1
|
Sveen LR, Robinson N, Krasnov A, Daniels RR, Vaadal M, Karlsen C, Ytteborg E, Robledo D, Salisbury S, Dagnachew B, Lazado CC, Tengs T. Transcriptomic landscape of Atlantic salmon (Salmo salar L.) skin. G3 (BETHESDA, MD.) 2023; 13:jkad215. [PMID: 37724757 PMCID: PMC10627282 DOI: 10.1093/g3journal/jkad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
In this study, we present the first spatial transcriptomic atlas of Atlantic salmon skin using the Visium Spatial Gene Expression protocol. We utilized frozen skin tissue from 4 distinct sites, namely the operculum, pectoral and caudal fins, and scaly skin at the flank of the fish close to the lateral line, obtained from 2 Atlantic salmon (150 g). High-quality frozen tissue sections were obtained by embedding tissue in optimal cutting temperature media prior to freezing and sectioning. Further, we generated libraries and spatial transcriptomic maps, achieving a minimum of 80 million reads per sample with mapping efficiencies ranging from 79.3 to 89.4%. Our analysis revealed the detection of over 80,000 transcripts and nearly 30,000 genes in each sample. Among the tissue types observed in the skin, the epithelial tissues exhibited the highest number of transcripts (unique molecular identifier counts), followed by muscle tissue, loose and fibrous connective tissue, and bone. Notably, the widest nodes in the transcriptome network were shared among the epithelial clusters, while dermal tissues showed less consistency, which is likely attributable to the presence of multiple cell types at different body locations. Additionally, we identified collagen type 1 as the most prominent gene family in the skin, while keratins were found to be abundant in the epithelial tissue. Furthermore, we successfully identified gene markers specific to epithelial tissue, bone, and mesenchyme. To validate their expression patterns, we conducted a meta-analysis of the microarray database, which confirmed high expression levels of these markers in mucosal organs, skin, gills, and the olfactory rosette.
Collapse
Affiliation(s)
| | - Nicholas Robinson
- Nofima, Fish Health, Tromsø NO-9291, Norway
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | | | | | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | | | | |
Collapse
|
2
|
Rees L, König D, Jaźwińska A. Regeneration of the dermal skeleton and wound epidermis formation depend on BMP signaling in the caudal fin of platyfish. Front Cell Dev Biol 2023; 11:1134451. [PMID: 36846592 PMCID: PMC9946992 DOI: 10.3389/fcell.2023.1134451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Fin regeneration has been extensively studied in zebrafish, a genetic model organism. Little is known about regulators of this process in distant fish taxa, such as the Poeciliidae family, represented by the platyfish. Here, we used this species to investigate the plasticity of ray branching morphogenesis following either straight amputation or excision of ray triplets. This approach revealed that ray branching can be conditionally shifted to a more distal position, suggesting non-autonomous regulation of bone patterning. To gain molecular insights into regeneration of fin-specific dermal skeleton elements, actinotrichia and lepidotrichia, we localized expression of the actinodin genes and bmp2 in the regenerative outgrowth. Blocking of the BMP type-I receptor suppressed phospho-Smad1/5 immunoreactivity, and impaired fin regeneration after blastema formation. The resulting phenotype was characterized by the absence of bone and actinotrichia restoration. In addition, the wound epidermis displayed extensive thickening. This malformation was associated with expanded Tp63 expression from the basal epithelium towards more superficial layers, suggesting abnormal tissue differentiation. Our data add to the increasing evidence for the integrative role of BMP signaling in epidermal and skeletal tissue formation during fin regeneration. This expands our understanding of common mechanisms guiding appendage restoration in diverse clades of teleosts.
Collapse
Affiliation(s)
- Lana Rees
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Désirée König
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
3
|
Moreira M, Soliño L, Marques CL, Laizé V, Pousão-Ferreira P, Costa PR, Soares F. Cytotoxic and Hemolytic Activities of Extracts of the Fish Parasite Dinoflagellate Amyloodinium ocellatum. Toxins (Basel) 2022; 14:toxins14070467. [PMID: 35878205 PMCID: PMC9316444 DOI: 10.3390/toxins14070467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
The dinoflagellate Amyloodinium ocellatum is the etiological agent of a parasitic disease named amyloodiniosis. Mortalities of diseased fish are usually attributed to anoxia, osmoregulatory impairment, or opportunistic bacterial infections. Nevertheless, the phylogenetic proximity of A. ocellatum to a group of toxin-producing dinoflagellates from Pfiesteria, Parvodinium and Paulsenella genera suggests that it may produce toxin-like compounds, adding a new dimension to the possible cause of mortalities in A. ocellatum outbreaks. To address this question, extracts prepared from different life stages of the parasite were tested in vitro for cytotoxic effects using two cell lines derived from branchial arches (ABSa15) and the caudal fin (CFSa1) of the gilthead seabream (Sparus aurata), and for hemolytic effects using erythrocytes purified from the blood of gilthead seabream juveniles. Cytotoxicity and a strong hemolytic effect, similar to those observed for Karlodinium toxins, were observed for the less polar extracts of the parasitic stage (trophont). A similar trend was observed for the less polar extracts of the infective stage (dinospores), although cell viability was only affected in the ABSa15 line. These results suggest that A. ocellatum produces tissue-specific toxic compounds that may have a role in the attachment of the dinospores’ and trophonts’ feeding process.
Collapse
Affiliation(s)
- Márcio Moreira
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Lucía Soliño
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- IPMA—Portuguese Institute for the Ocean and Atmosphere, Av. Alfredo Magalhães Ramalho, n° 6, 1495-165 Algés, Portugal
| | - Cátia L. Marques
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Vincent Laizé
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Pedro Pousão-Ferreira
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Pedro Reis Costa
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- IPMA—Portuguese Institute for the Ocean and Atmosphere, Av. Alfredo Magalhães Ramalho, n° 6, 1495-165 Algés, Portugal
| | - Florbela Soares
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- Correspondence:
| |
Collapse
|
4
|
Jordan JEL, Bertalan G, Meyer T, Tzschätzsch H, Gauert A, Bramè L, Herthum H, Safraou Y, Schröder L, Braun J, Hagemann AIH, Sack I. Microscopic multifrequency MR elastography for mapping viscoelasticity in zebrafish. Magn Reson Med 2021; 87:1435-1445. [PMID: 34752638 DOI: 10.1002/mrm.29066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The zebrafish (Danio rerio) has become an important animal model in a wide range of biomedical research disciplines. Growing awareness of the role of biomechanical properties in tumor progression and neuronal development has led to an increasing interest in the noninvasive mapping of the viscoelastic properties of zebrafish by elastography methods applicable to bulky and nontranslucent tissues. METHODS Microscopic multifrequency MR elastography is introduced for mapping shear wave speed (SWS) and loss angle (φ) as markers of stiffness and viscosity of muscle, brain, and neuroblastoma tumors in postmortem zebrafish with 60 µm in-plane resolution. Experiments were performed in a 7 Tesla MR scanner at 1, 1.2, and 1.4 kHz driving frequencies. RESULTS Detailed zebrafish viscoelasticity maps revealed that the midbrain region (SWS = 3.1 ± 0.7 m/s, φ = 1.2 ± 0.3 radian [rad]) was stiffer and less viscous than telencephalon (SWS = 2.6 ± 0. 5 m/s, φ = 1.4 ± 0.2 rad) and optic tectum (SWS = 2.6 ± 0.5 m/s, φ = 1.3 ± 0.4 rad), whereas the cerebellum (SWS = 2.9 ± 0.6 m/s, φ = 0.9 ± 0.4 rad) was stiffer but less viscous than both (all p < .05). Overall, brain tissue (SWS = 2.9 ± 0.4 m/s, φ = 1.2 ± 0.2 rad) had similar stiffness but lower viscosity values than muscle tissue (SWS = 2.9 ± 0.5 m/s, φ = 1.4 ± 0.2 rad), whereas neuroblastoma (SWS = 2.4 ± 0.3 m/s, φ = 0.7 ± 0.1 rad, all p < .05) was the softest and least viscous tissue. CONCLUSION Microscopic multifrequency MR elastography-generated maps of zebrafish show many details of viscoelasticity and resolve tissue regions, of great interest in neuromechanical and oncological research and for which our study provides first reference values.
Collapse
Affiliation(s)
| | - Gergely Bertalan
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anton Gauert
- Department of Hematology/Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luca Bramè
- Department of Hematology/Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helge Herthum
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yasmine Safraou
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anja I H Hagemann
- Department of Hematology/Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Dagenais P, Blanchoud S, Pury D, Pfefferli C, Aegerter-Wilmsen T, Aegerter CM, Jaźwińska A. Hydrodynamic stress and phenotypic plasticity of the zebrafish regenerating fin. J Exp Biol 2021; 224:271142. [PMID: 34338301 DOI: 10.1242/jeb.242309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 01/23/2023]
Abstract
Understanding how extrinsic factors modulate genetically encoded information to produce a specific phenotype is of prime scientific interest. In particular, the feedback mechanism between abiotic forces and locomotory organs during morphogenesis to achieve efficient movement is a highly relevant example of such modulation. The study of this developmental process can provide unique insights on the transduction of cues at the interface between physics and biology. Here, we take advantage of the natural ability of adult zebrafish to regenerate their amputated fins to assess its morphogenic plasticity upon external modulations. Using a variety of surgical and chemical treatments, we could induce phenotypic responses to the structure of the fin. Through the ablation of specific rays in regenerating caudal fins, we generated artificially narrowed appendages in which the fin cleft depth and the positioning of rays bifurcations were perturbed compared with normal regenerates. To dissect the role of mechanotransduction in this process, we investigated the patterns of hydrodynamic forces acting on the surface of a zebrafish fin during regeneration by using particle tracking velocimetry on a range of biomimetic hydrofoils. This experimental approach enabled us to quantitatively compare hydrodynamic stress distributions over flapping fins of varying sizes and shapes. As a result, viscous shear stress acting on the distal margin of regenerating fins and the resulting internal tension are proposed as suitable signals for guiding the regulation of ray growth dynamics and branching pattern. Our findings suggest that mechanical forces are involved in the fine-tuning of the locomotory organ during fin morphogenesis.
Collapse
Affiliation(s)
- Paule Dagenais
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simon Blanchoud
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - David Pury
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Catherine Pfefferli
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Tinri Aegerter-Wilmsen
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christof M Aegerter
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
6
|
Dagenais P, Aegerter CM. Hydrodynamic stress maps on the surface of a flexible fin-like foil. PLoS One 2021; 16:e0244674. [PMID: 33434237 PMCID: PMC7802974 DOI: 10.1371/journal.pone.0244674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/14/2020] [Indexed: 11/18/2022] Open
Abstract
We determine the time dependence of pressure and shear stress distributions on the surface of a pitching and deforming hydrofoil from measurements of the three dimensional flow field. Period-averaged stress maps are obtained both in the presence and absence of steady flow around the foil. The velocity vector field is determined via volumetric three-component particle tracking velocimetry and subsequently inserted into the Navier-Stokes equation to calculate the total hydrodynamic stress tensor. In addition, we also present a careful error analysis of such measurements, showing that local evaluations of stress distributions are possible. The consistency of the force time-dependence is verified using a control volume analysis. The flapping foil used in the experiments is designed to allow comparison with a small trapezoidal fish fin, in terms of the scaling laws that govern the oscillatory flow regime. As a complementary approach, unsteady Euler-Bernoulli beam theory is employed to derive instantaneous transversal force distributions on the flexible hydrofoil from its deflection and the results are compared to the spatial distributions of hydrodynamic stresses obtained from the fluid velocity field.
Collapse
Affiliation(s)
- Paule Dagenais
- Physik-Institut, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
7
|
Pitcher C, Alkalla M, Pang X, Gao Y. Development of the Third Generation of the Dual-Reciprocating Drill. Biomimetics (Basel) 2020; 5:biomimetics5030038. [PMID: 32781643 PMCID: PMC7558545 DOI: 10.3390/biomimetics5030038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022] Open
Abstract
The dual-reciprocating drill (DRD) is a low-mass alternative to traditional drilling techniques biologically inspired by the wood wasp ovipositor, which is used to drill into wood in order to lay its eggs. The DRD reciprocates two halves lined with backwards-facing teeth, enabling it to generate traction forces that reduce the required overhead penetration force. While previous research has focused on experimental testing of the drill’s operational and design parameters, numerical simulation techniques are being developed to allow the rapid testing of multiple designs, complementing and informing experimental testing campaigns. The latest DRD design iteration integrated a novel internal actuation mechanism and demonstrated the benefits of adding controlled lateral movements. This paper presents an exploration of how bit morphology affects drilling performance and a preliminary study of discrete element method (DEM) simulations for modelling DRD interactions in regolith. These have shown how regolith grain size and microscopic behaviour significantly affects the performance of different drill designs, and demonstrated how customisable drills can exploit the properties of various substrates. Two system prototypes are also being developed for the DRD’s third generation, each utilising novel actuation and sampling mechanisms. A final drill design will then be deployed from a planetary rover and perform the first DRD drilling and sampling operation.
Collapse
|
8
|
König D, Dagenais P, Senk A, Djonov V, Aegerter CM, Jaźwińska A. Distribution and Restoration of Serotonin-Immunoreactive Paraneuronal Cells During Caudal Fin Regeneration in Zebrafish. Front Mol Neurosci 2019; 12:227. [PMID: 31616250 PMCID: PMC6763699 DOI: 10.3389/fnmol.2019.00227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 09/04/2019] [Indexed: 12/22/2022] Open
Abstract
Aquatic vertebrates possess diverse types of sensory cells in their skin to detect stimuli in the water. In the adult zebrafish, a common model organism, the presence of such cells in fins has only rarely been studied. Here, we identified scattered serotonin (5-HT)-positive cells in the epidermis of the caudal fin. These cells were distinct from keratinocytes as revealed by their low immunoreactivity for cytokeratin and desmosome markers. Instead, they were detected by Calretinin (Calbindin-2) and Synaptic vesicle glycoprotein 2 (SV2) antibodies, indicating a calcium-regulated neurosecretory activity. Consistently, electron microscopy revealed abundant secretory organelles in desmosome-negative cells in the fin epidermis. Based on the markers, 5-HT, Calretinin and SV2, we referred to these cells as HCS-cells. We found that HCS-cells were spread throughout the entire caudal fin at an average density of 140 cells per mm2 on each fin surface. These cells were strongly enriched at ray bifurcations in wild type fins, as well as in elongated fins of another longfin mutant fish. To determine whether hydrodynamics play a role in the distribution of HCS-cells, we used an interdisciplinary approach and performed kinematic analysis. Measurements of particle velocity with a fin model revealed differences in fluid velocities between bifurcated rods and adjacent non-bifurcated regions. Therefore the accumulation of HCS-cells near bone bifurcations may be a biological adaptation for sensing of water parameters. The significance of this HCS-cell pattern is reinforced by the fact, that it is reestablished in the regenerated fin after amputation. Regeneration of HCS-cells was not impaired by the chemical inhibition of serotonin synthesis, suggesting that this neurotransmitter is not essential for the restorative process. In conclusion, our study identified a specific population of solitary paraneurons in the zebrafish fin, whose distribution correlates with fluid dynamics.
Collapse
Affiliation(s)
- Désirée König
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Paule Dagenais
- Physik-Institut, University of Zurich, Zurich, Switzerland
| | - Anita Senk
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Kim JY, Lee SY, Kim H, Park JW, Lim DK, Moon DW. Biomolecular Imaging of Regeneration of Zebrafish Caudal Fins Using High Spatial Resolution Ambient Mass Spectrometry. Anal Chem 2018; 90:12723-12730. [DOI: 10.1021/acs.analchem.8b03066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - Ji-Won Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| | | |
Collapse
|
10
|
Taft NK, Taft BN, Henck H, Mehner T. Variation in flexural stiffness of the lepidotrichia within and among the soft fins of yellow perch under different preservation techniques. J Morphol 2018; 279:1045-1057. [DOI: 10.1002/jmor.20831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Natalia K. Taft
- Department of Biological Sciences; University of Wisconsin at Parkside; Kenosha Wisconsin
| | | | - Hailey Henck
- Department of Biological Sciences; University of Wisconsin at Parkside; Kenosha Wisconsin
| | - Thomas Mehner
- Department of Biological Sciences; University of Wisconsin at Parkside; Kenosha Wisconsin
| |
Collapse
|