1
|
Barham KE, Frère CH, Dwyer RG, Baker CJ, Campbell HA, Irwin TR, Franklin CE. Climate-induced shifts in crocodile body temperature impact behavior and performance. Curr Biol 2025; 35:1164-1170.e2. [PMID: 39947177 DOI: 10.1016/j.cub.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/12/2024] [Accepted: 01/16/2025] [Indexed: 03/14/2025]
Abstract
The increase of energy in the climate system caused by anthropogenic climate change is expected to disrupt predictable weather patterns and result in greater temperature extremes.1,2 As a result of these climate shifts, El-Niño Southern Oscillation (ENSO), which drives predictable periods of hot/dry and cool/wet across the Pacific, is expected to increase in variability and magnitude.3 These changes will significantly impact ectotherms, whose performance across a range of behaviors is dependent on local environmental temperatures.4 As such, we must understand the way individuals experience climate conditions and how changes in their body temperature (Tb), whether through climate or modification of their thermoregulatory mechanisms,5 affect their performance. Laboratory studies have shown that estuarine crocodile (Crocodylus porosus) diving and swimming performance is reduced above 32°C-33°C,6,7,8 temperatures commonly exceeded across their natural range. By monitoring Tb and diving activity in 203 free-ranging estuarine crocodiles over 15 years, we show that the Tb of crocodiles has increased alongside rising air temperatures since 2008, reflecting the climatic shifts caused by the ENSO cycle. As ambient temperatures rose, crocodiles experienced more days close to critical thermal limits (32°C-33°C), at which temperatures the duration of dives was reduced and the prevalence of active cooling behavior was elevated. This study demonstrates that crocodiles are susceptible to multi-year fluctuations in ambient temperature, which requires them to undertake concomitant changes in behavior. They are already close to their physiological thermal limit, but the impact of future predicted rises in temperature remains unknown.
Collapse
Affiliation(s)
- Kaitlin E Barham
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Céline H Frère
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ross G Dwyer
- School of Science, Technology and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Maroochydore, QLD 4556, Australia
| | - Cameron J Baker
- Research Institute for Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Darwin, NT 0810, Australia
| | - Hamish A Campbell
- Research Institute for Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Darwin, NT 0810, Australia
| | - Terri R Irwin
- Australia Zoo, 1638 Steve Irwin Way, Beerwah, QLD 4519, Australia
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Barham KE, Dwyer RG, Frere CH, Bentley LK, Baker CJ, Campbell HA, Irwin TR, Franklin CE. Cooling down is as important as warming up for a large-bodied tropical reptile. Proc Biol Sci 2024; 291:20241804. [PMID: 39500376 PMCID: PMC11537756 DOI: 10.1098/rspb.2024.1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 11/09/2024] Open
Abstract
An ectotherm's performance and physiological function are strongly tied to environmental temperature, and many ectotherms thermoregulate behaviourally to reach optimum body temperatures. Tropical ectotherms are already living in environments matching their thermal tolerance range and may be expected to conform to environmental temperatures. We tracked the body temperatures (Tb) of 163 estuarine crocodiles across 13 years and compared Tb of 39 crocodiles to water temperature gathered using fish-borne sensors (Tw) across 3 years (2015-2018). While Tb largely conformed closely to Tw, we found inter- and intra-individual differences in relative body temperature (Tb-Tw) that depended on sex and body size as well as the time of day and year. Deviations from Tw, especially during the warm parts of the year, suggest that thermoregulatory behaviour was taking place: we found patterns of warming and cooling events that seemed to mediate this variation in Tb. Thermoregulatory behaviour was observed most frequently in larger individuals, with warming events common during winter and cooling events common during summer. By observing free-ranging animals across multiple years, we found that estuarine crocodiles show yearly patterns of active cooling and warming behaviours that modify their body temperature, highlighting their resilience in the face of recent climate warming. Our work also provides the first evidence for thermal type in large-bodied reptiles.
Collapse
Affiliation(s)
- Kaitlin E. Barham
- School of the Environment, University of Queensland, Saint Lucia, Queensland4072, Australia
| | - Ross G. Dwyer
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland4556, Australia
| | - Celine H. Frere
- School of the Environment, University of Queensland, Saint Lucia, Queensland4072, Australia
| | - Lily K. Bentley
- School of the Environment, University of Queensland, Saint Lucia, Queensland4072, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, Saint Lucia, Queensland4072, Australia
| | - Cameron J. Baker
- Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory0909, Australia
| | - Hamish A. Campbell
- Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory0909, Australia
| | - Terri R. Irwin
- Australia Zoo, Steve Irwin Way, Beerwah, Queensland4519, Australia
| | - Craig E. Franklin
- School of the Environment, University of Queensland, Saint Lucia, Queensland4072, Australia
| |
Collapse
|
3
|
Stress history affects heat tolerance in an aquatic ectotherm (Chinook salmon, Oncorhynchus tshawytscha). J Therm Biol 2022; 106:103252. [DOI: 10.1016/j.jtherbio.2022.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/02/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
|
4
|
Bautista NM, Damsgaard C, Fago A, Wang T. Carbon dioxide and bicarbonate accumulation in caiman erythrocytes during diving. J Exp Biol 2021; 224:jeb.242435. [PMID: 33771914 DOI: 10.1242/jeb.242435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
The ability of crocodilian haemoglobins to bind HCO3 - has been appreciated for more than half a century, but the functional implication of this is exceptional mechanism has not previously been assessed in vivo Therefore, the goal of the present study was to address the hypothesis that CO2 primarily binds to Hb, rather than being accumulated in plasma as in other vertebrates, during diving in caimans. Here, we demonstrate that CO2 primarily accumulates within the erythrocyte during diving and that most of the accumulated CO2 is bound to haemoglobin. Furthermore, we show that this HCO3 --binding is tightly associated with the progressive blood deoxygenation during diving, therefore, crocodilians differ from the classic vertebrate pattern, where HCO3 - accumulates in the plasma upon excretion from the erythrocytes by the Cl--HCO3 --exchanger.
Collapse
Affiliation(s)
- Naim M Bautista
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Christian Damsgaard
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Rodgers EM, Franklin CE, Noble DWA. Diving in hot water: a meta-analytic review of how diving vertebrate ectotherms will fare in a warmer world. J Exp Biol 2021; 224:224/Suppl_1/jeb228213. [PMID: 33627460 DOI: 10.1242/jeb.228213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Diving ectothermic vertebrates are an important component of many aquatic ecosystems, but the threat of climate warming is particularly salient to this group. Dive durations typically decrease as water temperatures rise; yet, we lack an understanding of whether this trend is apparent in all diving ectotherms and how this group will fare under climate warming. We compiled data from 27 studies on 20 ectothermic vertebrate species to quantify the effect of temperature on dive durations. Using meta-analytic approaches, we show that, on average, dive durations decreased by 11% with every 1°C increase in water temperature. Larger increases in temperature (e.g. +3°C versus +8-9°C) exerted stronger effects on dive durations. Although species that respire bimodally are projected to be more resilient to the effects of temperature on dive durations than purely aerial breathers, we found no significant difference between these groups. Body mass had a weak impact on mean dive durations, with smaller divers being impacted by temperature more strongly. Few studies have examined thermal phenotypic plasticity (N=4) in diving ectotherms, and all report limited plasticity. Average water temperatures in marine and freshwater habitats are projected to increase between 1.5 and 4°C in the next century, and our data suggest that this magnitude of warming could translate to substantial decreases in dive durations, by approximately 16-44%. Together, these data shed light on an overlooked threat to diving ectothermic vertebrates and suggest that time available for underwater activities, such as predator avoidance and foraging, may be shortened under future warming.
Collapse
Affiliation(s)
- Essie M Rodgers
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St Lucia, 4072 Queensland, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
6
|
Rodgers EM, Franklin CE. Aerobic scope and climate warming: Testing the “
plastic floors and concrete ceilings
” hypothesis in the estuarine crocodile (
Crocodylus porosus
). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:108-117. [DOI: 10.1002/jez.2412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Essie M. Rodgers
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Craig E. Franklin
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
7
|
Rodgers EM, Franklin CE. Diving beyond Aerobic Limits: Effect of Temperature on Anaerobic Support of Simulated Predator Avoidance Dives in an Air-Breathing Ectotherm. Physiol Biochem Zool 2019; 92:293-302. [PMID: 30864880 DOI: 10.1086/702828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diving optimality models predict air breathers to routinely dive within aerobic limits, but predator avoidance dives may be an exception. Lengthening submergence times during a predation threat may enhance survival probability, and we therefore hypothesized that predator avoidance dives in juvenile estuarine crocodiles (Crocodylus porosus) would be partially anaerobically fueled. We also predicted that reliance on anaerobic metabolism would increase at elevated temperatures to offset the faster depletion of body oxygen stores. Crocodiles were maintained at 28° and 34°C for 60 d and subsequently underwent simulated predator avoidance dive trials at two test temperatures (28° and 34°C). Blood was sampled immediately on surfacing to measure plasma lactate concentrations relative to nondiving (control) values. Aerobic dive limits (cADL; min) were also calculated using known body mass and oxygen storage relationships and rates of diving oxygen consumption and compared with observed dive durations. Postdive plasma lactate levels were elevated beyond resting levels at both test temperatures, indicating that aerobic thresholds were surpassed during simulated predator avoidance dives. Similarly, ≥90% of dive durations exceeded cADLs at both test temperatures. Postdive plasma lactate concentrations were independent of water temperature and thermal acclimation treatment. Together, these findings suggest that reliance on anaerobiosis during simulated predator avoidance dives is important regardless of temperature.
Collapse
|
8
|
Tran TT, Janssens L, Dinh KV, Stoks R. An adaptive transgenerational effect of warming but not of pesticide exposure determines how a pesticide and warming interact for antipredator behaviour. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:307-315. [PMID: 30447473 DOI: 10.1016/j.envpol.2018.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/18/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
The impact of pesticides on organisms may strongly depend on temperature. While many species will be exposed to pesticides and warming both in the parental and offspring generations, transgenerational effects of pesticides under warming are still poorly studied, particularly for behaviour. We therefore studied the single and combined effects of exposure to the pesticide chlorpyrifos (CPF) and warming both within and across generations on antipredator behaviour of larvae of the vector mosquito Culex pipiens. Within each generation pesticide exposure and warming reduced the escape diving time, making the larvae more susceptible to predation. Pesticide exposure of the parents did not affect offspring antipredator behaviour. Yet, parental exposure to warming determined how warming and the pesticide interacted in the offspring generation. When parents were reared at 24 °C, warming no longer reduced offspring diving times in the solvent control, suggesting an adaptive transgenerational effect to prepare the offspring to better deal with a higher predation risk under warming. Related to this, the CPF-induced reduction in diving time was stronger at 20 °C than at 24 °C, except in the offspring whose parents had been exposed to 24 °C. This dependency of the widespread interaction between warming and pesticide exposure on an adaptive transgenerational effect of warming is an important finding at the interface of global change ecology and ecotoxicology.
Collapse
Affiliation(s)
- Tam T Tran
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium; Department of Aquatic Animal Health, Institute of Aquaculture, Nha Trang University, Nha Trang, Viet Nam.
| | - Lizanne Janssens
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium.
| | - Khuong V Dinh
- Department of Fisheries Biology, Institute of Aquaculture, Nha Trang University, Nha Trang, Viet Nam; National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark.
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Uriona TJ, Lyon M, Farmer CG. Lithophagy Prolongs Voluntary Dives in American alligators ( Alligator mississippiensis). Integr Org Biol 2019; 1:oby008. [PMID: 33791515 PMCID: PMC7671140 DOI: 10.1093/iob/oby008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many vertebrates ingest stones, but the function of this behavior is not fully understood. We tested the hypothesis that lithophagy increases the duration of voluntary dives in juvenile American alligators (Alligator mississippiensis). After ingestion of granite stones equivalent to 2.5% of body weight, the average duration of dives increased by 88% and the maximum duration increased by 117%. These data are consistent with the hypothesis that gastroliths serve to increase specific gravity, and that the animals compensate by increasing lung volume, thereby diving with larger stores of pulmonary oxygen.
Collapse
Affiliation(s)
- T J Uriona
- Trinity College Dublin, Dublin 2, Ireland; Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - M Lyon
- Trinity College Dublin, Dublin 2, Ireland; Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - C G Farmer
- Trinity College Dublin, Dublin 2, Ireland; Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Knight K. Hot crocs can't hide for as long. J Exp Biol 2017. [DOI: 10.1242/jeb.170423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|