1
|
Cochran JK, Buchwalter DB. The mayfly Neocloeon triangulifer senses decreasing oxygen availability (PO2) and responds by reducing ion uptake and altering gene expression. J Exp Biol 2024; 227:jeb247916. [PMID: 39422090 PMCID: PMC11634025 DOI: 10.1242/jeb.247916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Oxygen availability is central to the energetic budget of aquatic animals and may vary naturally and/or in response to anthropogenic activities. Yet, we know little about how oxygen availability is linked to fundamental processes such as ion transport in aquatic insects. We hypothesized and observed that ion (22Na and 35SO4) uptake would be significantly decreased at O2 partial pressures below the mean critical level (Pcrit, 5.4 kPa) where metabolic rate (ṀO2) is compromised and ATP production is limited. However, we were surprised to observe marked reductions in ion uptake at oxygen partial pressures well above Pcrit, where ṀO2 was stable. For example, SO4 uptake decreased by 51% at 11.7 kPa and 82% at Pcrit (5.4 kPa) while Na uptake decreased by 19% at 11.7 kPa and 60% at Pcrit. Nymphs held for longer time periods at reduced PO2 exhibited stronger reductions in ion uptake rates. Fluids from whole-body homogenates exhibited a 29% decrease in osmolality in the most hypoxic condition. The differential expression of atypical guanylate cyclase (gcy-88e) in response to changing PO2 conditions provides evidence for its potential role as an oxygen sensor. Several ion transport genes (e.g. chloride channel and sodium-potassium ATPase) and hypoxia-associated genes (e.g. ldh and egl-9) were also impacted by decreased oxygen availability. Together, the results of our work suggest that N. triangulifer can sense decreased oxygen availability and perhaps conserves energy accordingly, even when ṀO2 is not impacted.
Collapse
Affiliation(s)
- Jamie K. Cochran
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David B. Buchwalter
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Cochran JK, Banks C, Buchwalter DB. Respirometry reveals major lineage-based differences in the energetics of osmoregulation in aquatic invertebrates. J Exp Biol 2023; 226:jeb246376. [PMID: 37767711 PMCID: PMC10629685 DOI: 10.1242/jeb.246376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
All freshwater organisms are challenged to control their internal balance of water and ions in strongly hypotonic environments. We compared the influence of external salinity on the oxygen consumption rates (ṀO2) of three species of freshwater insects, one snail and two crustaceans. Consistent with available literature, we found a clear decrease in ṀO2 with increasing salinity in the snail Elimia sp. and crustaceans Hyalella azteca and Gammarus pulex (r5=-0.90, P=0.03). However, we show here for the first time that metabolic rate was unchanged by salinity in the aquatic insects, whereas ion transport rates were positively correlated with higher salinities. In contrast, when we examined the ionic influx rates in the freshwater snail and crustaceans, we found that Ca uptake rates were highest under the most dilute conditions, while Na uptake rates increased with salinity. In G. pulex exposed to a serially diluted ion matrix, Ca uptake rates were positively associated with ṀO2 (r5=-0.93, P=0.02). This positive association between Ca uptake rate and ṀO2 was also observed when conductivity was held constant but Ca concentration was manipulated (1.7-17.3 mg Ca l-1) (r5=0.94, P=0.05). This finding potentially implicates the cost of calcium uptake as a driver of increased metabolic rate under dilute conditions in organisms with calcified exoskeletons and suggests major phyletic differences in osmoregulatory physiology. Freshwater insects may be energetically challenged by higher salinities, while lower salinities may be more challenging for other freshwater taxa.
Collapse
Affiliation(s)
- Jamie K. Cochran
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Catelyn Banks
- North Carolina School of Science and Mathematics, 1219 Broad St, Durham, NC 27705, USA
| | - David B. Buchwalter
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Cochran JK, Buchwalter DB. The acclimatory response of the mayfly Neocloeon triangulifer to dilute conditions is linked to the plasticity of sodium transport. Proc Biol Sci 2022; 289:20220529. [PMID: 35892216 PMCID: PMC9326274 DOI: 10.1098/rspb.2022.0529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Relative to a growing body of knowledge about the negative consequences of freshwater salinization, little is known about how aquatic insects respond to progressively ion-poor conditions. Here, we examined life-history and physiological acclimation in Neocloeon triangulifer by rearing nymphs from 1-day post-egg hatch to adulthood across a gradient of decreasing Na concentrations (15, 8, 4, 2 and 1 mg l-1 Na). We found no significant changes in survival, growth, development time and whole-body Na content across these treatments. Radiotracer data revealed that nymphs acclimated to their dilute exposures by increasing their rates of Na uptake and were able to maintain a relatively narrow range of uptake rates (±s.e.m.) of 38.5 ± 4.2 µg Na g-1 h-1 across all treatments. By contrast, the Na uptake rates observed in naive nymphs were much more concentration dependent. This acclimatory response is partially explained by differences in ionocyte counts on the gills of nymphs reared under different salinities. Acclimated nymphs were surprisingly less retentive of their sodium composition when subjected to deionized water challenge. By contrasting our findings with a previous N. triangulifer salinity acclimation study, we show a physiological affinity for dilute conditions in this emerging mayfly model.
Collapse
Affiliation(s)
- Jamie K. Cochran
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David B. Buchwalter
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Nitzsche KN, Wakaki S, Yamashita K, Shin K, Kato Y, Kamauchi H, Tayasu I. Calcium and strontium stable isotopes reveal similar behaviors of essential Ca and nonessential Sr in stream food webs. Ecosphere 2022. [DOI: 10.1002/ecs2.3921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Kai Nils Nitzsche
- RIHN Center Research Institute for Humanity and Nature (RIHN) Kyoto Japan
| | - Shigeyuki Wakaki
- Kochi Institute for Core Sample Research Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) Kochi Japan
| | - Katsuyuki Yamashita
- Department of Earth Sciences, Faculty of Science Okayama University Okayama Japan
| | - Ki‐Cheol Shin
- RIHN Center Research Institute for Humanity and Nature (RIHN) Kyoto Japan
| | - Yoshikazu Kato
- RIHN Center Research Institute for Humanity and Nature (RIHN) Kyoto Japan
| | - Hiromitsu Kamauchi
- RIHN Center Research Institute for Humanity and Nature (RIHN) Kyoto Japan
| | - Ichiro Tayasu
- RIHN Center Research Institute for Humanity and Nature (RIHN) Kyoto Japan
| |
Collapse
|
5
|
Silver S, Donini A. Physiological responses of freshwater insects to salinity: molecular-, cellular- and organ-level studies. J Exp Biol 2021; 224:272480. [PMID: 34652452 DOI: 10.1242/jeb.222190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Salinization of freshwater is occurring throughout the world, affecting freshwater biota that inhabit rivers, streams, ponds, marshes and lakes. There are many freshwater insects, and these animals are important for ecosystem health. These insects have evolved physiological mechanisms to maintain their internal salt and water balance based on a freshwater environment that has comparatively little salt. In these habitats, insects must counter the loss of salts and dilution of their internal body fluids by sequestering salts and excreting water. Most of these insects can tolerate salinization of their habitats to a certain level; however, when exposed to salinization they often exhibit markers of stress and impaired development. An understanding of the physiological mechanisms for controlling salt and water balance in freshwater insects, and how these are affected by salinization, is needed to predict the consequences of salinization for freshwater ecosystems. Recent research in this area has addressed the whole-organism response, but the purpose of this Review is to summarize the effects of salinization on the osmoregulatory physiology of freshwater insects at the molecular to organ level. Research of this type is limited, and pursuing such lines of inquiry will improve our understanding of the effects of salinization on freshwater insects and the ecosystems they inhabit.
Collapse
Affiliation(s)
- Sydney Silver
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
6
|
Nitzsche KN, Shin K, Kato Y, Kamauchi H, Takano S, Tayasu I. Magnesium and zinc stable isotopes as a new tool to understand Mg and Zn sources in stream food webs. Ecosphere 2020. [DOI: 10.1002/ecs2.3197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Kai Nils Nitzsche
- Research Institute for Humanity and Nature (RIHN) 457‐4 Motoyama, Kamigamo Kita‐ku Kyoto603‐8047Japan
| | - Ki‐Cheol Shin
- Research Institute for Humanity and Nature (RIHN) 457‐4 Motoyama, Kamigamo Kita‐ku Kyoto603‐8047Japan
| | - Yoshikazu Kato
- Research Institute for Humanity and Nature (RIHN) 457‐4 Motoyama, Kamigamo Kita‐ku Kyoto603‐8047Japan
| | - Hiromitsu Kamauchi
- Research Institute for Humanity and Nature (RIHN) 457‐4 Motoyama, Kamigamo Kita‐ku Kyoto603‐8047Japan
| | - Shotaro Takano
- Institute for Chemical Research Kyoto University Uji Kyoto611‐0011Japan
| | - Ichiro Tayasu
- Research Institute for Humanity and Nature (RIHN) 457‐4 Motoyama, Kamigamo Kita‐ku Kyoto603‐8047Japan
| |
Collapse
|
7
|
Carter MJ, Flores M, Ramos-Jiliberto R. Geographical origin determines responses to salinity of Mediterranean caddisflies. PLoS One 2020; 15:e0220275. [PMID: 31929552 PMCID: PMC6957138 DOI: 10.1371/journal.pone.0220275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/11/2019] [Indexed: 11/19/2022] Open
Abstract
Many freshwater ecosystems worldwide, and particularly Mediterranean ones, show increasing levels of salinity. These changes in water conditions could affect abundance and distribution of inhabiting species as well as the provision of ecosystem services. In this study we conduct laboratory experiments using the macroinvertebrate Smicridea annulicornis as a model organism. Our factorial experiments were designed to evaluate the effects of geographical origin of organisms and salinity levels on survival and behavioral responses of caddisflies. The experimental organisms were captured from rivers belonging to three hydrological basins along a 450 Km latitudinal gradient in the Mediterranean region of Chile. Animals were exposed to three conductivity levels, from 180 to 1400 μS/cm, close to the historical averages of the source rivers. We measured the behavioral responses to experimental stimuli and the survival time. Our results showed that geographical origin shaped the behavioral and survival responses to salinity. In particular, survival and activity decreased more strongly with increasing salinity in organisms coming from more dilute waters. This suggests local adaptation to be determinant for salinity responses in this benthic invertebrate species. In the current scenario of fast temporal and spatial changes in water levels and salt concentration, the conservation of geographic intra-specific variation of aquatic species is crucial for lowering the risk of salinity-driven biodiversity loss.
Collapse
Affiliation(s)
- Mauricio J. Carter
- Universidad Andrés Bello, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Matías Flores
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rodrigo Ramos-Jiliberto
- GEMA Center for Genomics, Ecology & Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Santiago, Chile
- * E-mail:
| |
Collapse
|
8
|
Nowghani F, Chen CC, Jonusaite S, Watson-Leung T, Kelly SP, Donini A. Impact of salt-contaminated freshwater on osmoregulation and tracheal gill function in nymphs of the mayfly Hexagenia rigida. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:92-104. [PMID: 30954848 DOI: 10.1016/j.aquatox.2019.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The impact of freshwater (FW) salinization on osmoregulation as well as tracheal gill morphology and function was examined in nymphs of the mayfly Hexagenia rigida following exposure to salt contaminated water (SCW, 7.25 g/l NaCl) for a 7-day period. Ionoregulatory homeostasis was perturbed in SCW exposed H. rigida nymphs as indicated by increased hemolymph Na+, K+ and Cl- levels as well as hemolymph pH and water content. Despite this, SCW did not alter gill Na+-K+-ATPase (NKA) or V-type H+-ATPase (VA) activity. In addition, NKA and VA immunolocalization in gill ionocytes did not show alterations in enzyme location or changes in ionocyte abundance. The latter observation was confirmed using scanning electron microscopy (SEM) to examine exposed tracheal gill ionocyte numbers. Ionocyte surface morphometrics also revealed that SCW did not change individual ionocyte surface area or ionocyte fractional surface area. Nevertheless, analysis of Na+ movement across the tracheal gill of mayfly nymphs using scanning ion-selective electrode technique indicated that FW nymphs acquired Na+ from surrounding water, while tracheal gills of SCW nymphs had the capacity to secrete Na+. Because Na+ secretion across the gill of SCW-exposed animals occurred in the absence of any change in (1) NKA and VA activity or (2) ionocyte numbers/surface exposure, it was reasoned that Na+ movement across the gill of SCW animals may be occurring, at least in part, through the paracellular pathway. The ultrastructure of tracheal gill septate junctions (SJs) supported this idea as they exhibited morphological alterations indicative of a leakier pathway. Data provide a first look at alterations in osmoregulatory mechanisms that allow H. rigida nymphs to tolerate sub-lethal salinization of their surroundings.
Collapse
Affiliation(s)
- Fargol Nowghani
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Chun Chih Chen
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Sima Jonusaite
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada; Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Trudy Watson-Leung
- Aquatic Toxicology Unit, Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Etobicoke, ON, M9P 3V6, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
9
|
Kefford BJ. Why are mayflies (Ephemeroptera) lost following small increases in salinity? Three conceptual osmophysiological hypotheses. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0021. [PMID: 30509920 DOI: 10.1098/rstb.2018.0021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2018] [Indexed: 11/12/2022] Open
Abstract
The salinity of many freshwaters is increasing globally as a result of human activities. Associated with this increase in salinity are losses of Ephemeroptera (mayfly) abundance and richness. The salinity concentrations at which Ephemeroptera decline in nature are lower than their internal salinity or haemolymph osmolality. Many species also suffer substantial mortality in single species laboratory toxicity tests at salinities lower than their internal salinity. These findings are problematic as conventional osmoregulation theory suggests that freshwater animals should not experience stress where external osmolality is greater than haemolymph osmolality. Here I explore three hypotheses to explain salt sensitivity in Ephemeroptera. These conceptual hypotheses are based on the observations that as the external sodium ion (Na+) concentration increases so does the Na+ turnover rate (both uptake and elimination rates increase). Sulphate ([Formula: see text]) uptake in mayflies also increases with increasing external [Formula: see text] although, unlike Na+, its rate of increase decreases with increasing external [Formula: see text] The first hypothesis is premised on ion turnover being energetically costly. The first hypothesis proposes that individuals must devote a greater proportion of their energy to ion homeostasis at the expense of other uses including growth and development. Lethal levels of salinity presumably result from individuals not being able to devote enough energy to maintain ion homeostasis without critical loss of other vital functions. The second hypothesis is premised on the uptake of Na+ exchanged for (an outgoing) H+, leading to (localized) loss of pH regulation. The third hypothesis is premised on localized Na+ toxicity or poisoning with increased Na turnover as salinity increases. None of the proposed hypotheses is without potential problems, yet all are testable, and research effort should be focused at attempting to falsify them.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Ben J Kefford
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
10
|
Durant AC, Donini A. Evidence that Rh proteins in the anal papillae of the freshwater mosquito Aedes aegypti are involved in the regulation of acid-base balance in elevated salt and ammonia environments. ACTA ACUST UNITED AC 2018; 221:jeb.186866. [PMID: 30305376 DOI: 10.1242/jeb.186866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Aedes aegypti commonly inhabit ammonia-rich sewage effluents in tropical regions of the world where the adults are responsible for the spread of disease. Studies have shown the importance of the anal papillae of A. aegypti in ion uptake and ammonia excretion. The anal papillae express ammonia transporters and Rhesus (Rh) proteins which are involved in ammonia excretion and studies have primarily focused on understanding these mechanisms in freshwater. In this study, effects of rearing larvae in salt (5 mmol l-1 NaCl) or ammonia (5 mmol l-1 NH4Cl) on physiological endpoints of ammonia and ion regulation were assessed. In anal papillae of NaCl-reared larvae, Rh protein expression increased, NHE3 transcript abundance decreased and NH4 + excretion increased, and this coincided with decreased hemolymph [NH4 +] and pH. We propose that under these conditions, larvae excrete more NH4 + through Rh proteins as a means of eliminating acid from the hemolymph. In anal papillae of NH4Cl-reared larvae, expression of an apical ammonia transporter and the Rh proteins decreased, the activities of NKA and VA decreased and increased, respectively, and this coincided with hemolymph acidification. The results present evidence for a role of Rh proteins in acid-base balance in response to elevated levels of salt, whereby ammonia is excreted as an acid equivalent.
Collapse
Affiliation(s)
- Andrea C Durant
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| |
Collapse
|