1
|
Yee WL, Rose AC, Milnes JM, Feder JL. Differential water deprivation tolerances of adult Rhagoletis indifferens and Rhagoletis pomonella (Diptera: Tephritidae) as a possible factor affecting their distributional abundances in Washington State, USA. ENVIRONMENTAL ENTOMOLOGY 2024; 53:1078-1092. [PMID: 39412207 DOI: 10.1093/ee/nvae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 12/18/2024]
Abstract
Insects that evolved in mesic regions may have difficulty establishing in xeric regions. Rhagoletis pomonella (Walsh) (Diptera: Tephritidae) was introduced into drier western North America from mesic eastern North America while Rhagoletis indifferens Curran is native to western North America. Here, we predicted that R. indifferens survives water deprivation longer than R. pomonella, as R. indifferens is more abundant than R. pomonella in dry central Washington (WA) State, USA. Sweet and bitter cherry-origin R. indifferens and apple- and hawthorn-origin R. pomonella from xeric central or mesic western WA were provided water throughout or were water-deprived at 2-4 and 14-18 d old and held at 20°C or 30/31°C and daily survival recorded. At 20°C and 30°C, western WA apple-origin R. pomonella provided water survived longer than sweet cherry-origin R. indifferens. When water-deprived, however, 2-4 d old R. indifferens, although smaller, survived significantly longer than western WA apple-origin R. pomonella of the same age. This was also generally true for 14-18 d old flies, although differences were less often significant. Central WA large-thorn hawthorn-origin R. pomonella survived water deprivation significantly longer than western WA apple-origin R. pomonella, and as long as R. indifferens. Water-deprived flies of both species survived longer at 20°C than 30/31°C. Survival analyses suggest that low water availability rather than high temperature contributes to lower R. pomonella than R. indifferens abundances in central WA, with R. pomonella populations in that region differing from western WA R. pomonella with respect to tolerance of xeric climates.
Collapse
Affiliation(s)
- Wee L Yee
- USDA-ARS, Temperate Tree Fruit & Vegetable Research Unit, Wapato, WA, USA
| | - Alexander C Rose
- USDA-ARS, Temperate Tree Fruit & Vegetable Research Unit, Wapato, WA, USA
| | - Joshua M Milnes
- Washington State Department of Agriculture - Plant Protection Division, Yakima, WA, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
2
|
Pullock DA, Malod K, Manrakhan A, Weldon CW. Larval and adult diet affect phenotypic plasticity in thermal tolerance of the marula fly, Ceratitis cosyra (Walker) (Diptera: Tephritidae). FRONTIERS IN INSECT SCIENCE 2023; 3:1122161. [PMID: 38469504 PMCID: PMC10926529 DOI: 10.3389/finsc.2023.1122161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/13/2024]
Abstract
Introduction Temperature fluctuations are important for the distribution and survival of insects. Rapid hardening, a type of phenotypic plasticity, is an adaptation that can help individuals better tolerate lethal temperatures because of earlier exposure to a sublethal but stressful temperature. Nutrition and sex are also known to influence a species ability to tolerate thermal stress. This study determined the effects of larval diet, adult diet, sex and hardening on the thermal tolerance of Ceratitis cosyra (Walker) (Diptera: Tephritidae) at lower and upper lethal temperatures. Methods Larvae were raised on either an 8% torula yeast (high) or a 1% torula yeast (low) larval diet and then introduced to one of three dietary regimes as adults for thermal tolerance and hardening assays: no adult diet, sugar only, or sugar and hydrolysed yeast diet. Flies of known weight were then either heat- or cold-hardened for 2 hours before being exposed to a potentially lethal high or low temperature, respectively. Results Both nutrition and hardening as well as their interaction affected C. cosyra tolerance of stressful temperatures. However, this interaction was dependent on the type of stress, with nutrient restriction and possible adult dietary compensation resulting in improved cold temperature resistance only. Discussion The ability of the insect to both compensate for a low protein larval diet and undergo rapid cold hardening after a brief exposure to sublethal cold temperatures even when both the larva and the subsequent adult fed on low protein diets indicates that C. cosyra have a better chance of survival in environments with extreme temperature variability, particularly at low temperatures. However, there appears to be limitations to the ability of C. cosyra to cold harden and the species may be more at risk from long term chronic effects than from any exposure to acute thermal stress.
Collapse
Affiliation(s)
- Dylan A. Pullock
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Kévin Malod
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Aruna Manrakhan
- Citrus Research International, Mbombela, South Africa
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Dasgupta P, Halder S, Dari D, Nabeel P, Vajja SS, Nandy B. Evolution of a novel female reproductive strategy in Drosophila melanogaster populations subjected to long-term protein restriction. Evolution 2022; 76:1836-1848. [PMID: 35796749 DOI: 10.1111/evo.14560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/19/2022] [Indexed: 01/22/2023]
Abstract
Reproductive output is often constrained by availability of macronutrients, especially protein. Long-term protein restriction, therefore, is expected to select for traits maximizing reproduction even under nutritional challenge. We subjected four replicate populations of Drosophila melanogaster to a complete deprivation of yeast supplement, thereby mimicking a protein-restricted ecology. Following 24 generations, compared to their matched controls, females from experimental populations showed increased reproductive output early in life, both in presence and absence of yeast supplement. The observed increase in reproductive output was without associated alterations in egg size, development time, preadult survivorship, body mass at eclosion, and life span of the females. Further, selection was ineffective on lifelong cumulative fecundity. However, females from experiment regime were found to have a significantly faster rate of reproductive senescence following the attainment of the reproductive peak early in life. Therefore, adaptation to yeast deprivation ecology in our study involved a novel reproductive strategy whereby females attained higher reproductive output early in life followed by faster reproductive aging. To the best of our knowledge, this is one of the cleanest demonstrations of optimization of fitness by fine-tuning of reproductive schedule during adaptation to a prolonged nutritional deprivation.
Collapse
Affiliation(s)
- Purbasha Dasgupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Subhasish Halder
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Debapriya Dari
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Poolakkal Nabeel
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Central University of Kerala, Tejaswini Hills,Periye, Kasaragod, Kerala, 671316, India
| | - Sai Samhitha Vajja
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Current Address: Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, 462066, India
| | - Bodhisatta Nandy
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| |
Collapse
|
4
|
Pascacio‐Villafán C, Righini N, Nestel D, Birke A, Guillén L, Aluja M. Diet Quality and Conspecific Larval Density Predict Functional Trait Variation and Performance in a Polyphagous Frugivorous Fly. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Carlos Pascacio‐Villafán
- Instituto de Ecología, A.C. (INECOL), Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores 91073 Xalapa Veracruz Mexico
| | - Nicoletta Righini
- Instituto de Ecología, A.C. (INECOL), Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores 91073 Xalapa Veracruz Mexico
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición (IICAN), Universidad de Guadalajara 49000 Ciudad Guzmán Jalisco Mexico
| | - David Nestel
- Institute of Plant Protection, Department of Entomology, ARO, The Volcani Center, Beit Dagan 50250 Israel
| | - Andrea Birke
- Instituto de Ecología, A.C. (INECOL), Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores 91073 Xalapa Veracruz Mexico
| | - Larissa Guillén
- Instituto de Ecología, A.C. (INECOL), Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores 91073 Xalapa Veracruz Mexico
| | - Martín Aluja
- Instituto de Ecología, A.C. (INECOL), Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores 91073 Xalapa Veracruz Mexico
| |
Collapse
|
5
|
Malod K, du Rand EE, Archer CR, Nicolson SW, Weldon CW. Oxidative Damage Is Influenced by Diet But Unaffected by Selection for Early Age of Oviposition in the Marula Fly, Ceratitis cosyra (Diptera: Tephritidae). Front Physiol 2022; 13:794979. [PMID: 35295580 PMCID: PMC8918681 DOI: 10.3389/fphys.2022.794979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
The expression of life-history traits, such as lifespan or reproductive effort, is tightly correlated with the amount and blend of macronutrients that individuals consume. In a range of herbivorous insects, consuming high protein to carbohydrate ratios (P:C) decreases lifespan but increases female fecundity. In other words, females face a resource-based trade-off between lifespan and fecundity. Redox metabolism may help mediate this trade-off, if oxidative damage is elevated by reproductive investment and if this damage, in turn, reduces lifespan. Here, we test how diets varying in P:C ratio affect oxidative damage and antioxidant protection in female and male of the marula fly, Ceratitis cosyra (Diptera: Tephritidae). We use replicated lines that have been subjected to experimental evolution and differ in their lifespan and reproductive scheduling. We predicted that high fecundity would be associated with high oxidative damage and reduced antioxidant defences, while longer lived flies would show reduced damage and elevated antioxidant defences. However, higher levels of oxidative damage were observed in long-lived control lines than selection lines, but only when fed the diet promoting lifespan. Flies fed diets promoting female fecundity (1:4 and 1:2 P:C) suffered greater oxidative damage to lipids than flies fed the best diet (0:1 P:C) for lifespan. Total antioxidant capacity was not affected by the selection regime or nutrition. Our results reiterate the importance of nutrition in affecting life-history traits, but suggest that in C. cosyra, reactive oxygen species play a minimal role in mediating dietary trade-offs between lifespan and reproduction.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Esther E. du Rand
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - C. Ruth Archer
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Susan W. Nicolson
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- *Correspondence: Christopher W. Weldon,
| |
Collapse
|
6
|
Campoy A, Lutsyk M, Pérez-Bañón C, Rojo S. Age-stage two-sex life table analysis of Eristalinus aeneus (Diptera, Syrphidae) reared with two different larval media. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:13-20. [PMID: 34736544 DOI: 10.1017/s0007485321000328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Eristalinus aeneus (Scopoli, 1763) is a suitable candidate for artificial rearing due to its pollination efficiency and subcosmopolitan distribution. However, the high mortality found at the larval stage of this species needs to be overcome. In this research, two different larval media were used to study the life cycle of E. aeneus: brewery spent grain (BSG) from a local craft-beer factory and soaked oat grains (SOG). The age-stage, two-sex life table method was used to analyze the results, which were compared using the paired bootstrap test. The greatest mortality was found at the larval stage with both media. Individuals fed on SOG presented a shorter preadult developmental time (22.05 days) than those reared with BSG (26.97 days). This fact had a direct impact on the total preoviposition period, it being shorter with SOG (34.36 days) than BSG (38.29 days), although the second provided a larger total number of eggs (19,242 eggs) and a faster adult maturation (10.67 days). The population parameters indicated that both populations will display a positive growth under the studied conditions, being the mean generation time (T) significantly shorter when using SOG (38.71 days) than BSG (45.95 days). Despite the preadult results pointing to SOG being a more efficient medium, the promising fecundity values provided by BSG, as well as it's lower cost and ecological benefits, suggest that this second medium could be improved and used as an alternative to SOG in the near future.
Collapse
Affiliation(s)
- Andrés Campoy
- Department of Environmental Sciences and Natural Resources, University of Alicante, PO Box 99, E-03080Alicante, Spain
| | - Mariya Lutsyk
- Department of Environmental Sciences and Natural Resources, University of Alicante, PO Box 99, E-03080Alicante, Spain
| | - Celeste Pérez-Bañón
- Department of Environmental Sciences and Natural Resources, University of Alicante, PO Box 99, E-03080Alicante, Spain
| | - Santos Rojo
- Department of Environmental Sciences and Natural Resources, University of Alicante, PO Box 99, E-03080Alicante, Spain
| |
Collapse
|
7
|
Hassan B, Siddiqui JA, Xu Y. Vertically Transmitted Gut Bacteria and Nutrition Influence the Immunity and Fitness of Bactrocera dorsalis Larvae. Front Microbiol 2020; 11:596352. [PMID: 33193277 PMCID: PMC7661685 DOI: 10.3389/fmicb.2020.596352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/12/2020] [Indexed: 01/12/2023] Open
Abstract
Symbiotic bacterial communities that colonize the digestive tract of tephritid fruit flies interact with nutrient intake to improve the flies' fitness and immunity. Some bacterial species consistently inhabit the tephritid guts and are transmitted to the next generation vertically. These species contribute significantly to some aspects of their host's physiology. In the current study, we examined the role of four vertically transmitted bacteria (Citrobacter, Enterobacter, Klebsiella, and Providencia) on the fitness parameters and immunity of Bactrocera dorsalis larvae that were fed a nutritionally manipulated diet. For this purpose, eggs were collected from axenic, gnotobiotic, and symbiotic adult flies, and larvae were reared on four types of diets in which carbohydrate and/or protein contents were reduced and then compared with larvae raised on a control diet. The diet and bacterial interactions significantly affected the fitness and immunity of B. dorsalis. Larvae of axenic flies grew slower and displayed weaker immune-based responses (PO activity, antibacterial activity, survival) than larvae of gnotobiotic and symbiotic flies. Overall, larvae reared on the low-protein diet grew slower than those reared on the control or low-carbohydrate diets. Survival, PO activity, and antibacterial activity were significantly lower in the hemolymph of larvae reared on low-protein diets. Our results also revealed that the levels of hemolymph protein, glucose, trehalose, and triglyceride in larvae from axenic flies were significantly lower than those in larvae of the symbiotic group after they fed on most of the tested diets. These results strongly infer that diet and vertically transmitted bacteria are both essential contributors to the fitness and immunity of B. dorsalis.
Collapse
Affiliation(s)
- Babar Hassan
- Laboratory of Quarantine and Invasive Pests, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Junaid Ali Siddiqui
- Laboratory of Quarantine and Invasive Pests, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Yijuan Xu
- Laboratory of Quarantine and Invasive Pests, Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Malod K, Archer CR, Karsten M, Cruywagen R, Howard A, Nicolson SW, Weldon CW. Exploring the role of host specialisation and oxidative stress in interspecific lifespan variation in subtropical tephritid flies. Sci Rep 2020; 10:5601. [PMID: 32221391 PMCID: PMC7101423 DOI: 10.1038/s41598-020-62538-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/12/2020] [Indexed: 11/28/2022] Open
Abstract
In herbivorous insects, the degree of host specialisation may be one ecological factor that shapes lifespan. Because host specialists can only exploit a limited number of plants, their lifecycle should be synchronised with host phenology to allow reproduction when suitable hosts are available. For species not undergoing diapause or dormancy, one strategy to achieve this could be evolving long lifespans. From a physiological perspective, oxidative stress could explain how lifespan is related to degree of host specialisation. Oxidative stress caused by Reactive Oxygen Species (ROS) might help underpin ageing (the Free Radical Theory of Aging (FRTA)) and mediate differences in lifespan. Here, we investigated how lifespan is shaped by the degree of host specialisation, phylogeny, oxidative damage accumulation and antioxidant protection in eight species of true fruit flies (Diptera: Tephritidae). We found that lifespan was not constrained by species relatedness or oxidative damage (arguing against the FRTA); nevertheless, average lifespan was positively associated with antioxidant protection. There was no lifespan difference between generalist and specialist species, but most of the tephritids studied had long lifespans in comparison with other dipterans. Long lifespan may be a trait under selection in fruit-feeding insects that do not use diapause.
Collapse
Affiliation(s)
- Kévin Malod
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - C Ruth Archer
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Minette Karsten
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Ruben Cruywagen
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Alexandra Howard
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Susan W Nicolson
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| |
Collapse
|