1
|
Xue G, Bai F, Li Z, Liu Y. Experiment for Effect of Attack Angle and Environmental Condition on Hydrodynamics of Near-Surface Swimming Fish-Like Robot. Appl Bionics Biomech 2023. [DOI: 10.1155/2023/4377779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Fish-like robot is a special autonomous underwater vehicle with broad application prospects. Some previous studies concentrated on the hydrodynamics of free-swimming fish-like robots. But the hydrodynamic performance of fish-like robot swimming with a tilt angle in constrained space has not been well studied, and the influence of environmental wave and current on its is also still unclear. In this paper, the experiment devices, including a physical fish-like robot, a hydrodynamics measurement platform, and a six-axis force sensor, are used to study the effect of attack angle and environmental condition on the hydrodynamics of near-surface swimming fish-like robot. Nine attack angles, five oscillating amplitudes, and three environmental conditions are analyzed in the experiments. It shows that thrust force decreases when caudal fin passes above water surface, but the increased difference between gravity force and buoyancy force will compensate the decreased force generated by caudal fin when fish-like robot swims with certain dive angle. The extra reaction force generated by solid bottom boundary will promote the thrust force and vertical force. The surface water wave condition or surface water current condition also has obvious effects on hydrodynamic performance. This paper provides a new perspective to the research on the hydrodynamic performance of fish-like robot and will do favor in the development of fish-like robot.
Collapse
Affiliation(s)
- Gang Xue
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- School of Mechanical Engineering, Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, China
- Key Laboratory of Ocean Observation Technology, Ministry of Natural Resources, Tianjin, China
| | - Fagang Bai
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Zhitong Li
- Qingdao Institute of Marine Geology, Qingdao, China
| | - Yanjun Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- School of Mechanical Engineering, Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, China
| |
Collapse
|
2
|
Kimura H, Pfalzgraff T, Levet M, Kawabata Y, Steffensen JF, Johansen JL, Domenici P. Escaping from multiple visual threats: Modulation of escape responses in Pacific staghorn sculpin ( Leptocottus armatus). J Exp Biol 2022; 225:275328. [DOI: 10.1242/jeb.243328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/05/2022] [Indexed: 11/20/2022]
Abstract
Fish perform rapid escape responses to avoid sudden predatory attacks. During escape responses, fish bend their bodies into a C-shape and quickly turn away from the predator and accelerate. The escape trajectory is determined by the initial turn (Stage 1) and a contralateral bend (Stage 2). Previous studies have used a single threat or model predator as a stimulus. In nature, however, multiple predators may attack from different directions simultaneously or in close succession. It is unknown whether fish are able to change the course of their escape response when startled by multiple stimuli at various time intervals. Pacific staghorn sculpin (Leptocottus armatus) were startled with a left and right visual stimulus in close succession. By varying the timing of the second stimulus, we were able to determine when and how a second stimulus could affect the escape response direction. Four treatments were used: a single visual stimulus (control); or two stimuli coming from opposite sides separated by a 0 ms (simultaneous treatment); a 33 ms; or a 83 ms time interval. The 33 ms and 83 ms time intervals were chosen to occur shortly before and after a predicted 60 ms visual escape latency (i.e. during Stage 1). The 0 ms and 33 ms treatments influenced both the escape trajectory and the Stage 1 turning angle, compared to a single stimulation, whereas the 83 ms treatment had no effect on the escape trajectory. We conclude that Pacific staghorn sculpin can modulate their escape trajectory only between stimulation and the onset of the response, but that escape trajectory cannot be modulated after the body motion has started.
Collapse
Affiliation(s)
- Hibiki Kimura
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - Tilo Pfalzgraff
- Technical University of Denmark, DTU AQUA, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark
| | - Marie Levet
- Département de Sciences Biologiques, Université de Montréal, Campus MIL, 1375 Avenue Thérèse-Lavoie-Roux, Montréal QC H2V 0B3, Canada
| | - Yuuki Kawabata
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - John F. Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jacob L. Johansen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, 46-007 Lilipuna Rd, Kaneohe, HI 96744, USA
| | | |
Collapse
|
3
|
Howe S, Bryant K, Duff A, Astley H. Testing the effects of body depth on fish maneuverability via robophysical models. BIOINSPIRATION & BIOMIMETICS 2021; 17:016002. [PMID: 34706361 DOI: 10.1088/1748-3190/ac33c1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Fish show a wide diversity of body shapes which affect many aspects of their biology, including swimming and feeding performance, and defense from predators. Deep laterally compressed bodies are particularly common, and have evolved multiple times in different families. Functional hypotheses that explain these trends include predator defense and increased maneuverability. While there is strong evidence that increasing body depth helps fish avoid gape-limited predators, the evidence that body shape increases a fish's maneuverability is ambiguous. We used a two-pronged approach to explore the effects of body shape on the control of maneuvers using both live fish and a robotic model that allowed us to independently vary body shape. We captured ventral video of two tetra species (Gymnocorymbus ternetziandAphyocharax anisitsi) performing a wide range of maneuvers to confirm that both species of live fish utilize fundamentally similar body deformations to execute a turn, despite their different body depths. Both species use a propagating 'pulse' of midline curvature that is qualitatively similar to prior studies and displayed similar trends in the relationships between body kinematics and performance. We then tested the robotic model's maneuverability, defined as the total heading change and maximum centripetal acceleration generated during a single pulse, at a range of different input kinematics across three body shapes. We found that deepening bodies increase the robot's ability to change direction and centripetal acceleration, though centripetal acceleration exhibits diminishing returns beyond a certain body depth. By using a robotic model, we were able to isolate the effects of body shape on maneuverability and clarify this confounded relationship. Studying the functional morphology of complex traits such as body shape and their interaction with complex behavior like maneuverability benefits from both the broad view provided by comprehensive comparative studies, and the control of variables enabled by robophysical experiments.
Collapse
Affiliation(s)
- Stephen Howe
- University of Akron Ohio, United States of America
| | - Kelly Bryant
- University of Akron Ohio, United States of America
| | - Andrew Duff
- University of Akron Ohio, United States of America
| | - Henry Astley
- University of Akron Ohio, United States of America
| |
Collapse
|
4
|
Safian D, Wiegertjes GF, Pollux BJA. The Fish Family Poeciliidae as a Model to Study the Evolution and Diversification of Regenerative Capacity in Vertebrates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.613157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The capacity of regenerating a new structure after losing an old one is a major challenge in the animal kingdom. Fish have emerged as an interesting model to study regeneration due to their high and diverse regenerative capacity. To date, most efforts have focused on revealing the mechanisms underlying fin regeneration, but information on why and how this capacity evolves remains incomplete. Here, we propose the livebearing fish family Poeciliidae as a promising new model system to study the evolution of fin regeneration. First, we review the current state of knowledge on the evolution of regeneration in the animal kingdom, with a special emphasis on fish fins. Second, we summarize recent advances in our understanding of the mechanisms behind fin regeneration in fish. Third, we discuss potential evolutionary pressures that may modulate the regenerative capacity of fish fins and propose three new theories for how natural and sexual selection can lead to the evolution of fin regeneration: (1) signaling-driven fin regeneration, (2) predation-driven fin regeneration, and (3) matrotrophy-suppressed fin regeneration. Finally, we argue that fish from the family Poeciliidae are an excellent model system to test these theories, because they comprise of a large variety of species in a well-defined phylogenetic framework that inhabit very different environments and display remarkable variation in reproductive traits, allowing for comparative studies of fin regeneration among closely related species, among populations within species or among individuals within populations. This new model system has the potential to shed new light on the underlying genetic and molecular mechanisms driving the evolution and diversification of regeneration in vertebrates.
Collapse
|
5
|
Paz A, McDole B, Kowalko JE, Duboue ER, Keene AC. Evolution of the acoustic startle response of Mexican cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:474-485. [PMID: 32779370 DOI: 10.1002/jez.b.22988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/08/2022]
Abstract
The ability to detect threatening stimuli and initiate an escape response is essential for survival and under stringent evolutionary pressure. In diverse fish species, acoustic stimuli activate Mauthner neurons, which initiate a C-start escape response. This reflexive behavior is highly conserved across aquatic species and provides a model for investigating the neural mechanism underlying the evolution of escape behavior. Here, we characterize evolved differences in the C-start response between populations of the Mexican cavefish, Astyanax mexicanus. Cave populations of A. mexicanus inhabit an environment devoid of light and macroscopic predators, resulting in evolved differences in various morphological and behavioral traits. We find that the C-start is present in river-dwelling surface fish and multiple populations of cavefish, but that response kinematics and probability differ between populations. The Pachón population of cavefish exhibits an increased response probability, a slower response latency and speed, and reduction of the maximum bend angle, revealing evolved differences between surface and cave populations. Analysis of the responses of two other independently evolved populations of cavefish, revealed the repeated evolution of reduced angular speed. Investigation of surface-cave hybrids reveals a correlation between angular speed and peak angle, suggesting these two kinematic characteristics are related at the genetic or functional levels. Together, these findings provide support for the use of A. mexicanus as a model to investigate the evolution of escape behavior.
Collapse
Affiliation(s)
- Alexandra Paz
- Department of Biological Science, Florida Atlantic University, Jupiter, Florida, USA
| | - Brittnee McDole
- Department of Biological Science, Florida Atlantic University, Jupiter, Florida, USA
| | - Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Erik R Duboue
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Alex C Keene
- Department of Biological Science, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
6
|
Howe SP, Astley HC. The control of routine fish maneuvers: Connecting midline kinematics to turn outcomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:579-594. [PMID: 32696582 DOI: 10.1002/jez.2398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/06/2022]
Abstract
Maneuverability is an important factor in determining an animal's ability to navigate its environment and succeed in predator-prey interactions. Although fish are capable of a wide range of maneuvers, most of the literature has focused on escape maneuvers while less attention has been paid to routine maneuvers, such as those used for habitat navigation. The quantitative relationships between body deformations and maneuver outcomes (displacement of the center of mass and change in trajectory) are fundamental to understanding how fish control their maneuvers, yet remain unknown in routine maneuvers. We recorded high-speed video of eight giant danios (Devario aquepinnatus) performing routine and escape maneuvers and quantified the deformation of the midline, the heading of the anterior body, and the kinematics of the centroid (a proxy for center of mass). We found that both routine and escape behaviors used qualitatively similar independent body bending events, which we curvature pulses, that propagate from head to tail but show quantitative differences in midline kinematics and turn outcomes. In routine maneuvers, the direction change and acceleration of the fish are influenced by both the magnitude of the bending pulse and by the duration of the pulse, whereas in escape maneuvers, only pulse duration influenced direction change and turn acceleration. The bending pulse appears to be the smallest functional unit of a turn, and can function independently or in combination, enabling a fish to achieve a wide range of complex maneuvers.
Collapse
Affiliation(s)
- Stephen P Howe
- Department of Biology, Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio
| | - Henry C Astley
- Department of Biology, Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio
| |
Collapse
|
7
|
Voesenek CJ, Li G, Muijres FT, van Leeuwen JL. Experimental-numerical method for calculating bending moments in swimming fish shows that fish larvae control undulatory swimming with simple actuation. PLoS Biol 2020; 18:e3000462. [PMID: 32697779 PMCID: PMC7481021 DOI: 10.1371/journal.pbio.3000462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022] Open
Abstract
Most fish swim with body undulations that result from fluid-structure interactions between the fish's internal tissues and the surrounding water. Gaining insight into these complex fluid-structure interactions is essential to understand how fish swim. To this end, we developed a dedicated experimental-numerical inverse dynamics approach to calculate the lateral bending moment distributions for a large-amplitude undulatory swimmer that moves freely in three-dimensional space. We combined automated motion tracking from multiple synchronised high-speed video sequences, computation of fluid dynamic stresses on the swimmer's body from computational fluid dynamics, and bending moment calculations using these stresses as input for a novel beam model of the body. The bending moment, which represent the system's net actuation, varies over time and along the fish's central axis due to muscle actions, passive tissues, inertia, and fluid dynamics. Our three-dimensional analysis of 113 swimming events of zebrafish larvae ranging in age from 3 to 12 days after fertilisation shows that these bending moment patterns are not only relatively simple but also strikingly similar throughout early development and from fast starts to periodic swimming. This suggests that fish larvae may produce and adjust swimming movements relatively simply, yet effectively, while restructuring their neuromuscular control system throughout their rapid development.
Collapse
Affiliation(s)
- Cees J. Voesenek
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Gen Li
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
| | - Florian T. Muijres
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Johan L. van Leeuwen
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
8
|
Fleuren M, van Leeuwen JL, Pollux BJA. Superfetation reduces the negative effects of pregnancy on the fast-start escape performance in live-bearing fish. Proc Biol Sci 2019; 286:20192245. [PMID: 31771468 DOI: 10.1098/rspb.2019.2245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Superfetation, the ability to simultaneously carry multiple litters of different developmental stages in utero, is a reproductive strategy that evolved repeatedly in viviparous animal lineages. The evolution of superfetation is hypothesized to reduce the reproductive burden and, consequently, improve the locomotor performance of the female during pregnancy. Here, we apply new computer-vision-based techniques to study changes in body shape and three-dimensional fast-start escape performance during pregnancy in three live-bearing fishes (family Poeciliidae) that exhibit different levels of superfetation. We found that superfetation correlates with a reduced abdominal distension and a more slender female body shape just before parturition. We further found that body slenderness positively correlates with maximal speeds, curvature amplitude and curvature rate, implying that superfetation improves the fast-start escape performance. Collectively, our study suggests that superfetation may have evolved in performance-demanding (e.g. high flow or high predation) environments to reduce the locomotor cost of pregnancy.
Collapse
Affiliation(s)
- Mike Fleuren
- Experimental Zoology Chair Group, Wageningen University and Research, 6708WD Wageningen, The Netherlands.,Aquaculture and Fisheries Chair Group, Wageningen University and Research, 6708WD Wageningen, The Netherlands
| | - Johan L van Leeuwen
- Experimental Zoology Chair Group, Wageningen University and Research, 6708WD Wageningen, The Netherlands
| | - Bart J A Pollux
- Experimental Zoology Chair Group, Wageningen University and Research, 6708WD Wageningen, The Netherlands
| |
Collapse
|
9
|
Domenici P, Hale ME. Escape responses of fish: a review of the diversity in motor control, kinematics and behaviour. J Exp Biol 2019; 222:222/18/jeb166009. [DOI: 10.1242/jeb.166009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The study of fish escape responses has provided important insights into the accelerative motions and fast response times of these animals. In addition, the accessibility of the underlying neural circuits has made the escape response a fundamental model in neurobiology. Fish escape responses were originally viewed as highly stereotypic all-or-none behaviours. However, research on a wide variety of species has shown considerable taxon-specific and context-dependent variability in the kinematics and neural control of escape. In addition, escape-like motions have been reported: these resemble escape responses kinematically, but occur in situations that do not involve a response to a threatening stimulus. This Review focuses on the diversity of escape responses in fish by discussing recent work on: (1) the types of escape responses as defined by kinematic analysis (these include C- and S-starts, and single- versus double-bend responses); (2) the diversity of neuromuscular control; (3) the variability of escape responses in terms of behaviour and kinematics within the context of predator−prey interactions; and (4) the main escape-like motions observed in various species. Here, we aim to integrate recent knowledge on escape responses and highlight rich areas for research. Rapidly developing approaches for studying the kinematics of swimming motion both in the lab and within the natural environment provide new avenues for research on these critical and common behaviours.
Collapse
Affiliation(s)
- Paolo Domenici
- Organismal Biology Laboratory, IAS-CNR Località Sa Mardini, Torregrande, Oristano 09170, Italy
| | - Melina E. Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Voesenek CJ, Pieters RPM, Muijres FT, van Leeuwen JL. Reorientation and propulsion in fast-starting zebrafish larvae: an inverse dynamics analysis. ACTA ACUST UNITED AC 2019; 222:222/14/jeb203091. [PMID: 31315925 DOI: 10.1242/jeb.203091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/23/2019] [Indexed: 11/20/2022]
Abstract
Most fish species use fast starts to escape from predators. Zebrafish larvae perform effective fast starts immediately after hatching. They use a C-start, where the body curls into a C-shape, and then unfolds to accelerate. These escape responses need to fulfil a number of functional demands, under the constraints of the fluid environment and the larva's body shape. Primarily, the larvae need to generate sufficient escape speed in a wide range of possible directions, in a short-enough time. In this study, we examined how the larvae meet these demands. We filmed fast starts of zebrafish larvae with a unique five-camera setup with high spatiotemporal resolution. From these videos, we reconstructed the 3D swimming motion with an automated method and from these data calculated resultant hydrodynamic forces and, for the first time, 3D torques. We show that zebrafish larvae reorient mostly in the first stage of the start by producing a strong yaw torque, often without using the pectoral fins. This reorientation is expressed as the body angle, a measure that represents the rotation of the complete body, rather than the commonly used head angle. The fish accelerates its centre of mass mostly in stage 2 by generating a considerable force peak while the fish 'unfolds'. The escape direction of the fish correlates strongly with the amount of body curvature in stage 1, while the escape speed correlates strongly with the duration of the start. This may allow the fish to independently control the direction and speed of the escape.
Collapse
Affiliation(s)
- Cees J Voesenek
- Experimental Zoology Group, Wageningen University, PO Box 338, NL-6700 AH Wageningen, The Netherlands
| | - Remco P M Pieters
- Experimental Zoology Group, Wageningen University, PO Box 338, NL-6700 AH Wageningen, The Netherlands
| | - Florian T Muijres
- Experimental Zoology Group, Wageningen University, PO Box 338, NL-6700 AH Wageningen, The Netherlands
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University, PO Box 338, NL-6700 AH Wageningen, The Netherlands
| |
Collapse
|