1
|
Lin M, Liu L, Chen CA. Transcriptomics of the Anthopleura Sea Anemone Reveals Unique Adaptive Strategies to Shallow-Water Hydrothermal Vent. Ecol Evol 2025; 15:e71252. [PMID: 40225888 PMCID: PMC11985324 DOI: 10.1002/ece3.71252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
The nonsymbiotic sea anemone Anthopleura nigrescens dominates the shallow-water hydrothermal vents off the coast of Kueishan Island, Taiwan. These vents represent some of the world's most extreme environments, with recorded pH values as low as 1.52 and temperatures reaching 121°C. To investigate the adaptations of A. nigrescens to these extreme conditions, transcriptomic analyses were conducted to compare populations inhabiting vent and non-vent areas. To identify shared genetic mechanisms in vent-dwelling anemones, specific orthologs conserved in vent sea anemones were identified by comparing the genomic data of Anthopleura species and other sea anemones. Tank experiments with elevated temperatures were also performed to evaluate the expression profiles of genes associated with heat resistance. The transcriptomic analysis revealed that enriched genes in vent populations are involved in H2S homeostasis and stress resistance, suggesting that detoxification and thermal stress resistance are critical adaptive strategies. Two significantly upregulated genes encoding hydroxyacylglutathione hydrolase and thiosulfate sulfurtransferase may play a role in managing sulfur toxicity and maintaining redox balance. The enriched genes and vent-specific gene expression patterns also suggest that efficient DNA repair mechanisms play a crucial role in the thermal stress resistance of vent populations. Interestingly, some genes associated with circadian rhythms were upregulated in vent populations, suggesting these genes may help vent anemones adapt to the highly dynamic conditions of hydrothermal vents. Furthermore, the expression profiles of stress-resistance-related genes reveal that vent anemones have developed unique molecular regulatory mechanisms to cope with elevated temperatures, as observed in the tank experiment. These transcriptomic findings advance our understanding of the life adaptations in shallow-water hydrothermal vent environments.
Collapse
Affiliation(s)
- Mei‐Fang Lin
- Department of Marine Biotechnology and ResourcesNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Doctoral Degree Program in Marine BiotechnologyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Li‐Lian Liu
- Frontier Center for Ocean Science and TechnologyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Department of OceanographyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | | |
Collapse
|
2
|
Dellaert Z, Putnam HM. Reconciling the variability in the biological response of marine invertebrates to climate change. J Exp Biol 2023; 226:jeb245834. [PMID: 37655544 DOI: 10.1242/jeb.245834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
As climate change increases the rate of environmental change and the frequency and intensity of disturbance events, selective forces intensify. However, given the complicated interplay between plasticity and selection for ecological - and thus evolutionary - outcomes, understanding the proximate signals, molecular mechanisms and the role of environmental history becomes increasingly critical for eco-evolutionary forecasting. To enhance the accuracy of our forecasting, we must characterize environmental signals at a level of resolution that is relevant to the organism, such as the microhabitat it inhabits and its intracellular conditions, while also quantifying the biological responses to these signals in the appropriate cells and tissues. In this Commentary, we provide historical context to some of the long-standing challenges in global change biology that constrain our capacity for eco-evolutionary forecasting using reef-building corals as a focal model. We then describe examples of mismatches between the scales of external signals relative to the sensors and signal transduction cascades that initiate and maintain cellular responses. Studying cellular responses at this scale is crucial because these responses are the basis of acclimation to changing environmental conditions and the potential for environmental 'memory' of prior or historical conditions through molecular mechanisms. To challenge the field, we outline some unresolved questions and suggest approaches to align experimental work with an organism's perception of the environment; these aspects are discussed with respect to human interventions.
Collapse
Affiliation(s)
- Zoe Dellaert
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| |
Collapse
|
3
|
van Oppen MJH, Raina J. Coral holobiont research needs spatial analyses at the microbial scale. Environ Microbiol 2023; 25:179-183. [PMID: 36209397 PMCID: PMC10100515 DOI: 10.1111/1462-2920.16237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Madeleine J. H. van Oppen
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Jean‐Baptiste Raina
- Climate Change Cluster (C3)University of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Cziesielski MJ, Liew YJ, Cui G, Aranda M. Increased incompatibility of heterologous algal symbionts under thermal stress in the cnidarian-dinoflagellate model Aiptasia. Commun Biol 2022; 5:760. [PMID: 35902758 PMCID: PMC9334593 DOI: 10.1038/s42003-022-03724-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Rising ocean temperatures are increasing the rate and intensity of coral mass bleaching events, leading to the collapse of coral reef ecosystems. To better understand the dynamics of coral-algae symbioses, it is critical to decipher the role each partner plays in the holobiont's thermotolerance. Here, we investigated the role of the symbiont by comparing transcriptional heat stress responses of anemones from two thermally distinct locations, Florida (CC7) and Hawaii (H2) as well as a heterologous host-symbiont combination composed of CC7 host anemones inoculated with the symbiont Breviolum minutum (SSB01) from H2 anemones (CC7-B01). We find that oxidative stress and apoptosis responses are strongly influenced by symbiont type, as further confirmed by caspase-3 activation assays, but that the overall response to heat stress is dictated by the compatibility of both partners. Expression of genes essential to symbiosis revealed a shift from a nitrogen- to a carbon-limited state only in the heterologous combination CC7-B01, suggesting a bioenergetic disruption of symbiosis during stress. Our results indicate that symbiosis is highly fine-tuned towards particular partner combinations and that heterologous host-symbiont combinations are metabolically less compatible under stress. These results are essential for future strategies aiming at increasing coral resilience using heterologous thermotolerant symbionts.
Collapse
Affiliation(s)
- Maha J Cziesielski
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yi Jin Liew
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,CSIRO Health & Biosecurity, North Ryde, NSW, Australia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia. .,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Traylor-Knowles N, Emery M. Analysis of Spatial Gene Expression at the Cellular Level in Stony Corals. Methods Mol Biol 2022; 2450:359-371. [PMID: 35359318 PMCID: PMC9761507 DOI: 10.1007/978-1-0716-2172-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scleractinians, or stony corals, are colonial animals that possess a high regenerative capacity and a highly diverse innate immune system. As such they present the opportunity to investigate the interconnection between regeneration and immunity in a colonial animal. Understanding the relationship between regeneration and immunity in stony corals is of further interest as it has major implications for coral reef health. One method for understanding the role of innate immunity in scleractinian regeneration is in situ hybridization using RNA probes. Here we describe a protocol for in situ hybridization in adult stony corals using a digoxigenin (DIG)-labeled RNA antisense probe which can be utilized to investigate the spatial expression of immune factors during regeneration.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Madison Emery
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
6
|
Roger LM, Reich HG, Lawrence E, Li S, Vizgaudis W, Brenner N, Kumar L, Klein-Seetharaman J, Yang J, Putnam HM, Lewinski NA. Applying model approaches in non-model systems: A review and case study on coral cell culture. PLoS One 2021; 16:e0248953. [PMID: 33831033 PMCID: PMC8031391 DOI: 10.1371/journal.pone.0248953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Model systems approaches search for commonality in patterns underlying biological diversity and complexity led by common evolutionary paths. The success of the approach does not rest on the species chosen but on the scalability of the model and methods used to develop the model and engage research. Fine-tuning approaches to improve coral cell cultures will provide a robust platform for studying symbiosis breakdown, the calcification mechanism and its disruption, protein interactions, micronutrient transport/exchange, and the toxicity of nanoparticles, among other key biological aspects, with the added advantage of minimizing the ethical conundrum of repeated testing on ecologically threatened organisms. The work presented here aimed to lay the foundation towards development of effective methods to sort and culture reef-building coral cells with the ultimate goal of obtaining immortal cell lines for the study of bleaching, disease and toxicity at the cellular and polyp levels. To achieve this objective, the team conducted a thorough review and tested the available methods (i.e. cell dissociation, isolation, sorting, attachment and proliferation). The most effective and reproducible techniques were combined to consolidate culture methods and generate uncontaminated coral cell cultures for ~7 days (10 days maximum). The tests were conducted on scleractinian corals Pocillopora acuta of the same genotype to harmonize results and reduce variation linked to genetic diversity. The development of cell separation and identification methods in conjunction with further investigations into coral cell-type specific metabolic requirements will allow us to tailor growth media for optimized monocultures as a tool for studying essential reef-building coral traits such as symbiosis, wound healing and calcification at multiple scales.
Collapse
Affiliation(s)
- Liza M. Roger
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: ,
| | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Evan Lawrence
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shuaifeng Li
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Whitney Vizgaudis
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Nathan Brenner
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Lokender Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | | | - Jinkyu Yang
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Nastassja A. Lewinski
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
7
|
Sassi CFC, Farias GMD, Vasconcelos ADS, Macedo RSD, França JPDS, Sassi R. Histopatological effects of bleaching and disease on the coral Siderastrea stellata from coastal reefs of Brazil. IHERINGIA. SERIE ZOOLOGIA 2021. [DOI: 10.1590/1678-4766e2021007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Histological analysis of bleached samples of Siderastrea stellata Verrill, 1868, with white plague disease and with alteration in the color pattern, revealed drastic tissue and cellular disturbances, such as lysis of the external epithelium, hyperplasia of gastrodermis, apoptosis of epithelial cells and zooxanthellae, and degradation of mesenteric filaments and reproductive cells. Fungal hyphae, diatoms, and cyanobacteria were present in diseased samples and colonies with alteration in the color pattern. Furthermore, bleached and diseased samples showed significant reductions in the number of zooxanthellae per 100 µm2 of gastrodermis and significant reductions in the diameters and volumes of stage V oocytes. We found that bleaching events, diseases, and colonies with alteration in the color pattern promoted degradation of reproductive cells, resulting in the consequent interruption of the reproduction of the coral S. stellata, which is one of the most common Brazilian coral species. The implications of these indirect effects of bleaching, disease, and changes in coral color patterns in the population dynamics of Brazilian reefs are discussed.
Collapse
|
8
|
Suggett DJ, Smith DJ. Coral bleaching patterns are the outcome of complex biological and environmental networking. GLOBAL CHANGE BIOLOGY 2020; 26:68-79. [PMID: 31618499 DOI: 10.1111/gcb.14871] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/20/2019] [Indexed: 05/26/2023]
Abstract
Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching-induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenomena to understand where corals bleach, when and why-resulting in a large-yet still somewhat patchy-knowledge base. Particularly catastrophic bleaching-induced coral mortality events in the past 5 years have catalyzed calls for a more diverse set of reef management tools, extending far beyond climate mitigation and reef protection, to also include more aggressive interventions. However, the effectiveness of these various tools now rests on rapidly assimilating our knowledge base of coral bleaching into more integrated frameworks. Here, we consider how the past three decades of intensive coral bleaching research has established the basis for complex biological and environmental networks, which together regulate outcomes of bleaching severity. We discuss how we now have enough scaffold for conceptual biological and environmental frameworks underpinning bleaching susceptibility, but that new tools are urgently required to translate this to an operational system informing-and testing-bleaching outcomes. Specifically, adopting network models that can fully describe and predict metabolic functioning of coral holobionts, and how this functioning is regulated by complex doses and interactions among environmental factors. Identifying knowledge gaps limiting operation of such models is the logical step to immediately guide and prioritize future experiments and observations. We are at a time-critical point where we can implement new capacity to resolve how coral bleaching patterns emerge from complex biological-environmental networks, and so more effectively inform rapidly evolving ecological management and social adaptation frameworks aimed at securing the future of coral reefs.
Collapse
Affiliation(s)
- David J Suggett
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - David J Smith
- Coral Reef Research Unit, School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|
9
|
Liu C, Cheng SH, Lin S. Illuminating the dark depths inside coral. Cell Microbiol 2019; 22:e13122. [PMID: 31634977 DOI: 10.1111/cmi.13122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 11/27/2022]
Abstract
The ability to observe in situ 3D distribution and dynamics of endosymbionts in corals is crucial for gaining a mechanistic understanding of coral bleaching and reef degradation. Here, we report the development of a tissue clearing (TC) coupled with light sheet fluorescence microscopy (LSFM) method for 3D imaging of the coral holobiont at single-cell resolution. The initial applications have demonstrated the ability of this technique to provide high spatial resolution quantitative information of endosymbiont abundance and distribution within corals. With specific fluorescent probes or assays, TC-LSFM also revealed spatial distribution and dynamics of physiological conditions (such as cell proliferation, apoptosis, and hypoxia response) in both corals and their endosymbionts. This tool is highly promising for in situ and in-depth data acquisition to illuminate coral symbiosis and health conditions in the changing marine environment, providing fundamental information for coral reef conservation and restoration.
Collapse
Affiliation(s)
- Chichi Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Department of Marine Sciences, University of Connecticut, Groton, Connecticut
| |
Collapse
|
10
|
Thomas L, López EH, Morikawa MK, Palumbi SR. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef‐building corals. Mol Ecol 2019; 28:3371-3382. [DOI: 10.1111/mec.15143] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/14/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Luke Thomas
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre Perth WA Australia
- Oceans Graduate School The UWA Oceans Institute, The University of Western Australia Perth WA Australia
- Biology Department, Hopkins Marine Station Stanford University Stanford CA USA
| | - Elora H. López
- Biology Department, Hopkins Marine Station Stanford University Stanford CA USA
| | - Megan K. Morikawa
- Biology Department, Hopkins Marine Station Stanford University Stanford CA USA
| | - Stephen R. Palumbi
- Biology Department, Hopkins Marine Station Stanford University Stanford CA USA
| |
Collapse
|
11
|
Traylor-Knowles N. In Situ Hybridization Techniques for Paraffin-Embedded Adult Coral Samples. J Vis Exp 2018. [PMID: 30222153 DOI: 10.3791/57853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Corals are important ocean invertebrates that are critical for overall ocean health as well as human health. However, due to human impacts such as rising ocean temperatures and ocean acidification, corals are increasingly under threat. To tackle these challenges, advances in cell and molecular biology have proven to be crucial for diagnosing the health of corals. Modifying some of the techniques commonly used in human medicine could greatly improve researchers' ability to treat and save corals. To address this, a protocol for in situ hybridization used primarily in human medicine and evolutionary developmental biology has been adapted for use in adult corals under stress. The purpose of this method is to visualize the spatial expression of an RNA probe in adult coral tissue that has been embedded in paraffin and sectioned onto glass slides. This method focuses on removal of the paraffin and rehydration of the sample, pretreatment of the sample to ensure permeability of the sample, pre-hybridization incubation, hybridization of the RNA probe, and visualization of the RNA probe. This is a powerful method when using non-model organisms to discover where specific genes are expressed, and the protocol can be easily adapted for other non-model organisms. However, the method is limited in that it is primarily qualitative, because expression intensity can vary depending on the amount of time used during the visualization step and the concentration of the probe. Furthermore, patience is required, as this protocol can take up to 5 days (and in many cases, longer) depending on the probe being used. Finally, non-specific background staining is common, but this limitation can be overcome.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Sciences;
| |
Collapse
|
12
|
Putnam HM, Barott KL, Ainsworth TD, Gates RD. The Vulnerability and Resilience of Reef-Building Corals. Curr Biol 2018; 27:R528-R540. [PMID: 28586690 DOI: 10.1016/j.cub.2017.04.047] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reef-building corals provide the foundation for the structural and biological diversity of coral-reef ecosystems. These massive biological structures, which can be seen from space, are the culmination of complex interactions between the tiny polyps of the coral animal in concert with its unicellular symbiotic algae and a wide diversity of closely associated microorganisms (bacteria, archaea, fungi, and viruses). While reef-building corals have persisted in various forms for over 200 million years, human-induced conditions threaten their function and persistence. The scope for loss associated with the destruction of coral reef systems is economically, biologically, physically and culturally immense. Here, we provide a micro-to-macro perspective on the biology of scleractinian corals and discuss how cellular processes of the host and symbionts potentially affect the response of these reef builders to the wide variety of both natural and anthropogenic stressors encountered by corals in the Anthropocene. We argue that the internal physicochemical settings matter to both the performance of the host and microbiome, as bio-physical feedbacks may enhance stress tolerance through environmentally mediated host priming and effects on microbiome ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- Hollie M Putnam
- University of Rhode Island, Department of Biological Sciences, Kingston, RI, USA.
| | - Katie L Barott
- University of Pennsylvania, Department of Biology, Philadelphia, PA, USA; Hawaii Institute for Marine Biology, University of Hawai'i, Manoa, HI, USA
| | - Tracy D Ainsworth
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Australia
| | - Ruth D Gates
- Hawaii Institute for Marine Biology, University of Hawai'i, Manoa, HI, USA
| |
Collapse
|
13
|
How does an animal behave like a plant? Physiological and molecular adaptations of zooxanthellae and their hosts to symbiosis. C R Biol 2018; 341:276-280. [DOI: 10.1016/j.crvi.2018.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 03/13/2018] [Indexed: 12/26/2022]
|
14
|
Rosental B, Kozhekbaeva Z, Fernhoff N, Tsai JM, Traylor-Knowles N. Coral cell separation and isolation by fluorescence-activated cell sorting (FACS). BMC Cell Biol 2017; 18:30. [PMID: 28851289 PMCID: PMC5575905 DOI: 10.1186/s12860-017-0146-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 08/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Generalized methods for understanding the cell biology of non-model species are quite rare, yet very much needed. In order to address this issue, we have modified a technique traditionally used in the biomedical field for ecological and evolutionary research. Fluorescent activated cell sorting (FACS) is often used for sorting and identifying cell populations. In this study, we developed a method to identify and isolate different cell populations in corals and other cnidarians. METHODS Using fluorescence-activated cell sorting (FACS), coral cell suspension were sorted into different cellular populations using fluorescent cell markers that are non-species specific. Over 30 different cell markers were tested. Additionally, cell suspension from Aiptasia pallida was also tested, and a phagocytosis test was done as a downstream functional assay. RESULTS We found that 24 of the screened markers positively labeled coral cells and 16 differentiated cell sub-populations. We identified 12 different cellular sub-populations using three markers, and found that each sub-population is primarily homogeneous. Lastly, we verified this technique in a sea anemone, Aiptasia pallida, and found that with minor modifications, a similar gating strategy can be successfully applied. Additionally, within A. pallida, we show elevated phagocytosis of sorted cells based on an immune associated marker. CONCLUSIONS In this study, we successfully adapted FACS for isolating coral cell populations and conclude that this technique is translatable for future use in other species. This technique has the potential to be used for different types of studies on the cellular stress response and other immunological studies.
Collapse
Affiliation(s)
- Benyamin Rosental
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pathology, Hopkins Marine Station, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA, 93950, USA.
| | - Zhanna Kozhekbaeva
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Florida, 33149, USA
| | - Nathaniel Fernhoff
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jonathan M Tsai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nikki Traylor-Knowles
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Florida, 33149, USA.
| |
Collapse
|