bugs. While bed bugs avoided resting on filter papers treated with 24-h aged residues of geraniol, eugenol, citronellic acid, and carvacrol, bed bugs aggregated in areas treated with linalool-aged residues. Barriers of EOCs did not prevent bed bugs from reaching a warmed blood source and acquiring blood meals. Our results show that novel formulations of natural product insecticides that include geraniol, eugenol, carvacrol, or citronellic acid have potential to repel bed bugs. The presence of host-associated cues might interfere with these responses.
Collapse
Affiliation(s)
- María A. González-Morales
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695, USA;
| | | | - Alvaro Romero
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA
- Correspondence: ; Tel.: +1-575-646-5550
| |
Collapse
|
8
|
Saveer AM, DeVries ZC, Santangelo RG, Schal C. Mating and starvation modulate feeding and host-seeking responses in female bed bugs, Cimex lectularius. Sci Rep 2021; 11:1915. [PMID: 33479298 PMCID: PMC7820594 DOI: 10.1038/s41598-021-81271-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/05/2021] [Indexed: 01/13/2023] Open
Abstract
Reproductive fitness and survival are enhanced by adaptive behaviors that are modulated by internal physiological states and external social contexts. The common bed bug, Cimex lectularius, is an obligate hematophagous ectoparasite that requires host blood for growth, development, and reproduction. We investigated how mating, starvation and social interactions affect host-seeking, blood feeding, oviposition, and survival of female bed bugs. The percentage of females that fed and the amount of blood they ingested were greater in mated females (90-100%) than in unmated females (48-60%). Mating state also modulated the female's orientation towards human skin odor in an olfactometer; more mated (69%) than unmated (23%) females responded to human odors. The response rate of unmated females (60%) to skin odor increased with longer starvation period, while the opposite pattern was observed in mated females (20%). Although fecundity after a single blood meal was unaffected by long or short residence and interaction with males, females subjected to frequent copulation attempts had lower survivorship and lifespan than females housed with males for only 24 h. Taken together, these results indicate that by adaptively and coordinately expressing behaviors based on the internal physiological state, females maximize their survival and reproductive fitness.
Collapse
Affiliation(s)
- Ahmed M Saveer
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.
| | - Zachary C DeVries
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Richard G Santangelo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
9
|
Gaire S, Schal C, Mick R, DeVries Z. The Role of Antennae in Heat Detection and Feeding Behavior in the Bed Bug (Hemiptera: Cimicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2858-2863. [PMID: 33128451 PMCID: PMC7724749 DOI: 10.1093/jee/toaa250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 05/16/2023]
Abstract
The common bed bug (Cimex lectularius L.) is an obligate hematophagous ectoparasite that has significant impacts on human health and well-being. All life stages of bed bugs (except eggs) feed solely on blood, which is required to molt and reproduce. Bed bugs use multiple cues to locate their hosts, including heat, CO2, and body odors. Of these cues, detection of heat appears limited to a short distance of <3 cm. However, it remains unclear if bed bugs can detect radiant heat, what structure(s) are responsible for heat detection, and if heat detection via the antennae is required for feeding. In this study, bed bug response to radiant heat was evaluated using the two-choice T-maze assay with the heat source either in contact with the surface (i.e., conduction) or not in contact (i.e., radiation) in nonantennectomized bed bugs. Further, we systematically ablated the bed bug's antennal segments (distal tip, first segment, and all four segments) and assessed their responses to heat and feeding in a unique two-choice T-maze assay and individual feeding assays, respectively. Our two-choice assays with contact to or no contact with the surface indicated that bed bugs cannot detect radiant heat. Later, we found that the distal tip of the terminal antennal segment is responsible for orientation toward a heat source. However, >50% of the bed bugs fed even when the entire antenna was removed, suggesting redundancy in sensory cues that drive feeding. These results will be used to better understand the role heat plays in bed bug host attraction and design of traps.
Collapse
Affiliation(s)
- Sudip Gaire
- Department of Entomology, University of Kentucky, Lexington, KY
- Corresponding author, e-mail:
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Russell Mick
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Zachary DeVries
- Department of Entomology, University of Kentucky, Lexington, KY
| |
Collapse
|
10
|
Lazzari CR. The thermal sense of blood-sucking insects: why physics matters. CURRENT OPINION IN INSECT SCIENCE 2019; 34:112-116. [PMID: 31247411 DOI: 10.1016/j.cois.2019.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Blood-sucking arthropods exploit multimodal information for locating and recognising potential hosts. The heat emitted by the body of endothermic vertebrates constitutes a major cue for orientation. To exploit it in a reliable way, insects must be able to deal with two variants of thermal information, that is heat exchange and temperature fluctuations. Evaluating whether or not an object qualifies as a host by its temperature requires solving thermodynamic ambiguities in a context where temperature increase at the receptor level is just one, yet insufficient, piece of information. To be exploitable, this piece of information needs to be integrated with other variables. Here, I discuss the physical constraints associated to thermal orientation, as well as the way different blood-sucking insects acquire and make use of heat to recognise a host.
Collapse
Affiliation(s)
- Claudio R Lazzari
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261 CNRS, University of Tours, France.
| |
Collapse
|
11
|
Abstract
Cimicid insects, bed bugs and their allies, include about 100 species of blood-feeding ectoparasites. Among them, a few have become widespread and abundant pests of humans. Cimicids vary in their degree of specialization to hosts. Whereas most species specialize on insectivorous birds or bats, the common bed bug can feed on a range of distantly related host species, such as bats, humans, and chickens. We suggest that association with humans and generalism in bed bugs led to fundamentally different living conditions that fostered rapid growth and expansion of their populations. We propose that the evolutionary and ecological success of common bed bugs reflected exploitation of large homeothermic hosts (humans) that sheltered in buildings. This was a departure from congeners whose hosts are much smaller and often heterothermic. We argue that interesting insights into the biology of pest species may be obtained using an integrated view of their ecology and evolution.
Collapse
Affiliation(s)
- Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Nusha Keyghobadi
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Brock Fenton
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
12
|
DeVries ZC, Saveer AM, Mick R, Schal C. Bed Bug (Hemiptera: Cimicidae) Attraction to Human Odors: Validation of a Two-Choice Olfactometer. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:362-367. [PMID: 30423171 PMCID: PMC7182910 DOI: 10.1093/jme/tjy202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 05/28/2023]
Abstract
Bed bugs (Cimex lectularius L.) (Hemiptera: Cimicidae) are obligate hematophagous ectoparasites, and, therefore, must locate suitable hosts to ensure survival and reproduction. Their largely nocturnal activity suggests that chemosensory and thermosensory cues would play critical roles in host location. Yet, the importance of olfaction in host attraction of bed bugs remains unclear. We developed and validated a Y-tube, two-choice olfactometer and tested its suitability for investigating attraction to human odors (from skin swabs). Olfactometer orientation significantly affected the percentage of bed bugs that were activated by human odors, with significantly more bed bugs responding when the olfactometer was oriented vertically (bug introduced at bottom of the olfactometer) compared with all other orientations. Starved (7-10 d) adult males, mated females, and nymphs responded (47-77% moved up the olfactometer and made a choice) when human odors were present in the olfactometer, while starved, unmated females did not respond. Skin swabs from all five human participants elicited high response rates (65-82%), and bed bugs from four different populations responded to skin swabs (40-82% response rate). However, in all assays including those resulting in relatively low response rates, bed bugs exhibited >90% preference for human odors over blank controls. These results provide strong evidence that bed bugs can respond and orient towards human odors, independently of all other host cues. Furthermore, the validated olfactometer should enable rapid and efficient evaluations of bed bug behavioral responses to semiochemicals.
Collapse
Affiliation(s)
- Zachary C DeVries
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| | - Ahmed M Saveer
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| | - Russell Mick
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| |
Collapse
|
13
|
Ashbrook AR, Scharf ME, Bennett GW, Gondhalekar AD. Bed bugs (Cimex lectularius L.) exhibit limited ability to develop heat resistance. PLoS One 2019; 14:e0211677. [PMID: 30731005 PMCID: PMC6366730 DOI: 10.1371/journal.pone.0211677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/20/2019] [Indexed: 12/17/2022] Open
Abstract
The global population growth of the bed bug, Cimex lectularius (L.), is attributed to their cryptic behavior, diverse insecticide resistance mechanisms, and lack of public awareness. Bed bug control can be challenging and typically requires chemical and non-chemical treatments. One common non-chemical method for bed bug management is thermal remediation. However, in certain instances, bed bugs are known to survive heat treatments. Bed bugs may be present after a heat treatment due to (i) abiotic factors associated with the inability to achieve lethal temperatures in harborage areas for a sufficient time period, (ii) re-infestation from insects that escaped to cooler areas during a heat treatment or (iii) development of physiological resistance that allows them to survive heat exposure. Previous research has investigated the optimal temperature and exposure time required for either achieving complete mortality or sublethally affecting their growth and development. However, no research has examined bed bug populations for their ability to develop resistance to heat exposure and variation in thermo-tolerance between different bed bug strains. The goals of this study were: i) to determine if bed bugs could be selected for heat resistance under a laboratory selection regime, and ii) to determine if bed bug populations with various heat exposure histories, insecticide resistance profiles, and geographic origins have differential temperature tolerances using two heat exposure techniques (step-function and ramp-function). Selection experiments found an initial increase in bed bug survivorship; however, survivorship did not increase past the fourth generation. Sublethal exposure to heat significantly reduced bed bug feeding and, in some cases, inhibited development. The step-function exposure technique revealed non-significant variation in heat tolerance between populations and the ramp-function exposure technique provided similar results. Based on these study outcomes, the ability of bed bugs to develop heat resistance appears to be limited.
Collapse
Affiliation(s)
- Aaron R. Ashbrook
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Michael E. Scharf
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Gary W. Bennett
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Ameya D. Gondhalekar
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sierras A, Wada-Katsumata A, Schal C. Effectiveness of Boric Acid by Ingestion, But Not by Contact, Against the Common Bed Bug (Hemiptera: Cimicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2772-2781. [PMID: 30192952 PMCID: PMC7189974 DOI: 10.1093/jee/toy260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 05/12/2023]
Abstract
Boric acid has been used as an insecticide in the successful control of agricultural, public health and urban pests long before the advent of synthetic organic pesticides. Boric acid products, formulated as dusts, sprays, granular baits, pastes, gels, and liquids, are widely available to consumers and pest management professionals, especially to control pest infestations within homes. Boric acid dust is commonly used against bed bugs (Cimex lectularius L. [Hemiptera: Cimicidae]), but its efficacy has not been demonstrated. We evaluated the efficacy of boric acid as an ingestible and residual contact insecticide on bed bugs, and compared its efficacy on the German cockroach (Blattella germanica L. [Blattodea: Ectobiidae]) which is known to be susceptible to boric acid by both routes. Dose-response studies of 0-5% boric acid in blood demonstrated that ingested boric acid caused rapid mortality at concentrations of ≥2%, and even 0.5% and 1% boric acid caused 100% mortality, albeit at a slower time course. In contrast, bed bugs survived contact with high concentrations of boric acid dust. Smaller boric acid particles did not increase mortality of either unfed or recently fed bed bugs. The same boric acid products were effective at causing mortality of German cockroaches by both contact and ingestion. We thus conclude that although boric acid is an excellent candidate active ingredient for an ingestible bait formulation, residual applications of dust or spray would be ineffective in bed bug interventions.
Collapse
Affiliation(s)
- Angela Sierras
- Department of Entomology and Plant Pathology, and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh NC
| | - Ayako Wada-Katsumata
- Department of Entomology and Plant Pathology, and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh NC
| | - Coby Schal
- Department of Entomology and Plant Pathology, and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh NC
- Corresponding author, e-mail:
| |
Collapse
|
15
|
Talbot B, Vonhof MJ, Broders HG, Fenton B, Keyghobadi N. Host association influences variation at salivary protein genes in the bat ectoparasite Cimex adjunctus. J Evol Biol 2018. [PMID: 29543391 DOI: 10.1111/jeb.13265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Parasite-host relationships create strong selection pressures that can lead to adaptation and increasing specialization of parasites to their hosts. Even in relatively loose host-parasite relationships, such as between generalist ectoparasites and their hosts, we may observe some degree of specialization of parasite populations to one of the multiple potential hosts. Salivary proteins are used by blood-feeding ectoparasites to prevent hemostasis in the host and maximize energy intake. We investigated the influence of association with specific host species on allele frequencies of salivary protein genes in Cimex adjunctus, a generalist blood-feeding ectoparasite of bats in North America. We analysed two salivary protein genes: an apyrase, which hydrolyses ATP at the feeding site and thus inhibits platelet aggregation, and a nitrophorin, which brings nitrous oxide to the feeding site, inhibiting platelet aggregation and vasoconstriction. We observed more variation at both salivary protein genes among parasite populations associated with different host species than among populations from different spatial locations associated with the same host species. The variation in salivary protein genes among populations on different host species was also greater than expected under a neutral scenario of genetic drift and gene flow. Finally, host species was an important predictor of allelic divergence in genotypes of individual C. adjunctus at both salivary protein genes. Our results suggest differing selection pressures on these two salivary protein genes in C. adjunctus depending on the host species.
Collapse
Affiliation(s)
- Benoit Talbot
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Maarten J Vonhof
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Hugh G Broders
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Brock Fenton
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Nusha Keyghobadi
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
16
|
Talbot B, Balvín O, Vonhof MJ, Broders HG, Fenton B, Keyghobadi N. Host association and selection on salivary protein genes in bed bugs and related blood-feeding ectoparasites. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170446. [PMID: 28680688 PMCID: PMC5493930 DOI: 10.1098/rsos.170446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Reciprocal selective pressures can drive coevolutionary changes in parasites and hosts, and result in parasites that are highly specialized to their hosts. Selection and host co-adaptation are better understood in endoparasites than in ectoparasites, whose life cycles may be more loosely linked to that of their hosts. Blood-feeding ectoparasites use salivary proteins to prevent haemostasis in the host, and maximize energy intake. Here we looked for signals of selection in salivary protein genes of ectoparasite species from a single genus (Cimex) that associate with a range of hosts including mammals (bats and humans) and birds (swallows). We analysed two genes that code for salivary proteins that inhibit platelet aggregation and vasoconstriction and may directly affect the efficiency of blood feeding in these species. Significant positive selection was detected at five codons in one gene in all bat-associated species groups. Our results suggest association with bats, versus humans or swallows, has posed a selective pressure on the salivary apyrase gene in species of Cimex.
Collapse
Affiliation(s)
- Benoit Talbot
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, CanadaN6A 3K7
| | - Ondřej Balvín
- Department of Ecology, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Maarten J. Vonhof
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Avenue, Kalamazoo, MI 49008-5410, USA
| | - Hugh G. Broders
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, CanadaN2L 3G1
| | - Brock Fenton
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, CanadaN6A 3K7
| | - Nusha Keyghobadi
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, CanadaN6A 3K7
| |
Collapse
|