1
|
Wood CM, Eom J. Accounting for the role of the gastro-intestinal tract in the ammonia and urea nitrogen dynamics of freshwater rainbow trout on long-term satiation feeding. J Exp Biol 2025; 228:jeb249654. [PMID: 39817460 DOI: 10.1242/jeb.249654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The contribution of the gut to the ingestion, production, absorption and excretion of the extra ammonia and urea nitrogen (urea-N) associated with feeding ('exogenous' fraction) has received limited attention. Analysis of commercial pellet food revealed appreciable concentrations of ammonia and urea-N. Long-term satiation feeding increased whole-trout ammonia and urea-N excretion rates by 2.5-fold above fasting levels. Blood was sampled from the dorsal aorta, posterior, mid- and anterior sub-intestinal veins, as well as the hepatic portal vein in situ. Ammonia, urea-N and fluid flux rates were measured in vitro using novel gut sac preparations filled with native chyme. The sacs maintained the extreme physico-chemical conditions of the lumen seen in vivo. Overall, these results confirmed our hypothesis that the stomach, and anterior intestine and pyloric caecae regions play important roles in ammonia and urea-N production and/or absorption. There was a very high rate of urea-N production in the anterior intestine and pyloric caecae, whereas the posterior intestine dominated for ammonia synthesis. The stomach was the major site of ammonia absorption, and the anterior intestine and pyloric caecae region dominated for urea-N absorption. Model calculations indicated that over 50% of the exogenous ammonia and urea-N excretion associated with satiation feeding was produced in the anaerobic gut. This challenges standard metabolic theory used in fuel-use calculations. The novel gut sac preparations gained fluid during incubation, especially in the anterior intestine and pyloric caecae, owing to marked hyperosmolality in the chyme. Thus, satiation feeding with commercial pellets is beneficial to the water balance of freshwater trout.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
- Department of Biology, McMaster University, Hamilton L8S 4K1, ON, Canada
| | - Junho Eom
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
| |
Collapse
|
2
|
Shaftoe JB, Geddes-McAlister J, Gillis TE. Integrated cellular response of the zebrafish (Danio rerio) heart to temperature change. J Exp Biol 2024; 227:jeb247522. [PMID: 39091230 DOI: 10.1242/jeb.247522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
A decrease in environmental temperature represents a challenge to the cardiovascular system of ectotherms. To gain insight into the cellular changes that occur during cold exposure and cold acclimation we characterized the cardiac phosphoproteome and proteome of zebrafish following 24 h or 1 week exposure to 20°C from 27°C; or at multiple points during 6 weeks of acclimation to 20°C from 27°C. Our results indicate that cold exposure causes an increase in mitogen-activated protein kinase signalling, the activation of stretch-sensitive pathways, cellular remodelling via ubiquitin-dependent pathways and changes to the phosphorylation state of proteins that regulate myofilament structure and function including desmin and troponin T. Cold acclimation (2-6 weeks) led to a decrease in multiple components of the electron transport chain through time, but an increase in proteins for lipid transport, lipid metabolism, the incorporation of polyunsaturated fatty acids into membranes and protein turnover. For example, there was an increase in the levels of apolipoprotein C, prostaglandin reductase-3 and surfeit locus protein 4, involved in lipid transport, lipid metabolism and lipid membrane remodelling. Gill opercular movements suggest that oxygen utilization during cold acclimation is reduced. Neither the amount of food consumed relative to body mass nor body condition was affected by acclimation. These results suggest that while oxygen uptake was reduced, energy homeostasis was maintained. This study highlights that the response of zebrafish to a decrease in temperature is dynamic through time and that investment in the proteomic response increases with the duration of exposure.
Collapse
Affiliation(s)
- Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
3
|
Uusi‐Heikkilä S, Salonen JK, Karjalainen JS, Väisänen A, Hippeläinen J, Hämärvuo T, Kuparinen A. Fish with slow life-history cope better with chronic manganese exposure than fish with fast life-history. Ecol Evol 2024; 14:e70134. [PMID: 39119176 PMCID: PMC11307103 DOI: 10.1002/ece3.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Animals with different life-history types vary in their stress-coping styles, which can affect their fitness and survival in changing environments. We studied how chronic exposure to manganese sulfate (MnSO4), a common aquatic pollutant, affects life-history traits, physiology, and behavior of zebrafish (Danio rerio) with two life-history types: fast (previously selected for fast juvenile growth, early maturation, and small adult body size) and slow life histories (selected for slow juvenile growth, late maturation, and large adult body size). We found that MnSO4 had negative effects on growth and condition factors, but the magnitude of these effects depended on the life-history type. Individuals with fast life histories were more susceptible to MnSO4 than fish with slow life histories as they had lower growth rate, condition factor and feeding probability in high MnSO4 concentrations. Our results demonstrate that MnSO4 can impair fish performance, and life-history variation can modulate the stress-coping ability of individuals.
Collapse
Affiliation(s)
- Silva Uusi‐Heikkilä
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Jouni K. Salonen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Juha S. Karjalainen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Ari Väisänen
- Department of ChemistryUniversity of JyväskyläJyvaskylaFinland
| | - Johanna Hippeläinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Teemu Hämärvuo
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Anna Kuparinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| |
Collapse
|
4
|
Goodrich HR, Wood CM, Wilson RW, Clark TD, Last KB, Wang T. Specific dynamic action: the energy cost of digestion or growth? J Exp Biol 2024; 227:jeb246722. [PMID: 38533751 DOI: 10.1242/jeb.246722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The physiological processes underlying the post-prandial rise in metabolic rate, most commonly known as the 'specific dynamic action' (SDA), remain debated and controversial. This Commentary examines the SDA response from two opposing hypotheses: (i) the classic interpretation, where the SDA represents the energy cost of digestion, versus (ii) the alternative view that much of the SDA represents the energy cost of growth. The traditional viewpoint implies that individuals with a reduced SDA should grow faster given the same caloric intake, but experimental evidence for this effect remains scarce and inconclusive. Alternatively, we suggest that the SDA reflects an organism's efficacy in allocating the ingested food to growth, emphasising the role of post-absorptive processes, particularly protein synthesis. Although both viewpoints recognise the trade-offs in energy allocation and the dynamic nature of energy distribution among physiological processes, we argue that equating the SDA with 'the energy cost of digestion' oversimplifies the complexities of energy use in relation to the SDA and growth. In many instances, a reduced SDA may reflect diminished nutrient absorption (e.g. due to lower digestive efficiency) rather than increased 'free' energy available for somatic growth. Considering these perspectives, we summarise evidence both for and against the opposing hypotheses with a focus on ectothermic vertebrates. We conclude by presenting a number of future directions for experiments that may clarify what the SDA is, and what it is not.
Collapse
Affiliation(s)
- Harriet R Goodrich
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T1Z4
| | - Rod W Wilson
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Katja B Last
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Licitra R, Fronte B, Verri T, Marchese M, Sangiacomo C, Santorelli FM. Zebrafish Feed Intake: A Systematic Review for Standardizing Feeding Management in Laboratory Conditions. BIOLOGY 2024; 13:209. [PMID: 38666821 PMCID: PMC11047914 DOI: 10.3390/biology13040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Zebrafish are one of the most used animal models in biological research and a cost-effective alternative to rodents. Despite this, nutritional requirements and standardized feeding protocols have not yet been established for this species. This is important to avoid nutritional effects on experimental outcomes, and especially when zebrafish models are used in preclinical studies, as many diseases have nutritional confounding factors. A key aspect of zebrafish nutrition is related to feed intake, the amount of feed ingested by each fish daily. With the goal of standardizing feeding protocols among the zebrafish community, this paper systematically reviews the available data from 73 studies on zebrafish feed intake, feeding regimes (levels), and diet composition. Great variability was observed regarding diet composition, especially regarding crude protein (mean 44.98 ± 9.87%) and lipid content (9.91 ± 5.40%). Interestingly, the gross energy levels of the zebrafish diets were similar across the reviewed studies (20.39 ± 2.10 kilojoules/g of feed). In most of the reviewed papers, fish received a predetermined quantity of feed (feed supplied). The authors fed the fish according to the voluntary intake and then calculated feed intake (FI) in only 17 papers. From a quantitative point of view, FI was higher than when a fixed quantity (pre-defined) of feed was supplied. Also, the literature showed that many biotic and abiotic factors may affect zebrafish FI. Finally, based on the FI data gathered from the literature, a new feeding protocol is proposed. In summary, a daily feeding rate of 9-10% of body weight is proposed for larvae, whereas these values are equal to 6-8% for juveniles and 5% for adults when a dry feed with a proper protein and energy content is used.
Collapse
Affiliation(s)
- Rosario Licitra
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Baldassare Fronte
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (B.F.); (C.S.)
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Maria Marchese
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Chiara Sangiacomo
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (B.F.); (C.S.)
| | - Filippo Maria Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| |
Collapse
|
6
|
Wood CM, Wang J, Jung EH, Pelster B. The physiological consequences of a very large natural meal in a voracious marine fish, the staghorn sculpin (Leptocottus armatus). J Exp Biol 2023; 226:jeb246034. [PMID: 37675481 DOI: 10.1242/jeb.246034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Little information exists on physiological consequences when wild fish eat natural food. Staghorn sculpins at 10-13°C voluntarily consumed 15.8% of their body mass in anchovies. Gastric clearance was slow with >60% of the meal retained in the stomach at 48 h, and was not complete until 84 h. At 14-24 h post-feeding, pH was depressed by 3 units and Cl- concentration was elevated 2-fold in gastric chyme, reflecting HCl secretion, while in all sections of the intestine, pH declined by 1 pH unit but Cl- concentration remained unchanged. PCO2 and total ammonia concentration were greatly elevated throughout the tract, whereas PNH3 and HCO3- concentration were depressed. Intestinal HCO3- secretion rates, measured in gut sacs in vitro, were also lower in fed fish. Whole-animal O2 consumption rate was elevated approximately 2-fold for 72 h post-feeding, reflecting 'specific dynamic action', whereas ammonia and urea-N excretion rates were elevated about 5-fold. Arterial blood exhibited a modest 'alkaline tide' for about 48 h, but there was negligible excretion of metabolic base to the external seawater. PaCO2 and PaO2 remained unchanged. Plasma total amino acid concentration and total lipid concentration were elevated about 1.5-fold for at least 48 h, whereas small increases in plasma total ammonia concentration, PNH3 and urea-N concentration were quickly attenuated. Plasma glucose concentration remained unchanged. We conclude that despite the very large meal, slow processing with high efficiency minimizes internal physiological disturbances. This differs greatly from the picture provided by previous studies on aquacultured species using synthetic diets and/or force-feeding. Questions remain about the role of the gastro-intestinal microbiome in nitrogen and acid-base metabolism.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Jun Wang
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| | - Bernd Pelster
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Williamson A, Carter CG, Basseer Codabaccus M, Fitzgibbon QP, Smith GG. Application of a stoichiometric bioenergetic approach and whole-body protein synthesis to the nutritional assessment of juvenile Thenus australiensis. Sci Rep 2023; 13:14378. [PMID: 37658120 PMCID: PMC10474296 DOI: 10.1038/s41598-023-41070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
The present study successfully combined a stoichiometric bioenergetic approach with an endpoint stochastic model to simultaneously determine specific dynamic action, metabolic substrate use and whole-body protein synthesis in juvenile slipper lobster Thenus australiensis. Juvenile lobsters were fasted for 48 h to investigate routine metabolism before receiving a single meal of formulated feed containing 1% 15N-labeled Spirulina. Postprandial oxygen consumption rate, dissolved inorganic carbon, and total nitrogen excretion returned to the pre-feeding level within 24 h. The rate of whole-body protein synthesis was 0.76 ± 0.15 mg CP g-1 day-1, with a significant reduction from 24 to 48 h post-feeding. The postprandial increase in whole-body protein synthesis accounted for 13-19% of total oxygen uptake. Protein was the primary energy substrate for 48 h fasted (45% oxygen consumption) and post-feeding lobster (44%), suggesting that dietary protein was not efficiently used for growth. The secondary energy substrate differed between carbohydrates in 48 h fasted and lipids in post-feeding lobsters. The present study recommends integrating protein synthesis into protein requirement experiments of marine ectotherms to acquire a more comprehensive picture of protein and energy metabolism and nutritional physiology crucial for formulating cost-effective aquafeeds.
Collapse
Affiliation(s)
- Andrea Williamson
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia.
| | - Chris G Carter
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - M Basseer Codabaccus
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| |
Collapse
|
8
|
Mes W, Kersten P, Maas RM, Eding EH, Jetten MSM, Siepel H, Lücker S, Gorissen M, Van Kessel MAHJ. Effects of demand-feeding and dietary protein level on nitrogen metabolism and symbiont dinitrogen gas production of common carp ( Cyprinus carpio, L.). Front Physiol 2023; 14:1111404. [PMID: 36824463 PMCID: PMC9941540 DOI: 10.3389/fphys.2023.1111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Ammonia accumulation is a major challenge in intensive aquaculture, where fish are fed protein-rich diets in large rations, resulting in increased ammonia production when amino acids are metabolized as energy source. Ammonia is primarily excreted via the gills, which have been found to harbor nitrogen-cycle bacteria that convert ammonia into dinitrogen gas (N2) and therefore present a potential in situ detoxifying mechanism. Here, we determined the impact of feeding strategies (demand-feeding and batch-feeding) with two dietary protein levels on growth, nitrogen excretion, and nitrogen metabolism in common carp (Cyprinus carpio, L.) in a 3-week feeding experiment. Demand-fed fish exhibited significantly higher growth rates, though with lower feed efficiency. When corrected for feed intake, nitrogen excretion was not impacted by feeding strategy or dietary protein, but demand-fed fish had significantly more nitrogen unaccounted for in the nitrogen balance and less retained nitrogen. N2 production of individual fish was measured in all experimental groups, and production rates were in the same order of magnitude as the amount of nitrogen unaccounted for, thus potentially explaining the missing nitrogen in the balance. N2 production by carp was also observed when groups of fish were kept in metabolic chambers. Demand feeding furthermore caused a significant increase in hepatic glutamate dehydrogenase activities, indicating elevated ammonia production. However, branchial ammonia transporter expression levels in these animals were stable or decreased. Together, our results suggest that feeding strategy impacts fish growth and nitrogen metabolism, and that conversion of ammonia to N2 by nitrogen cycle bacteria in the gills may explain the unaccounted nitrogen in the balance.
Collapse
Affiliation(s)
- Wouter Mes
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands.,Department of Microbiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Philippe Kersten
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Roel M Maas
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ep H Eding
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Maartje A H J Van Kessel
- Department of Microbiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
9
|
Keller RM, Beaver LM, Prater MC, Truong L, Tanguay RL, Stevens JF, Hord NG. Nitrate exposure reprograms hepatic amino acid and nutrient sensing pathways prior to exercise: A metabolomic and transcriptomic investigation in zebrafish (Danio rerio). Front Mol Biosci 2022; 9:903130. [PMID: 35928228 PMCID: PMC9343839 DOI: 10.3389/fmolb.2022.903130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Scope: Nitrate supplementation is a popular ergogenic aid that improves exercise performance by reducing oxygen consumption during exercise. We investigated the effect of nitrate exposure and exercise on metabolic pathways in zebrafish liver.Materials and methods: Fish were exposed to sodium nitrate (606.9 mg/L), or control water, for 21 days and analyzed at intervals during an exercise test. We utilized untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and measured gene expression of 24 genes central to energy metabolism and redox signaling.Results: We observed a greater abundance of metabolites involved in endogenous nitric oxide (NO) metabolism and amino acid metabolism in nitrate-treated liver at rest, compared to rested controls. In the absence of exercise, nitrate treatment upregulated expression of genes central to nutrient sensing (pgc1a), protein synthesis (mtor) and purine metabolism (pnp5a and ampd1) and downregulated expression of genes involved in mitochondrial fat oxidation (acaca and cpt2).Conclusion: Our data support a role for sub-chronic nitrate treatment in the improvement of exercise performance, in part, by improving NO bioavailability, sparing arginine, and modulating hepatic gluconeogenesis and glycolytic capacity in the liver.
Collapse
Affiliation(s)
- Rosa M. Keller
- University of California, San Francisco, San Francisco, CA, United States
| | - Laura M. Beaver
- University of California, San Francisco, San Francisco, CA, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Mary C. Prater
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA, United States
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory and the Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory and the Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Norman G. Hord
- OU Health, Harold Hamm Diabetes Center, Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Norman G. Hord,
| |
Collapse
|
10
|
Oxidative damages and antioxidant defences after feeding a single meal in rainbow trout. J Comp Physiol B 2022; 192:459-471. [PMID: 35384470 DOI: 10.1007/s00360-022-01435-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/25/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
Abstract
Feeding and digestion are metabolically demanding causing a rise on metabolic rate called Specific Dynamic Action (SDA). Although SDA has been vastly reported in fish, its potential consequences on the oxidative-antioxidant balance has not been evaluated to date in fish, a model with a long alkaline tide associated with feeding as well. Using rainbow trout (Oncorhynchus mykiss) as a model species, the aims of the present study were to: (1) assess potential oxidative damages and changes in oxidative defences after feeding on a single meal, and (2) identify the timescale of such changes over a 96 h post-feeding period. Oxidative damage in proteins and lipids and the activities of four enzymatic antioxidant defences: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were measured in gill, stomach, intestine and liver. DNA damage was measured in red blood cells. Fish were sampled before and after 1.5, 6, 24, 48, 72 and 96 h of ingestion of a 3% body mass ration. Trends of post-prandial damage were present in all tissues, but only protein oxidation varied significatively during digestion in the stomach. The intestine and stomach presented the highest enzymatic activities, likely due to the high metabolic action that these tissues have during digestion, with peaks during post-feeding: at 24 h of SOD in stomach and at 48 h of CAT in intestine. Observed GPx peaks during post-feeding in gills are likely due to the exacerbated demands for ion fluxes and/or oxygen during feeding. The differential response of the antioxidant system observed in tissues of rainbow trout during digestion indicates a coordinated and tissue-specific antioxidant defence.
Collapse
|
11
|
Benavente JN, Fryxell DC, Kinnison MT, Palkovacs EP, Simon KS. Plasticity and evolution shape the scaling of metabolism and excretion along a geothermal temperature gradient. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - David C Fryxell
- University of Auckland School of Environment Auckland New Zealand
| | | | - Eric P Palkovacs
- University of California Santa Cruz Department of Ecology and Evolutionary Biology Santa Cruz CA USA
| | - Kevin S Simon
- University of Auckland School of Environment Auckland New Zealand
| |
Collapse
|
12
|
Aaskov ML, Jensen RJ, Skov PV, Wood CM, Wang T, Malte H, Bayley M. Arapaima gigas maintains gas exchange separation in severe aquatic hypoxia but does not suffer branchial oxygen loss. J Exp Biol 2022; 225:274291. [PMID: 35132994 DOI: 10.1242/jeb.243672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022]
Abstract
One of the most air-reliant obligate air-breathing fish is the South American Arapaima gigas, with substantially reduced gills impeding gas diffusion, thought to be a result of recurring aquatic hypoxia in its habitat. In normoxic water, A. gigas is reported to satisfy 70-80% of its O2 requirement from the air while excreting 60-90% of its CO2 to the water. If this pattern of gas exchange were to continue in severely hypoxic water, O2 loss at the gills would be expected. We hypothesized therefore that partitioning of CO2 would shift to the air phase in severe aquatic hypoxia eliminating the risk of branchial O2 loss. By adapting a respirometer designed to measure aquatic MO2/MCO2 we were able to run intermittent closed respirometry on both water and air phase for both of these gasses as well as sample water for N-waste measurements (ammonia-N, urea-N) so as to calculate metabolic fuel utilization. In contrast to our prediction, we found that partitioning of CO2 excretion changed little between normoxia and severe hypoxia (83% vs 77% aquatic excretion respectively) and at the same time there was no evidence of branchial O2 loss in hypoxia. This indicates that A. gigas can utilize distinct transfer pathways for O2 and CO2. Routine and standard MO2, N-waste excretion, and metabolic fuel utilization did not change with water oxygenation. Metabolism was fueled mostly by protein oxidation (53%) while carbohydrates and lipids accounted for 27% and 20% respectively.
Collapse
Affiliation(s)
- Magnus L Aaskov
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Rasmus J Jensen
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, Hirtshals, Denmark
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Hans Malte
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mark Bayley
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Effect of dietary protein on energy metabolism including protein synthesis in the spiny lobster Sagmariasus verreauxi. Sci Rep 2021; 11:11814. [PMID: 34083691 PMCID: PMC8175413 DOI: 10.1038/s41598-021-91304-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023] Open
Abstract
This is the first study in an aquatic ectotherm to combine a stoichiometric bioenergetic approach with an endpoint stochastic model to explore dietary macronutrient content. The combination of measuring respiratory gas (O2 and CO2) exchange, nitrogenous (ammonia and urea) excretion, specific dynamic action (SDA), metabolic energy substrate use, and whole-body protein synthesis in spiny lobster, Sagmariasus verreauxi, was examined in relation to dietary protein. Three isoenergetic feeds were formulated with varying crude protein: 40%, 50% and 60%, corresponding to CP40, CP50 and CP60 treatments, respectively. Total CO2 and ammonia excretion, SDA magnitude and coefficient, and protein synthesis in the CP60 treatment were higher compared to the CP40 treatment. These differences demonstrate dietary protein influences post-prandial energy metabolism. Metabolic use of each major energy substrate varied at different post-prandial times, indicating suitable amounts of high-quality protein with major non-protein energy-yielding nutrients, lipid and carbohydrate, are critical for lobsters. The average contribution of protein oxidation was lowest in the CP50 treatment, suggesting mechanisms underlying the most efficient retention of dietary protein and suitable dietary inclusion. This study advances understanding of how deficient and surplus dietary protein affects energy metabolism and provides approaches for fine-scale feed evaluation to support sustainable aquaculture.
Collapse
|
14
|
Price ER, Mager EM. Respiratory quotient: Effects of fatty acid composition. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:613-618. [PMID: 33063463 DOI: 10.1002/jez.2422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/23/2022]
Abstract
Respiratory quotient (RQ) is commonly used to infer which substrates are oxidized, with glucose yielding RQ = 1 and fat normally thought to yield an average of RQ = 0.71. Because fat depot compositions differ among species, we examined how the various common fatty acids affect RQ. RQs ranged from less than 0.7 (e.g., stearic acid) to greater than 0.76 (e.g., docosahexaenoic acid). Furthermore, we conducted a survey of the fatty acid composition of fuel lipids of several vertebrate taxa to determine how the RQ for lipid oxidation during fasting should vary among species. Our survey indicates that most fasting vertebrates from terrestrial ecosystems oxidizing fat should have RQs equaling approximately 0.71, as normally expected. However, some fasting animals in aquatic or marine systems-particularly fish-should have RQs as high as 0.73 when oxidizing only fat. Selective mobilization of fatty acids increased the lipid RQ, but probably by a negligible amount. We conclude that researchers should take habitat and taxon into account when choosing a value for lipid RQ, and preferably should use fatty acid composition for their study species to determine an appropriate RQ for lipids. In the absence of species-specific fatty acid composition data, we suggest assuming a lipid RQ of 0.725 for cold-water fish.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas, USA
| | - Edward M Mager
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas, USA
| |
Collapse
|
15
|
Steell SC, Van Leeuwen TE, Brownscombe JW, Cooke SJ, Eliason EJ. An appetite for invasion: digestive physiology, thermal performance and food intake in lionfish ( Pterois spp.). ACTA ACUST UNITED AC 2019; 222:jeb.209437. [PMID: 31527176 DOI: 10.1242/jeb.209437] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022]
Abstract
Species invasions threaten global biodiversity, and physiological characteristics may determine their impact. Specific dynamic action (SDA; the increase in metabolic rate associated with feeding and digestion) is one such characteristic, strongly influencing an animal's energy budget and feeding ecology. We investigated the relationship between SDA, scope for activity, metabolic phenotype, temperature and feeding frequency in lionfish (Pterois spp.), which are invasive to western Atlantic marine ecosystems. Intermittent-flow respirometry was used to determine SDA, scope for activity and metabolic phenotype at 26°C and 32°C. Maximum metabolic rate occurred during digestion, as opposed to exhaustive exercise, as in more athletic species. SDA and its duration (SDAdur) were 30% and 45% lower at 32°C than at 26°C, respectively, and lionfish ate 42% more at 32°C. Despite a 32% decline in scope for activity from 26°C to 32°C, aerobic scope may have increased by 24%, as there was a higher range between standard metabolic rate (SMR) and peak SDA (SDApeak; the maximum postprandial metabolic rate). Individuals with high SMR and low scope for activity phenotypes had a less costly SDA and shorter SDAdur but a higher SDApeak Feeding frequently had a lower and more consistent cost than consuming a single meal, but increased SDApeak These findings demonstrate that: (1) lionfish are robust physiological performers in terms of SDA and possibly aerobic scope at temperatures approaching their thermal maximum, (2) lionfish may consume more prey as oceans warm with climate change, and (3) metabolic phenotype and feeding frequency may be important mediators of feeding ecology in fish.
Collapse
Affiliation(s)
- S Clay Steell
- Fish Ecology and Conservation Physiology Lab, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Travis E Van Leeuwen
- The Cape Eleuthera Institute, Eleuthera, The Bahamas.,Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St John's, NL, Canada, A1C 5X1
| | - Jacob W Brownscombe
- Fish Ecology and Conservation Physiology Lab, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Lab, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|