1
|
Bessette E, Bojko J, Bateman KS, Ross S, Meyling NV, Williams BAP. Identification of Albopleistophora grylli n. gen. n. sp. (Microsporidia) and its impact on crickets (Gryllus spp.) in food-and-feed culture systems. J Invertebr Pathol 2025; 208:108229. [PMID: 39522940 DOI: 10.1016/j.jip.2024.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study provides a comprehensive taxonomic description of a microsporidian parasite infecting crickets, Gryllus bimaculatus and G. assimilis. Our analysis includes gross pathology, histopathology, spore ultrastructure, parasite development cycle, single gene phylogenies, and phylogenomic comparisons. We introduce a new taxon, Albopleistophora grylli n. gen. n. sp., characterised by its unique developmental stages within a sporophorous vesicle, leading to the formation of mature spores measuring 5.7 × 2.8 µm. Although prevalent in commercial cricket cultures, this parasite seemed to have limited effects on cricket survival. Indeed, microsporidia exposure and density assays with the host G. bimaculatus, only revealed density as a significant factor affecting the crickets' survival. Nevertheless, exposure showed significant effect on the crickets' emergence time, where exposed crickets emerged as adults earlier than unexposed individuals. Moreover, exposure to the parasite increased the faeces production and weight gain in cricket males. However, neither exposure nor density significantly impacted the females' fecundity. The absence of spores in non-exposed cricket groups suggested a horizontal transmission, highlighting the importance of controlled rearing practices to eliminate this microsporidium in control groups. The well-known anti-microsporidian drug 'fumagillin' was studied with a higher microsporidia dose of exposure to evaluate any improvement in cricket survival, without showing any significant differences between exposed and unexposed groups. Our findings underscore the nuanced dynamics of host-microsporidia interactions and emphasise the need for ecological context in understanding microsporidian impacts. Even if non-dangerous for its host, monitoring of this parasite seems crucial due to its potential zoonotic transmission by its close phylogenomic relation to human-infecting microsporidia species.
Collapse
Affiliation(s)
- Edouard Bessette
- Living Systems Institute, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Jamie Bojko
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Kelly S Bateman
- Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Barrack Road, The Nothe, Weymouth, Dorest DT4 8UB, United Kingdom
| | - Stuart Ross
- Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Barrack Road, The Nothe, Weymouth, Dorest DT4 8UB, United Kingdom
| | - Nicolai V Meyling
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bryony A P Williams
- Living Systems Institute, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom.
| |
Collapse
|
2
|
Lem M, Rh H, Dg B, Barkhouse A, Miller DW, Raun N, Sa A. The caterpillar Manduca sexta brain shows changes in gene expression and protein abundance correlating with parasitic manipulation of behaviour. Sci Rep 2024; 14:31773. [PMID: 39738473 PMCID: PMC11685936 DOI: 10.1038/s41598-024-82506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
The parasitic wasp, Cotesia congregata, manipulates the behaviour of its host, the caterpillar Manduca sexta. The female wasp injects her eggs and a symbiotic virus (i.e. bracovirus, CcBV) into the body of its host. The host's behaviour remains unchanged until the wasps exit the caterpillar, and then the caterpillar becomes a non-feeding "bodyguard" for the wasp cocoons. Using proteomic, transcriptomic and qPCR studies, we discovered an increase in antimicrobial peptide gene expression and protein abundance in the host central nervous system at the time of wasp emergence, correlating with the change in host behaviour. These results support the hypothesis that the wasps hyperactivate an immune-neural connection to help create the change in behaviour. At the time of wasp emergence, there was also an increase in bracoviral gene expression and proteins in the host brain, suggesting that the bracovirus may also be involved in altering host behaviour. Other changes in gene expression and protein abundance suggest that synaptic transmission may be altered after wasp emergence, and a reduction in descending neural activity from the host's brain provides indirect support for this hypothesis.
Collapse
Affiliation(s)
- McMillan Lem
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Herbison Rh
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Biron Dg
- Lab Microorganismes: Génome et Environment, Université Clermont Auvergne, UMR CNRS, Paris, 6023, France
| | - A Barkhouse
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - D W Miller
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - N Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, B3H 4R2, Canada
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, 6525 GA, the Netherlands
| | - Adamo Sa
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada.
| |
Collapse
|
3
|
Sadanandappa MK, Ahmad S, Mohanraj R, Ratnaparkhi M, Sathyanarayana SH. Defensive tactics: lessons from Drosophila. Biol Open 2024; 13:bio061609. [PMID: 39718046 PMCID: PMC11695572 DOI: 10.1242/bio.061609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Parasitoid wasps exert strong selective pressure on their hosts, driving the evolution of diverse defense strategies. Drosophila, a widely studied model organism, hosts a wide range of parasites, including parasitoid wasps, and has evolved immune and behavioral mechanisms to mitigate the risk of parasitization. These defenses range from avoidance and evasion to post-infection immune responses, such as melanotic encapsulation. In response, parasitoid wasps have developed countermeasures, contributing to an ongoing arms race between host and parasite. This article reviews the anti-parasitoid behaviors of Drosophila, focusing on their role in reducing parasitization and enhancing host survival and fitness. It also explores the molecular and neuronal circuit mechanisms that underlie these behaviors, using Drosophila as an ecologically relevant model for studying host-parasitoid interactions. Furthermore, the article discusses the potential applications of these findings in biological pest control and highlights key unresolved questions in the field.
Collapse
Affiliation(s)
- Madhumala K. Sadanandappa
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA
| | | | - Robinson Mohanraj
- Biomedical Science, Nitte University for Science Education and Research, Mangalore, Karnataka 575018, India
| | | | - Shivaprasad H. Sathyanarayana
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA
| |
Collapse
|
4
|
Villalba JJ, Ramsey RD, Athanasiadou S. Review: Herbivory and the power of phytochemical diversity on animal health. Animal 2024:101287. [PMID: 39271413 DOI: 10.1016/j.animal.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Plant secondary compounds (PSCs) were thought to be waste products of plant metabolism when first identified in the mid-1800 s. Since then, many different roles have been recognized for these chemicals. With regard to their function as defense, PSCs can negatively impact different cellular and metabolic processes in the herbivore, causing illness and reductions in feed intake. This penalty on fitness also applies to other trophic levels, like the microorganisms and parasites that infect herbivores and thus, PSCs at certain doses may function as medicines. In turn, herbivores evolved learning mechanisms to cope with the constant variability in their environment and physiological needs. Under this context, foraging can be viewed as the quest for substances in the external environment that provide homeostatic utility to the animal. For instance, herbivores increase preference for PSC-containing feeds that negatively impact infectious agents (i.e., therapeutic self-medication). Given that some classes of PSCs like polyphenols present antioxidant, antiinflammatory, immunomodulatory and prebiotic properties, chronic and sustained consumption of these chemicals results in robust animals that are tolerant to disease (i.e., prophylactic self-medication). Foraging plasticity in terms of the quality and quantity of nutrients ingested in the absence and during sickness may also influence immunocompetence, resistance and resilience to infection, and thus can be interpreted as another form of medication. Finally, self-medicative behaviors can be transmitted through social learning. We suggest that foraging studies will benefit from exploring self-medicative behaviors in chemically diverse plant communities, in particular when considering the vast diversity of PSC structures (more than 200 000) observed in nature. We then lay out a framework for enhancing the medicinal effects of PSCs on grazing herbivores. We propose landscape interventions through the establishment of resource patches or "islands" with a diversity of PSC-containing forages (e.g., legumes, herbs, shrubs) in monotonous rangelands or pasturelands, viewed as a "sea" of low-diversity vegetation devoid of functional biochemicals. Strategies aimed at enhancing the diversity of plant communities lead to heterogeneity in chemical, structural and functional landscape traits that offer options to foragers, and thus allow for balanced diets that maintain and restore health. Beyond animal health, such heterogeneity promotes a broad array of ecosystem services that significantly improve landscape resilience to environmental disturbances.
Collapse
Affiliation(s)
- J J Villalba
- Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA.
| | - R D Ramsey
- Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA
| | - S Athanasiadou
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Roslin Institute, EH25 9RG Midlothian, UK
| |
Collapse
|
5
|
Castro-López C, Pascacio-Villafán C, Aluja M, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Safety Assessment of the Potential Probiotic Bacterium Limosilactobacillus fermentum J23 Using the Mexican Fruit Fly (Anastrepha ludens Loew, Diptera: Tephritidae) as a Novel In Vivo Model. Probiotics Antimicrob Proteins 2024; 16:233-248. [PMID: 36574190 DOI: 10.1007/s12602-022-10034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Safety assessment of probiotics is difficult but essential. In this work, the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), was used as in vivo model to assess the biosafety of Limosilactobacillus fermentum J23. In the first set of experiments, the strain was orally administered to adult flies through direct feeding, whereas in the second set of experiments, it was supplemented through the larval rearing medium. Data showed that L. fermentum J23 did not lead to increased mortality or treatment-related toxicity signs in adult female and male flies. Ingestion of L. fermentum J23 by adult female flies led to a statistically significant improvement in locomotor activity compared to the control groups (ca. 59% decrease in climbing time, p < 0.0001). A positive trend in lifespan extension under stress (maximum lifespan = 144 h) was also observed. When L. fermentum J23 was administered to the larvae, the adult emergence (p = 0.0099), sex ratio (p = 0.0043), and flight ability (p = 0.0009) increased significantly by 7%, 31%, and 8%, respectively, compared to the control diet. No statistical effect between the control diet and the L. fermentum J23-based diet for the number of pupae recovered, pupal weight, duration of the pupal stage, lifespan under stress, and morphological development was observed. We conclude that feeding L. fermentum J23 to the novel experimental model A. ludens had no toxic effects and could be safely considered a potential probiotic for food supplements; however, further studies are still needed to establish its biosafety in humans.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México
| | - Carlos Pascacio-Villafán
- Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A.C. ‒ INECOL, Carretera Antigua a Coatepec 351, Veracruz, 91073, Xalapa, México
| | - Martin Aluja
- Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A.C. ‒ INECOL, Carretera Antigua a Coatepec 351, Veracruz, 91073, Xalapa, México.
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, 91897, Veracruz, México
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México.
| |
Collapse
|
6
|
Frizzera D, Zanni V, D'Agaro M, Boaro G, Andreuzza L, Del Fabbro S, Annoscia D, Nazzi F. Varroa destructor exacerbates the negative effect of cold contributing to honey bee mortality. JOURNAL OF INSECT PHYSIOLOGY 2023; 151:104571. [PMID: 37832840 DOI: 10.1016/j.jinsphys.2023.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/27/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Several concurrent stress factors can impact honey bee health and colony stability. Although a satisfactory knowledge of the effect of almost every single factor is now available, a mechanistic understanding of the many possible interactions between stressors is still largely lacking. Here we studied, both at the individual and colony level, how honey bees are affected by concurrent exposure to cold and parasitic infection. We found that the parasitic mite Varroa destructor, further than increasing the natural mortality of bees, can induce an anorexia that reduces their capacity to thermoregulate and thus react to sub-optimal temperatures. This, in turn, could affect the collective response of the bee colony to cold temperatures aggravating the effect already observed at the individual level. These results highlight the important role that biotic factors can have by shaping the response to abiotic factors and the strategic need to consider the potential interactions between stressors at all levels of the biological organization to better understand their impact.
Collapse
Affiliation(s)
- Davide Frizzera
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy.
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Mauro D'Agaro
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Giulia Boaro
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Laura Andreuzza
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Simone Del Fabbro
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy.
| |
Collapse
|
7
|
Rissanen J, Nyckees D, Will T, Helanterä H, Freitak D. Formica fusca ants use aphid supplemented foods to alleviate effects during the acute phase of a fungal infection. Biol Lett 2023; 19:20230415. [PMID: 37964577 PMCID: PMC10646462 DOI: 10.1098/rsbl.2023.0415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The modulation of nutritional intake by animals to combat pathogens is a behaviour that is receiving increasing attention. Ant studies using isolated compounds or nutrients in artificial diets have revealed a lot of the dynamics of the behaviour, but natural sources of medicine are yet to be confirmed. Here we explored whether Formica fusca ants exposed to a fungal pathogen can use an artificial diet containing foods spiked with different concentrations of crushed aphids for a medicinal benefit. We show that pathogen exposed colonies adjusted their diet to include more aphid supplemented foods during the acute phase of the infection, reducing the mortality caused by the disease. However, the benefit was only attained when having access to a varied diet, suggesting that while aphids contain nutrients or compounds beneficial against infection, it is a part of a complex nutritional system where costs and benefits of compounds and nutrients need to be moderated.
Collapse
Affiliation(s)
- Jason Rissanen
- Institute of Biology, University of Graz, Graz, Styria 8010, Austria
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
| | - Danaë Nyckees
- Laboratory of Entomology, Wageningen University, Wageningen 6700, The Netherlands
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Quedlinburg 06484, Germany
| | - Heikki Helanterä
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
- Ecology and Genetics Research Unit, University of Oulu, Oulu 90014, Finland
| | - Dalial Freitak
- Institute of Biology, University of Graz, Graz, Styria 8010, Austria
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
| |
Collapse
|
8
|
Li S, Cai H, Qi L, Yu Q, Shi Y, Gao Y. PLN: Parasitic-Like Network for Barely Supervised Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:582-593. [PMID: 36178993 DOI: 10.1109/tmi.2022.3211188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It is known that annotations for 3D medical image segmentation tasks are laborious, time-consuming and expensive. Considering the similarities existing in inter-slice and inter-volume, we believe that the delineation way and the model architecture should be tightly coupled. In this paper, by introducing an extremely sparse annotation way of labeling only one slice per 3D image, we investigate a novel barely-supervised segmentation setting with only a few sparsely-labeled images along with a large amount of unlabeled images. To achieve this goal, we present a new parasitic-like network including a registration module (as host) and a semi-supervised segmentation module (as parasite) to deal with inter-slice label propagation and inter-volume segmentation prediction, respectively. Specifically, our parasitism mechanism effectively achieves the collaboration of these two modules through three stages of infection, development and eclosion, providing accurate pseudo-labels for training. Extensive results demonstrate that our framework is capable of achieving high performance on extremely sparse annotation tasks, e.g., we achieve Dice of 84.83% on LA dataset with only 16 labeled slices. The code is available athttps://github.com/ShumengLI/PLN.
Collapse
|
9
|
De Bona S, Correa JP, San Juan E, Estay-Olea D, Quiroga N, Bacigalupo A, Araya-Donoso R, Botto-Mahan C. Opportunistic or selective? Stage-dependent feeding behavior in a wild vector of Chagas disease. Int J Parasitol 2023; 53:55-64. [PMID: 36462561 DOI: 10.1016/j.ijpara.2022.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022]
Abstract
The composition and contribution of different host species in the dynamics of vector-borne zoonotic parasites are particularly relevant for public health. Hence, the study of host selection by vectors is fundamental. Developmental stage and infection status are factors that may modulate vector feeding behavior. In the semi-arid Mediterranean ecosystem of South America, the transmission of Trypanosoma cruzi, the protozoan causing Chagas disease, includes the triatomine vector Mepraia spinolai and several vertebrate species. In this field study, we examined whether M. spinolai exhibits an opportunistic feeding behavior dependent upon developmental stage and/or infection status. We found that M. spinolai does not feed according to the relative availability of vertebrate species. In addition, early stage nymphs (first/second instars) fed on twice as many different species as middle (third/fourth instars) and late (fifth instars and adults) M. spinolai, with the former feeding on native rodents and lizards and the latter mostly on rabbits. Infected and uninfected M. spinolai showed similar feeding profiles. Wild triatomine species might be described as stage-dependent selective blood feeders, as a consequence of the temporal and spatial scale at which host-vector interactions occur, highlighting that all developmental stages might be infected and capable of transmitting T. cruzi.
Collapse
Affiliation(s)
- Sophie De Bona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, P.O. Box 653, Santiago, Chile
| | - Juana P Correa
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Concepción, Chile
| | - Esteban San Juan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, P.O. Box 653, Santiago, Chile
| | - Daniela Estay-Olea
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O'Higgins, San Fernando, Chile
| | - Nicol Quiroga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, P.O. Box 653, Santiago, Chile
| | - Antonella Bacigalupo
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, P.O. Box 653, Santiago, Chile.
| |
Collapse
|
10
|
Molbert N, Goutte A. Narrower isotopic niche size in fish infected by the intestinal parasite Pomphorhynchus sp. compared to uninfected ones. JOURNAL OF FISH BIOLOGY 2022; 101:1466-1473. [PMID: 36097411 DOI: 10.1111/jfb.15217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Examples of parasite-related effects on intermediate crustacean hosts are numerous but their ecological consequences on their vertebrate hosts are scarce. Here, we address the role of macroparasite infections on the trophic niche structure of definitive hosts and its potential physiological consequences using wild fish populations infected with an acantochephalan parasite Pomphorhynchus sp., a trophically transmitted intestinal worm. Infected and uninfected fish were sampled from six populations on the Marne River, France and the prevalence of intestinal parasites in the host populations ranged from 50% to 90%. Although the isotopic ratios (δ13 C and δ15 N) did not differ between infected and uninfected fish, we found a consistent pattern of isotopic niche size being considerably smaller in infected hosts when compared with noninfected ones. This was not explained by interindividual differences in intrinsic factors such as length/age or body condition between infected and uninfected fish. These results suggest a potential niche specialization of infected fish, which did not impair their energetic status.
Collapse
Affiliation(s)
- Noëlie Molbert
- Centre National de la Recherche Scientifique (CNRS), EPHE, UMR METIS, Sorbonne Université, Paris, France
| | - Aurélie Goutte
- Centre National de la Recherche Scientifique (CNRS), EPHE, UMR METIS, Sorbonne Université, Paris, France
- École Pratique des Hautes Études, PSL Research University, Paris, France
| |
Collapse
|
11
|
Penn HJ, Simone-Finstrom MD, de Guzman LI, Tokarz PG, Dickens R. Viral species differentially influence macronutrient preferences based on honey bee genotype. Biol Open 2022; 11:bio059039. [PMID: 36082847 PMCID: PMC9548382 DOI: 10.1242/bio.059039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Food quantity and macronutrients contribute to honey bee health and colony survival by mediating immune responses. We determined if this held true for bees injected with chronic bee paralysis virus (CBPV) and deformed wing virus (DWV), two common honey bee ssRNA viruses. Pollen-substitute diet and syrup consumption rates and macronutrient preferences of two Varroa-resistant stocks (Pol-Line and Russian bees) were compared to Varroa-susceptible Italian bees. Bee stocks varied in consumption, where Italian bees consumed more than Pol-Line and Russian bees. However, the protein: lipid (P:L) ratios of diet consumed by the Italian and Russian bees was greater than that of the Pol-Line bees. Treatment had different effects on consumption based on the virus injected. CBPV was positively correlated with syrup consumption, while DWV was not correlated with consumption. P:L ratios of consumed diet were significantly impacted by the interaction of bee stock and treatment, with the trends differing between CBPV and DWV. Variation in macronutrient preferences based on viral species may indicate differences in energetic costs associated with immune responses to infections impacting different systems. Further, virus species interacted with bee genotype, indicating different mechanisms of viral resistance or tolerance among honey bee genotypes.
Collapse
Affiliation(s)
- Hannah J. Penn
- USDA ARS Sugarcane Research Unit, 5883 Usda Rd., Houma, LA, USA70360-5578
| | - Michael D. Simone-Finstrom
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Lilia I. de Guzman
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Philip G. Tokarz
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Rachel Dickens
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| |
Collapse
|
12
|
Divergence in host–parasite interactions during the cane toad's invasion of Australia. Ecol Evol 2022. [DOI: 10.1002/ece3.9220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
Khan MK, Herberstein ME. Parasite‐mediated sexual selection in a damselfly. Ethology 2022. [DOI: 10.1111/eth.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Md Kawsar Khan
- School of Natural Sciences Macquarie University Macquarie Park New South Wales Australia
- Department of Biochemistry and Molecular Biology Shahjalal University of Science and Technology Sylhet Bangladesh
| | - Marie E. Herberstein
- School of Natural Sciences Macquarie University Macquarie Park New South Wales Australia
| |
Collapse
|
14
|
Leduc S, Rosenberg T, Johnson AD, Segoli M. Nest provisioning with parasitized caterpillars by female potter wasps: costs and potential mechanisms. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Cuffey J, Lepczyk CA, Zhao S, Fountain-Jones NM. Cross-sectional association of Toxoplasma gondii exposure with BMI and diet in US adults. PLoS Negl Trop Dis 2021; 15:e0009825. [PMID: 34597323 PMCID: PMC8513882 DOI: 10.1371/journal.pntd.0009825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/13/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022] Open
Abstract
Toxoplasmosis gondii exposure has been linked to increased impulsivity and risky behaviors, which has implications for eating behavior. Impulsivity and risk tolerance is known to be related with worse diets and a higher chance of obesity. There is little known, however, about the independent link between Toxoplasma gondii (T. gondii) exposure and diet-related outcomes. Using linear and quantile regression, we estimated the relationship between T. gondii exposure and BMI, total energy intake (kcal), and diet quality as measured by the Health Eating Index-2015 (HEI) among 9,853 adults from the 2009–2014 National Health and Nutrition Examination Survey. Previous studies have shown different behavioral responses to T. gondii infection among males and females, and socioeconomic factors are also likely to be important as both T. gondii and poor diet are more prevalent among U.S. populations in poverty. We therefore measured the associations between T. gondii and diet-related outcomes separately for men and women and for respondents in poverty. Among females <200% of the federal poverty level Toxoplasmosis gondii exposure was associated with a higher BMI by 2.0 units (95% CI [0.22, 3.83]) at median BMI and a lower HEI by 5.05 units (95% CI [-7.87, -2.24]) at the 25th percentile of HEI. Stronger associations were found at higher levels of BMI and worse diet quality among females. No associations were found among males. Through a detailed investigation of mechanisms, we were able to rule out T. gondii exposure from cat ownership, differing amounts of meat, and drinking water source as potential confounding factors; environmental exposure to T. gondii as well as changes in human behavior due to parasitic infection remain primary mechanisms. Toxoplasmosis gondii (T. gondii) is a parasite that infects over 10 percent of the US population. T. gondii infection can cause serious health problems for some people, but most infections remain undiagnosed and subclinical. When an individual is infected, T. gondii can chronically reside in muscle and central nervous system (including brain) tissue. Previous studies have found that individuals with prior exposure to T. gondii may engage in more risky and impulsive behaviors, and risk tolerance and impulsivity may be related with individual’s diet. Our study examines whether individuals with T. gondii exposure have higher body mass index (BMI) and worse diets. We further discuss and test for alternative explanations that prevent us from establishing a causal relationship between T. gondii and BMI/diet. Overall, our results show that T. gondii exposure is related with higher BMI and worse diets among lower-income females in the US. Our results uncover a novel correlate of BMI and diets, and suggest the importance of investigating the broader public health impacts of chronic T. gondii infection.
Collapse
Affiliation(s)
- Joel Cuffey
- Department of Agricultural Economics and Rural Sociology, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| | - Christopher A. Lepczyk
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Shuoli Zhao
- Department of Agricultural Economics, University of Kentucky, Lexington, Kentucky, United States of America
| | | |
Collapse
|
16
|
Nakase Y, Kato M. Bee-Parasitic Strepsipterans (Strepsiptera: Stylopidae) Induce Their Hosts' Flower-Visiting Behavior Change. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:2. [PMID: 34477875 PMCID: PMC8415181 DOI: 10.1093/jisesa/ieab066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 06/13/2023]
Abstract
Parasites sometimes manipulate their host's behavior to increase their own fitness by enhancing the likelihood that their offspring will reach their hosts. Bees are often parasitized by immobile adult female strepsipterans which seem to modify bees' behavior to facilitate the release of mobile first-instar larvae onto flowers. To better understand how the parasite may modify the host's behavior, we compared the foraging behavior of the sweat bee Lasioglossum apristum (Vachal, 1903) (Hymenoptera: Halictidae) between bees parasitized and unparasitized by the strepsipteran Halictoxenos borealis Kifune, 1982 (Strepsiptera: Stylopidae). Both parasitized and unparasitized bees frequently visited Hydrangea serrata (Thunb.) (Cornales: Hydrangeaceae) inflorescences, which are polleniferous but nectarless. On H. serrata inflorescences, unparasitized bees collected pollen from the anthers, but parasitized bees did not collect or eat pollen. Instead, they displayed a peculiar behavior, bending their abdomens downward and pressing them against the flower. This peculiar behavior, which was observed only in bees parasitized by a female strepsipteran in the larvae-releasing stage, may promote the release of mobile first-instar larvae onto flowers. Our observations suggest that the altered flower-visiting behavior of parasitized bees may benefit the parasite. Moreover, it suggests that strepsipteran parasites may modify their host's behavior only when the larvae reach a certain life stage.
Collapse
Affiliation(s)
- Yuta Nakase
- Department of Biology, Faculty of Science, Shinshu University, Nagano, Japan
| | - Makoto Kato
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Cortez MH, Duffy MA. The Context-Dependent Effects of Host Competence, Competition, and Pathogen Transmission Mode on Disease Prevalence. Am Nat 2021; 198:179-194. [PMID: 34260871 DOI: 10.1086/715110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractBiodiversity in communities is changing globally, including the gain and loss of host species in host-pathogen communities. Increased host diversity can cause infection prevalence in a focal host to increase (amplification) or decrease (dilution). However, it is unclear what general rules govern the context-dependent effects, in part because theories for pathogens with different transmission modes have developed largely independently. Using a two-host model, we explore how the pathogen transmission mode and characteristics of a second host (disease competence and competitive ability) influence disease prevalence in a focal host. Our work shows how the theories for pathogens with environmental transmission, density-dependent direct transmission, and frequency-dependent direct transmission can be unified. Our work also identifies general rules about how host and pathogen characteristics affect amplification/dilution. For example, higher-competence hosts promote amplification, unless they are strong interspecific competitors; strong interspecific competitors promote dilution, unless they are large sources of new infections; and dilution occurs under frequency-dependent direct transmission more than density-dependent direct transmission, unless interspecific host competition is sufficiently strong. Our work helps explain how the characteristics of the pathogen and a second host affect disease prevalence in a focal host.
Collapse
|
18
|
Beani L, Dallai R, Cappa F, Manfredini F, Zaccaroni M, Lorenzi MC, Mercati D. A Stresipteran parasite extends the lifespan of workers in a social wasp. Sci Rep 2021; 11:7235. [PMID: 33790321 PMCID: PMC8012566 DOI: 10.1038/s41598-021-86182-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
In social wasps, female lifespan depends on caste and colony tasks: workers usually live a few weeks while queens as long as 1 year. Polistes dominula paper wasps infected by the strepsipteran parasite Xenos vesparum avoid all colony tasks, cluster on vegetation where parasite dispersal and mating occur, hibernate and infect the next generation of wasp larvae. Here, we compared the survival rate of infected and uninfected wasp workers. Workers' survival was significantly affected by parasite sex: two-third of workers parasitized by a X. vesparum female survived and overwintered like future queens did, while all workers infected by a X. vesparum male died during the summer, like uninfected workers that we used as controls. We measured a set of host and parasite traits possibly associated with the observed lifespan extension. Infected overwintering workers had larger fat bodies than infected workers that died in the summer, but they had similar body size and ovary development. Furthermore, we recorded a positive correlation between parasite and host body sizes. We hypothesize that the manipulation of worker's longevity operated by X. vesparum enhances parasite's fitness: if workers infected by a female overwinter, they can spread infective parasite larvae in the spring like parasitized gynes do, thus contributing to parasite transmission.
Collapse
Affiliation(s)
- Laura Beani
- Dipartimento di Biologia, Università di Firenze, Via Madonna del piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Romano Dallai
- Dipartimento di Scienze Della Vita, Università di Siena, Via Aldo Moro, 53100, Siena, Italy
| | - Federico Cappa
- Dipartimento di Biologia, Università di Firenze, Via Madonna del piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Fabio Manfredini
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Marco Zaccaroni
- Dipartimento di Biologia, Università di Firenze, Via Madonna del piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Maria Cristina Lorenzi
- LEEC, Laboratoire d'Éthologie Expérimentale et Comparée, Université Sorbonne Paris Nord, Villetaneuse, France
| | - David Mercati
- Dipartimento di Scienze Della Vita, Università di Siena, Via Aldo Moro, 53100, Siena, Italy
| |
Collapse
|
19
|
Beani L, Mariotti Lippi M, Mulinacci N, Manfredini F, Cecchi L, Giuliani C, Tani C, Meriggi N, Cavalieri D, Cappa F. Altered feeding behavior and immune competence in paper wasps: A case of parasite manipulation? PLoS One 2020; 15:e0242486. [PMID: 33326432 PMCID: PMC7743958 DOI: 10.1371/journal.pone.0242486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Paper wasps (Polistes dominula), parasitized by the strepsipteran Xenos vesparum, are castrated and desert the colony to gather on plants where the parasite mates and releases primary larvae, thus completing its lifecycle. One of these plants is the trumpet creeper Campsis radicans: in a previous study the majority of all wasps collected from this plant were parasitized and focused their foraging activity on C. radicans buds. The unexpected prevalence and unusual feeding strategy prompted us to investigate the influence of this plant on wasp behavior and physiology through a multidisciplinary approach. First, in a series of laboratory bioassays, we observed that parasitized wasps spent more time than non-parasitized ones on fresh C. radicans buds, rich of extra-floral nectaries (EFNs), while the same wasps ignored treated buds that lacked nectar drops. Then, we described the structure and ultra-structure of EFNs secreting cells, compatible with the synthesis of phenolic compounds. Subsequently, we analysed extracts from different bud tissues by HPLC-DAD-MS and found that verbascoside was the most abundant bioactive molecule in those tissues rich in EFNs. Finally, we tested the immune-stimulant properties of verbascoside, as the biochemical nature of this compound indicates it might function as an antibacterial and antioxidant. We measured bacterial clearance in wasps, as a proxy for overall immune competence, and observed that it was enhanced after administration of verbascoside-even more so if the wasp was parasitized. We hypothesize that the parasite manipulates wasp behavior to preferentially feed on C. radicans EFNs, since the bioactive properties of verbascoside likely increase host survival and thus the parasite own fitness.
Collapse
Affiliation(s)
- Laura Beani
- Dipartimento di Biologia, Università di Firenze, Firenze, Italia
- * E-mail: (LB); (DC)
| | | | - Nadia Mulinacci
- Dipartimento di NEUROFARBA, Università di Firenze, Firenze, Italia
| | - Fabio Manfredini
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lorenzo Cecchi
- Dipartimento di NEUROFARBA, Università di Firenze, Firenze, Italia
| | - Claudia Giuliani
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italia
| | - Corrado Tani
- Dipartimento di NEUROFARBA, Università di Firenze, Firenze, Italia
| | - Niccolò Meriggi
- Dipartimento di Biologia, Università di Firenze, Firenze, Italia
| | - Duccio Cavalieri
- Dipartimento di Biologia, Università di Firenze, Firenze, Italia
- * E-mail: (LB); (DC)
| | - Federico Cappa
- Dipartimento di Biologia, Università di Firenze, Firenze, Italia
| |
Collapse
|
20
|
Cortez MH, Duffy MA. Comparing the Indirect Effects between Exploiters in Predator-Prey and Host-Pathogen Systems. Am Nat 2020; 196:E144-E159. [PMID: 33211567 DOI: 10.1086/711345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractIn multipredator and multipathogen systems, exploiters interact indirectly via shared victim species. Interspecific prey competition and the degree of predator specialization are known to influence whether predators have competitive (i.e., (-,-)) or noncompetitive (i.e., (-,+) or (+,+)) indirect interactions. Much less is known about the population-level indirect interactions between pathogens that infect the same populations of host species. In this study, we use two-predator-two-prey and two-host-two-pathogen models to compare the indirect effects between predators with the indirect effects between pathogens. We focus on how the indirect interactions between pathogens are affected by the competitive abilities of susceptible and infected hosts, whether the pathogens are specialists or generalists, and the transmission pathway (direct vs. environmental transmission). In many cases, indirect effects between pathogens and predators follow similar patterns, for example, more positive indirect effects with increased interspecific competition between victim species. However, the indirect effects between pathogens can qualitatively differ, for example, more negative indirect effects with increased interspecific host competition. These contrasting patterns show that an important mechanistic difference between predatory and parasitic interactions (specifically, whether interactions are immediately lethal) can have important population-level effects on the indirect interactions between exploiters.
Collapse
|
21
|
Hite JL, Pfenning‐Butterworth AC, Vetter RE, Cressler CE. A high-throughput method to quantify feeding rates in aquatic organisms: A case study with Daphnia. Ecol Evol 2020; 10:6239-6245. [PMID: 32724510 PMCID: PMC7381556 DOI: 10.1002/ece3.6352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
Food ingestion is one of the most basic features of all organisms. However, obtaining precise-and high-throughput-estimates of feeding rates remains challenging, particularly for small, aquatic herbivores such as zooplankton, snails, and tadpoles. These animals typically consume low volumes of food that are time-consuming to accurately measure.We extend a standard high-throughput fluorometry technique, which uses a microplate reader and 96-well plates, as a practical tool for studies in ecology, evolution, and disease biology. We outline technical and methodological details to optimize quantification of individual feeding rates, improve accuracy, and minimize sampling error.This high-throughput assay offers several advantages over previous methods, including i) substantially reduced time allotments per sample to facilitate larger, more efficient experiments; ii) technical replicates; and iii) conversion of in vivo measurements to units (mL-1 hr-1 ind-1) which enables broad-scale comparisons across an array of taxa and studies.To evaluate the accuracy and feasibility of our approach, we use the zooplankton, Daphnia dentifera, as a case study. Our results indicate that this procedure accurately quantifies feeding rates and highlights differences among seven genotypes.The method detailed here has broad applicability to a diverse array of aquatic taxa, their resources, environmental contaminants (e.g., plastics), and infectious agents. We discuss simple extensions to quantify epidemiologically relevant traits, such as pathogen exposure and transmission rates, for infectious agents with oral or trophic transmission.
Collapse
Affiliation(s)
- Jessica L. Hite
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | | | - Rachel E. Vetter
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | | |
Collapse
|
22
|
Hite JL, Cressler CE. Parasite-Mediated Anorexia and Nutrition Modulate Virulence Evolution. Integr Comp Biol 2020; 59:1264-1274. [PMID: 31187120 DOI: 10.1093/icb/icz100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Temporary but substantial reductions in voluntary food intake routinely accompany parasite infection in hosts ranging from insects to humans. This "parasite-mediated anorexia" drives dynamic nutrient-dependent feedbacks within and among hosts, which should alter the fitness of both hosts and parasites. Yet, few studies have examined the evolutionary and epidemiological consequences of this ubiquitous but overlooked component of infection. Moreover, numerous biomedical, veterinary, and farming practices (e.g., rapid biomass production via high-calorie or high-fat diets, low-level antibiotics to promote growth, nutritional supplementation, nonsteroidal anti-inflammatory drugs like Ibuprofen) directly or indirectly alter the magnitude of host anorexia-while also controlling host diet and therefore the nutrients available to hosts and parasites. Here, we show that anorexia can enhance or diminish disease severity, depending on whether the current dietary context provides nutrients that bolster or inhibit immune function. Feedbacks driven by nutrition-mediated competition between host immune function and parasite production can create a unimodal relationship between anorexia and parasite fitness. Subsequently, depending on the host's diet, medical or husbandry practices that suppress anorexia could backfire, and inadvertently select for more virulent parasites and larger epidemics. These findings carry implications for the development of integrated treatment programs that consider links between host feeding behavior, nutrition, and disease severity.
Collapse
Affiliation(s)
- Jessica L Hite
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Clayton E Cressler
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
23
|
de Roode JC, Hunter MD. Self-medication in insects: when altered behaviors of infected insects are a defense instead of a parasite manipulation. CURRENT OPINION IN INSECT SCIENCE 2019; 33:1-6. [PMID: 31358187 DOI: 10.1016/j.cois.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 06/10/2023]
Abstract
Studies have demonstrated that medication behaviors by insects are much more common than previously thought. Bees, ants, flies, and butterflies can use a wide range of toxic and nutritional compounds to medicate themselves or their genetic kin. Medication occurs either in response to active infection (therapy) or high infection risk (prophylaxis), and can be used to increase resistance or tolerance to infection. While much progress has been made over the last few years, there are also key areas that require in-depth investigation. These include quantifying the costs of medication, especially at the colony level of social insects, and formulating theoretical models that can predict the role of infection risk in driving micro-evolutionary and macro-evolutionary patterns of animal medication behaviors.
Collapse
Affiliation(s)
- Jacobus C de Roode
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, United States.
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Avenue, Ann Arbor, MI 48109, United States
| |
Collapse
|
24
|
Davis AK, Prouty C. The sicker the better: nematode-infected passalus beetles provide enhanced ecosystem services. Biol Lett 2019; 15:20180842. [PMID: 31039727 DOI: 10.1098/rsbl.2018.0842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is growing appreciation for the role that parasites have in ecosystems and food webs, though the possibility that they could improve an ecosystem service has never been considered. In forest ecosystems, fallen trees naturally decay over time and slowly return their nutrients to the soil. Beetles in the family Passalidae play a key role by excavating tunnels and consuming wood from these logs, thereby breaking down the wood into smaller debris. In the eastern United States, the horned passalus ( Odontotaenius disjunctus) is host to a naturally occurring nematode, Chondronema passali, which appears to cause little harm to the beetles. We suspected this was due to compensatory food consumption by parasitized individuals, which we tested here. We collected and housed 113 adult beetles in individual containers with wood for three months, then determined the amount of wood each beetle had processed into fine debris and frass. We then assessed beetles for C. passali and compared wood processing rates between parasitized and non-parasitized groups. Results showed the average daily processing rate of parasitized beetles ([Formula: see text] = 0.77 g d-1) was 15% greater than that of unparasitized ones ([Formula: see text] = 0.67 g d-1). Parasitized beetles were 6% larger, and this may explain some of this pattern, though the effect of parasitism was still significant in our analysis. By extrapolating the daily rates, we estimate that 10 adult beetles without nematodes would break down approximately 2.4 kg of wood in a single year, while a group of 10 parasitized beetles would break down 2.8 kg. While our data are consistent with the idea of compensatory feeding, because these results are based on natural infections, we cannot rule out the possibility that beetles with heightened wood consumption are simply more likely to acquire the parasite. At an ecosystem level, it may not matter which is the case; parasitized beetles provide a more effective ecosystem service.
Collapse
Affiliation(s)
- Andrew K Davis
- Odum School of Ecology, University of Georgia , Athens, GA 30602 , USA
| | - Cody Prouty
- Odum School of Ecology, University of Georgia , Athens, GA 30602 , USA
| |
Collapse
|
25
|
Budischak SA, Cressler CE. Fueling Defense: Effects of Resources on the Ecology and Evolution of Tolerance to Parasite Infection. Front Immunol 2018; 9:2453. [PMID: 30429848 PMCID: PMC6220035 DOI: 10.3389/fimmu.2018.02453] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
Resource availability is a key environmental constraint affecting the ecology and evolution of species. Resources have strong effects on disease resistance, but they can also affect the other main parasite defense strategy, tolerance. A small but growing number of animal studies are beginning to investigate the effects of resources on tolerance phenotypes. Here, we review how resources affect tolerance strategies across animal taxa ranging from fruit flies to frogs to mice. Surprisingly, resources (quality and quantity) can increase or reduce tolerance, dependent upon the particular host-parasite system. To explore this seeming contradiction, we recast predictions of models of sterility tolerance and mortality tolerance in a resource-dependent context. Doing so reveals that resources can have very different epidemiological and evolutionary effects, depending on what aspects of the tolerance phenotype are affected. Thus, it is critical to consider both sterility and mortality in future empirical studies of how behavioral and environmental resource availability affect tolerance to infection.
Collapse
Affiliation(s)
- Sarah A. Budischak
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, United States
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Clayton E. Cressler
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
26
|
Palmer-Young EC, Calhoun AC, Mirzayeva A, Sadd BM. Effects of the floral phytochemical eugenol on parasite evolution and bumble bee infection and preference. Sci Rep 2018; 8:2074. [PMID: 29391545 PMCID: PMC5794921 DOI: 10.1038/s41598-018-20369-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/17/2018] [Indexed: 11/09/2022] Open
Abstract
Ecological and evolutionary pressures on hosts and parasites jointly determine infection success. In pollinators, parasite exposure to floral phytochemicals may influence between-host transmission and within-host replication. In the bumble bee parasite Crithidia bombi, strains vary in phytochemical resistance, and resistance increases under in vitro selection, implying that resistance/infectivity trade-offs could maintain intraspecific variation in resistance. We assessed costs and benefits of in vitro selection for resistance to the floral phytochemical eugenol on C. bombi infection in Bombus impatiens fed eugenol-rich and eugenol-free diets. We also assessed infection-induced changes in host preferences for eugenol. In vitro, eugenol-exposed cells initially increased in size, but normalized during adaptation. Selection for eugenol resistance resulted in considerable (55%) but non-significant reductions in infection intensity; bee colony and body size were the strongest predictors of infection. Dietary eugenol did not alter infection, and infected bees preferred eugenol-free over eugenol-containing solutions. Although direct effects of eugenol exposure could influence between-host transmission at flowers, dietary eugenol did not ameliorate infection in bees. Limited within-host benefits of resistance, and possible trade-offs between resistance and infectivity, may relax selection for eugenol resistance and promote inter-strain variation in resistance. However, infection-induced dietary shifts could influence pollinator-mediated selection on floral traits.
Collapse
Affiliation(s)
- Evan C Palmer-Young
- Organismic & Evolutionary Biology Graduate Program, University of Massachusetts at Amherst, Amherst, Massachusetts, 01003, United States.
| | - Austin C Calhoun
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, United States
| | - Anastasiya Mirzayeva
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, 01003, United States
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, United States
| |
Collapse
|