1
|
Brown AD, Hayward T, Portfors CV, Coffin AB. On the value of diverse organisms in auditory research: From fish to flies to humans. Hear Res 2023; 432:108754. [PMID: 37054531 PMCID: PMC10424633 DOI: 10.1016/j.heares.2023.108754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Historically, diverse organisms have contributed to our understanding of auditory function. In recent years, the laboratory mouse has become the prevailing non-human model in auditory research, particularly for biomedical studies. There are many questions in auditory research for which the mouse is the most appropriate (or the only) model system available. But mice cannot provide answers for all auditory problems of basic and applied importance, nor can any single model system provide a synthetic understanding of the diverse solutions that have evolved to facilitate effective detection and use of acoustic information. In this review, spurred by trends in funding and publishing and inspired by parallel observations in other domains of neuroscience, we highlight a few examples of the profound impact and lasting benefits of comparative and basic organismal research in the auditory system. We begin with the serendipitous discovery of hair cell regeneration in non-mammalian vertebrates, a finding that has fueled an ongoing search for pathways to hearing restoration in humans. We then turn to the problem of sound source localization - a fundamental task that most auditory systems have been compelled to solve despite large variation in the magnitudes and kinds of spatial acoustic cues available, begetting varied direction-detecting mechanisms. Finally, we consider the power of work in highly specialized organisms to reveal exceptional solutions to sensory problems - and the diverse returns of deep neuroethological inquiry - via the example of echolocating bats. Throughout, we consider how discoveries made possible by comparative and curiosity-driven organismal research have driven fundamental scientific, biomedical, and technological advances in the auditory field.
Collapse
Affiliation(s)
- Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St, Seattle, WA, 98105 USA; Virginia-Merrill Bloedel Hearing Research Center, University of Washington, 1701 NE Columbia Rd, Seattle, WA, 98195 USA.
| | - Tamasen Hayward
- College of Arts and Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Christine V Portfors
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Allison B Coffin
- College of Arts and Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA; School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA; Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA.
| |
Collapse
|
2
|
de Melo HC. Plants detect and respond to sounds. PLANTA 2023; 257:55. [PMID: 36790549 DOI: 10.1007/s00425-023-04088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Specific sound patterns can affect plant development. Plants are responsive to environmental stimuli such as sound. However, little is known about their sensory apparatus, mechanisms, and signaling pathways triggered by these stimuli. Thus, it is important to understand the effect of sounds on plants and their technological potential. This review addresses the effects of sounds on plants, the sensory elements inherent to sound detection by the cell, as well as the triggering of signaling pathways that culminate in plant responses. The importance of sound standardization for the study of phytoacoustics is demonstrated. Studies on the sounds emitted or reflected by plants, acoustic stress in plants, and recognition of some sound patterns by plants are also explored.
Collapse
Affiliation(s)
- Hyrandir Cabral de Melo
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Goiás, Instituto de Ciências Biológicas. Avenida Esperança, S/N Campus Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
3
|
Baker CA, McKellar C, Pang R, Nern A, Dorkenwald S, Pacheco DA, Eckstein N, Funke J, Dickson BJ, Murthy M. Neural network organization for courtship-song feature detection in Drosophila. Curr Biol 2022; 32:3317-3333.e7. [PMID: 35793679 PMCID: PMC9378594 DOI: 10.1016/j.cub.2022.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Animals communicate using sounds in a wide range of contexts, and auditory systems must encode behaviorally relevant acoustic features to drive appropriate reactions. How feature detection emerges along auditory pathways has been difficult to solve due to challenges in mapping the underlying circuits and characterizing responses to behaviorally relevant features. Here, we study auditory activity in the Drosophila melanogaster brain and investigate feature selectivity for the two main modes of fly courtship song, sinusoids and pulse trains. We identify 24 new cell types of the intermediate layers of the auditory pathway, and using a new connectomic resource, FlyWire, we map all synaptic connections between these cell types, in addition to connections to known early and higher-order auditory neurons-this represents the first circuit-level map of the auditory pathway. We additionally determine the sign (excitatory or inhibitory) of most synapses in this auditory connectome. We find that auditory neurons display a continuum of preferences for courtship song modes and that neurons with different song-mode preferences and response timescales are highly interconnected in a network that lacks hierarchical structure. Nonetheless, we find that the response properties of individual cell types within the connectome are predictable from their inputs. Our study thus provides new insights into the organization of auditory coding within the Drosophila brain.
Collapse
Affiliation(s)
- Christa A Baker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Janelia Research Campus, HHMI, Ashburn, VA, USA
| | - Rich Pang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Computer Science, Princeton University, Princeton, NJ, USA
| | - Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nils Eckstein
- Janelia Research Campus, HHMI, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Jan Funke
- Janelia Research Campus, HHMI, Ashburn, VA, USA
| | | | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
Ning J, Li Z, Zhang X, Wang J, Chen D, Liu Q, Sun Y. Behavioral signatures of structured feature detection during courtship in Drosophila. Curr Biol 2022; 32:1211-1231.e7. [DOI: 10.1016/j.cub.2022.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|
5
|
Pacheco DA, Thiberge SY, Pnevmatikakis E, Murthy M. Auditory activity is diverse and widespread throughout the central brain of Drosophila. Nat Neurosci 2021; 24:93-104. [PMID: 33230320 PMCID: PMC7783861 DOI: 10.1038/s41593-020-00743-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/19/2020] [Indexed: 11/09/2022]
Abstract
Sensory pathways are typically studied by starting at receptor neurons and following postsynaptic neurons into the brain. However, this leads to a bias in analyses of activity toward the earliest layers of processing. Here, we present new methods for volumetric neural imaging with precise across-brain registration to characterize auditory activity throughout the entire central brain of Drosophila and make comparisons across trials, individuals and sexes. We discover that auditory activity is present in most central brain regions and in neurons responsive to other modalities. Auditory responses are temporally diverse, but the majority of activity is tuned to courtship song features. Auditory responses are stereotyped across trials and animals in early mechanosensory regions, becoming more variable at higher layers of the putative pathway, and this variability is largely independent of ongoing movements. This study highlights the power of using an unbiased, brain-wide approach for mapping the functional organization of sensory activity.
Collapse
Affiliation(s)
- Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Eftychios Pnevmatikakis
- Center for Computational Mathematics, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
6
|
Kaushik PK, Olsson SB. Using virtual worlds to understand insect navigation for bio-inspired systems. CURRENT OPINION IN INSECT SCIENCE 2020; 42:97-104. [PMID: 33010476 DOI: 10.1016/j.cois.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Insects perform a wide array of intricate behaviors over large spatial and temporal scales in complex natural environments. A mechanistic understanding of insect cognition has direct implications on how brains integrate multimodal information and can inspire bio-based solutions for autonomous robots. Virtual Reality (VR) offers an opportunity assess insect neuroethology while presenting complex, yet controlled, stimuli. Here, we discuss the use of insects as inspiration for artificial systems, recent advances in different VR technologies, current knowledge gaps, and the potential for application of insect VR research to bio-inspired robots. Finally, we advocate the need to diversify our model organisms, behavioral paradigms, and embrace the complexity of the natural world. This will help us to uncover the proximate and ultimate basis of brain and behavior and extract general principles for common challenging problems.
Collapse
Affiliation(s)
- Pavan Kumar Kaushik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560064, India.
| | - Shannon B Olsson
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560064, India.
| |
Collapse
|
7
|
Römer H. Directional hearing in insects: biophysical, physiological and ecological challenges. ACTA ACUST UNITED AC 2020; 223:223/14/jeb203224. [PMID: 32737067 DOI: 10.1242/jeb.203224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sound localisation is a fundamental attribute of the way that animals perceive their external world. It enables them to locate mates or prey, determine the direction from which a predator is approaching and initiate adaptive behaviours. Evidence from different biological disciplines that has accumulated over the last two decades indicates how small insects with body sizes much smaller than the wavelength of the sound of interest achieve a localisation performance that is similar to that of mammals. This Review starts by describing the distinction between tympanal ears (as in grasshoppers, crickets, cicadas, moths or mantids) and flagellar ears (specifically antennae in mosquitoes and fruit flies). The challenges faced by insects when receiving directional cues differ depending on whether they have tympanal or flagellar years, because the latter respond to the particle velocity component (a vector quantity) of the sound field, whereas the former respond to the pressure component (a scalar quantity). Insects have evolved sophisticated biophysical solutions to meet these challenges, which provide binaural cues for directional hearing. The physiological challenge is to reliably encode these cues in the neuronal activity of the afferent auditory system, a non-trivial problem in particular for those insect systems composed of only few nerve cells which exhibit a considerable amount of intrinsic and extrinsic response variability. To provide an integrative view of directional hearing, I complement the description of these biophysical and physiological solutions by presenting findings on localisation in real-world situations, including evidence for localisation in the vertical plane.
Collapse
Affiliation(s)
- Heiner Römer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
8
|
Currier TA, Nagel KI. Multisensory control of navigation in the fruit fly. Curr Opin Neurobiol 2019; 64:10-16. [PMID: 31841944 DOI: 10.1016/j.conb.2019.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
Abstract
Spatial navigation is influenced by cues from nearly every sensory modality and thus provides an excellent model for understanding how different sensory streams are integrated to drive behavior. Here we review recent work on multisensory control of navigation in the model organism Drosophila melanogaster, which allows for detailed circuit dissection. We identify four modes of integration that have been described in the literature-suppression, gating, summation, and association-and describe regions of the larval and adult brain that have been implicated in sensory integration. Finally we discuss what circuit architectures might support these different forms of integration. We argue that Drosophila is an excellent model to discover these circuit and biophysical motifs.
Collapse
Affiliation(s)
- Timothy A Currier
- Neuroscience Institute, New York University Medical Center, 435 E 30th St., New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Katherine I Nagel
- Neuroscience Institute, New York University Medical Center, 435 E 30th St., New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
9
|
Rings A, Goodwin SF. To court or not to court - a multimodal sensory decision in Drosophila males. CURRENT OPINION IN INSECT SCIENCE 2019; 35:48-53. [PMID: 31336357 DOI: 10.1016/j.cois.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
When Drosophila males encounter another fly, they have to make a rapid assessment to ensure the appropriate response: should they court, fight or pursue a different action entirely? Previous work has focused on the significance of sensory cues detected by the male during these encounters; however, recent evidence highlights the importance of the male's own internal state in shaping his responses. Additionally, once triggered, courtship is not a rigid sequence of motor actions, but rather a finely tuned behavioural display that must continually update in response to sensory feedback. Here, we review recent findings highlighting how sensory information and internal states are integrated ensuring appropriate action selection, and how they sustain and fine-tune motor output. We further discuss recent advances in our understanding of species differences in sensory processing that may contribute to reproductive isolation.
Collapse
Affiliation(s)
- Annika Rings
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK.
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| |
Collapse
|
10
|
Knight K. Tiny Drosophila home in on forward sounds. J Exp Biol 2019. [DOI: 10.1242/jeb.197780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|