1
|
Gao J, Cheng X, Wu X, Zou C, He B, Ma W. Integrated Microbiome and Metabolomics Analysis Reveals Altered Aggressive Behaviors in Broiler Chickens Showing Different Tonic Immobility. Animals (Basel) 2025; 15:601. [PMID: 40003084 PMCID: PMC11851396 DOI: 10.3390/ani15040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Tonic immobility (TI) serves as an indicator of innate stress response recovery in poultry. Broilers with different TI phenotypes exhibit varying levels of aggressive behavior, which can significantly impact their welfare. However, the influences of TI phenotypes on broiler aggression remain largely unexplored. In this study, broiler chickens were stratified into two distinct phenotypic groups based on the TI duration: short TI (STI) and long TI (LTI). The impacts of TI phenotypes on broiler aggression were investigated by analyzing cecal intestinal morphology, cecal bacteria, plasma metabolites, and corticosterone levels. Compared to LTI broilers, STI broilers showed significantly reduced plasma corticosterone (CORT) levels (p < 0.05) and a decreased frequency of aggressive behaviors, including dominant and subdominant types (p < 0.01). Histological analysis revealed that STI broilers have an increased duodenal villus height and villus-height-to-crypt-depth ratio (p < 0.01), a decreased jejunal crypt depth with an increased villus-height-to-crypt-depth ratio (p < 0.01), and a reduced ileal crypt depth and villus height (p < 0.01) compared to LTI broilers. 16S rDNA sequencing and Linear discriminant analysis effect size (LefSe) identified differential cecal bacterial abundance, notably in the genus cc115 belonging to Firmicutes. Specific microbiota in LTI broilers exhibited significant positive correlations with aggressive behavior and plasma corticosterone, while those in STI broilers showed significant negative correlations. Untargeted plasma metabolomics revealed 21 downregulated and 17 upregulated metabolites between TI phenotypes. Correlation analysis showed that the genus cc115 and 10 plasma metabolites were positively correlated with aggressive behavior, whereas 8 metabolites were negatively correlated. LTI broilers have higher plasma corticosterone content and more intense aggressive behavior than STI broilers. The distinct behavioral and physiological profiles observed in broilers with different TI phenotypes are strongly correlated with their specific gut microbiota and differential plasma metabolite profiles. The identified gut microbial signatures serve as key biomarkers for regulating aggressive behavior in broilers, while the differential plasma metabolites represent potential early indicators for detecting stress and behavioral issues in poultry farming.
Collapse
Affiliation(s)
- Jiang Gao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.G.); (X.C.); (X.W.); (C.Z.); (B.H.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxian Cheng
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.G.); (X.C.); (X.W.); (C.Z.); (B.H.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanfu Wu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.G.); (X.C.); (X.W.); (C.Z.); (B.H.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Cunzhi Zou
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.G.); (X.C.); (X.W.); (C.Z.); (B.H.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin He
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.G.); (X.C.); (X.W.); (C.Z.); (B.H.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.G.); (X.C.); (X.W.); (C.Z.); (B.H.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Yang H, Zhong J, Leng X, Wu J, Cheng P, Shen L, Wu J, Li P, Du H. Effectiveness assessment of using water environmental microHI to predict the health status of wild fish. Front Microbiol 2024; 14:1293342. [PMID: 38274749 PMCID: PMC10808811 DOI: 10.3389/fmicb.2023.1293342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Aquatic wildlife health assessment is critically important for aquatic wildlife conservation. However, the health assessment of aquatic wildlife (especially aquatic wild animals) is difficult and often accompanied by invasive survey activities and delayed observability. As there is growing evidence that aquatic environmental microbiota could impact the health status of aquatic animals by influencing their symbiotic microbiota, we propose a non-invasive method to monitor the health status of wild aquatic animals using the environmental microbiota health index (microHI). However, it is unknown whether this method is effective for different ecotype groups of aquatic wild animals. To answer this question, we took a case study in the middle Yangtze River and studied the water environmental microbiota and fish gut microbiota at the fish community level, population level, and ecotype level. The results showed that the gut microHI of the healthy group was higher than that of the unhealthy group at the community and population levels, and the overall gut microHI was positively correlated with the water environmental microHI, whereas the baseline gut microHI was species-specific. Integrating these variations in four ecotype groups (filter-feeding, scraper-feeding, omnivorous, and carnivorous), only the gut microHI of the carnivorous group positively correlated with water environmental microHI. Alcaligenaceae, Enterobacteriaceae, and Achromobacter were the most abundant groups with health-negative-impacting phenotypes, had high positive correlations between gut sample group and environment sample group, and had significantly higher abundance in unhealthy groups than in healthy groups of carnivorous, filter-feeding, and scraper-feeding ecotypes. Therefore, using water environmental microHI to indicate the health status of wild fish is effective at the community level, is effective just for carnivorous fish at the ecotype level. In the middle Yangtze River, Alcaligenaceae, Enterobacteriaceae (family level), and Achromobacter (genus level) were the key water environmental microbial groups that potentially impacted wild fish health status. Of course, more data and research that test the current hypothesis and conclusion are encouraged.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
3
|
Moradian H, Gabriel T, Barrau M, Roblin X, Paul S. New methods to unveil host-microbe interaction mechanisms along the microbiota-gut-brain-axis. Gut Microbes 2024; 16:2351520. [PMID: 38717832 PMCID: PMC11086032 DOI: 10.1080/19490976.2024.2351520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Links between the gut microbiota and human health have been supported throughout numerous studies, such as the development of neurological disease disorders. This link is referred to as the "microbiota-gut-brain axis" and is the focus of an emerging field of research. Microbial-derived metabolites and gut and neuro-immunological metabolites regulate this axis in health and many diseases. Indeed, assessing these signals, whether induced by microbial metabolites or neuro-immune mediators, could significantly increase our knowledge of the microbiota-gut-brain axis. However, this will require the development of appropriate techniques and potential models. Methods for studying the induced signals originating from the microbiota remain crucial in this field. This review discusses the methods and techniques available for studies of microbiota-gut-brain interactions. We highlight several much-debated elements of these methodologies, including the widely used in vivo and in vitro models, their implications, and perspectives in the field based on a systematic review of PubMed. Applications of various animal models (zebrafish, mouse, canine, rat, rabbit) to microbiota-gut-brain axis research with practical examples of in vitro methods and innovative approaches to studying gut-brain communications are highlighted. In particular, we extensively discuss the potential of "organ-on-a-chip" devices and their applications in this field. Overall, this review sheds light on the most widely used models and methods, guiding researchers in the rational choice of strategies for studies of microbiota-gut-brain interactions.
Collapse
Affiliation(s)
- Habibullah Moradian
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Saint-Etienne, France
| | - Tristan Gabriel
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Saint-Etienne, France
| | - Mathilde Barrau
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Xavier Roblin
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Stéphane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
4
|
Tiemann I, Becker S, Fournier J, Damiran D, Büscher W, Hillemacher S. Differences among domestic chicken breeds in tonic immobility responses as a measure of fearfulness. PeerJ 2023; 11:e14703. [PMID: 37033722 PMCID: PMC10081456 DOI: 10.7717/peerj.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 12/15/2022] [Indexed: 04/07/2023] Open
Abstract
Background One priority for animal welfare is for animals to experience less fear, especially during human contact. For domestic animals, breeds that are less fearful may provide genetic resources to develop strains with improved welfare due to lower susceptibility to fear. Genetic predispositions inherited in these breeds might reflect the large diversity of chicken breeds. The goal of the present study was to systematically test a diverse group of chicken breeds to search for breeds that experience less fear. Methods Nineteen chicken breeds from commercial hybrid lines, native layer-type, meat-type and dual-purpose breeds, ornamental breeds as well as bantam breeds were tested in a standardized tonic immobility (TI) test. Chickens were manually restrained on their back, and the time to first head movement and first leg movement, the duration of TI, as well as the number of attempts needed to induce TI were measured. Results The TI response differed among chicken breeds (p ≤ 0.001) for naïve, mature hens. The median number of attempts required to induce TI ranged from 1 to 2 and did not differ significantly among breeds. Median durations were much more variable, with Lohmann Brown showing shortest durations (6 s, 12 s, 58 s for time to first head movement, first leg movement and total duration of TI, respectively). In contrast, medians reached the maximum of 600 s for all three measures in German Creepers. Repeated tests on the same individuals did not affect attempts needed to induce TI nor TI durations. Breeds clustered into two main groups, with layer-type native breeds and ornamental breeds having longer TI durations, and bantam, dual-purpose and meat-type native breeds having shorter TI durations. Conclusions Our findings provide evidence for substantial variation of fearfulness among breeds. This variation could be linked to the intended use during the breed's specific history. Knowledge and quantitative measurement of these behavioural responses provide the opportunity to improve welfare through selection and future breeding.
Collapse
Affiliation(s)
- Inga Tiemann
- Institute of Agricultural Engineering, University of Bonn, Bonn, Germany
| | - Senta Becker
- Institute of Agricultural Engineering, University of Bonn, Bonn, Germany
| | - Jocelyn Fournier
- Department of Animal & Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Daalkhaijav Damiran
- Department of Animal & Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Wolfgang Büscher
- Institute of Agricultural Engineering, University of Bonn, Bonn, Germany
| | - Sonja Hillemacher
- Institute of Agricultural Engineering, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Dietz MW, Matson KD, Versteegh MA, van der Velde M, Parmentier HK, Arts JAJ, Salles JF, Tieleman BI. Gut microbiota of homing pigeons shows summer-winter variation under constant diet indicating a substantial effect of temperature. Anim Microbiome 2022; 4:64. [PMID: 36514126 PMCID: PMC9749179 DOI: 10.1186/s42523-022-00216-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gut microbiotas play a pivotal role in host physiology and behaviour, and may affect host life-history traits such as seasonal variation in host phenotypic state. Generally, seasonal gut microbiota variation is attributed to seasonal diet variation. However, seasonal temperature and day length variation may also drive gut microbiota variation. We investigated summer-winter differences in the gut bacterial community (GBC) in 14 homing pigeons living outdoors under a constant diet by collecting cloacal swabs in both seasons during two years. Because temperature effects may be mediated by host metabolism, we determined basal metabolic rate (BMR) and body mass. Immune competence is influenced by day length and has a close relationship with the GBC, and it may thus be a link between day length and gut microbiota. Therefore, we measured seven innate immune indices. We expected the GBC to show summer-winter differences and to correlate with metabolism and immune indices. RESULTS BMR, body mass, and two immune indices varied seasonally, other host factors did not. The GBC showed differences between seasons and sexes, and correlated with metabolism and immune indices. The most abundant genus (Lachnoclostridium 12, 12%) and associated higher taxa, were more abundant in winter, though not significantly at the phylum level, Firmicutes. Bacteroidetes were more abundant in summer. The Firmicutes:Bacteroidetes ratio tended to be higher in winter. The KEGG ortholog functions for fatty acid biosynthesis and linoleic acid metabolism (PICRUSt2) had increased abundances in winter. CONCLUSIONS The GBC of homing pigeons varied seasonally, even under a constant diet. The correlations between immune indices and the GBC did not involve consistently specific immune indices and included only one of the two immune indices that showed seasonal differences, suggesting that immune competence may be an unlikely link between day length and the GBC. The correlations between the GBC and metabolism indices, the higher Firmicutes:Bacteroidetes ratio in winter, and the resemblance of the summer-winter differences in the GBC with the general temperature effects on the GBC in the literature, suggest that temperature partly drove the summer-winter differences in the GBC in homing pigeons.
Collapse
Affiliation(s)
- Maurine W Dietz
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| | - Kevin D Matson
- Wildlife Ecology and Conservation, Environmental Science Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708PB, Wageningen, The Netherlands.
| | - Maaike A Versteegh
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Marco van der Velde
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Henk K Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Joop A J Arts
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Joana F Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| |
Collapse
|
6
|
Jadhav VV, Han J, Fasina Y, Harrison SH. Connecting gut microbiomes and short chain fatty acids with the serotonergic system and behavior in Gallus gallus and other avian species. Front Physiol 2022; 13:1035538. [PMID: 36406988 PMCID: PMC9667555 DOI: 10.3389/fphys.2022.1035538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
The chicken gastrointestinal tract has a diverse microbial community. There is increasing evidence for how this gut microbiome affects specific molecular pathways and the overall physiology, nervous system and behavior of the chicken host organism due to a growing number of studies investigating conditions such as host diet, antibiotics, probiotics, and germ-free and germ-reduced models. Systems-level investigations have revealed a network of microbiome-related interactions between the gut and state of health and behavior in chickens and other animals. While some microbial symbionts are crucial for maintaining stability and normal host physiology, there can also be dysbiosis, disruptions to nutrient flow, and other outcomes of dysregulation and disease. Likewise, alteration of the gut microbiome is found for chickens exhibiting differences in feather pecking (FP) behavior and this alteration is suspected to be responsible for behavioral change. In chickens and other organisms, serotonin is a chief neuromodulator that links gut microbes to the host brain as microbes modulate the serotonin secreted by the host's own intestinal enterochromaffin cells which can stimulate the central nervous system via the vagus nerve. A substantial part of the serotonergic network is conserved across birds and mammals. Broader investigations of multiple species and subsequent cross-comparisons may help to explore general functionality of this ancient system and its increasingly apparent central role in the gut-brain axis of vertebrates. Dysfunctional behavioral phenotypes from the serotonergic system moreover occur in both birds and mammals with, for example, FP in chickens and depression in humans. Recent studies of the intestine as a major site of serotonin synthesis have been identifying routes by which gut microbial metabolites regulate the chicken serotonergic system. This review in particular highlights the influence of gut microbial metabolite short chain fatty acids (SCFAs) on the serotonergic system. The role of SCFAs in physiological and brain disorders may be considerable because of their ability to cross intestinal as well as the blood-brain barriers, leading to influences on the serotonergic system via binding to receptors and epigenetic modulations. Examinations of these mechanisms may translate into a more general understanding of serotonergic system development within chickens and other avians.
Collapse
Affiliation(s)
- Vidya V. Jadhav
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Yewande Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| | - Scott H. Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| |
Collapse
|
7
|
de Jong IC, Schokker D, Gunnink H, van Wijhe M, Rebel JMJ. Early life environment affects behavior, welfare, gut microbiome composition, and diversity in broiler chickens. Front Vet Sci 2022; 9:977359. [PMID: 36213407 PMCID: PMC9534479 DOI: 10.3389/fvets.2022.977359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/16/2022] [Indexed: 12/11/2022] Open
Abstract
This study aimed to identify whether early-life conditions in broiler chickens could affect their behavior and welfare, and whether or not this was associated with an altered gut microbiome composition or diversity. Broilers were tested in a 2 x 2 factorial design with hatching conditions [home pen (OH) or at the hatchery (HH)] and enrichment (dark brooder (EE) or no brooder (NE) until 14 days of age) as factors (N = 6 per treatment combination). Microbiota composition was measured in the jejunum on days (d) 7, 14, and 35 and in pooled fecal samples on day 14. A novel environment test (NET) was performed on days 1 and 11, and the behavior was observed on days 6, 13, and 33. On day 35, composite asymmetry was determined and footpad dermatitis and hock burn were scored. In their home pen, HH showed more locomotion than OH (P = 0.05), and NE were sitting more and showed more comfort behavior than EE at all ages (P <0.001 and P = 0.001, respectively). On days 6 and 13 NE showed more eating and litter pecking while sitting, but on day 33 the opposite was found (age*enrichment: P = 0.05 and P <0.01, respectively). On days 1 and 11, HH showed more social reinstatement in the NET than OH, and EE showed more social reinstatement than NE (P <0.05). Composite asymmetry scores were lower for EE than NE (P <0.05). EE also had less footpad dermatitis and hock burn than NE (P <0.001). Within OH, NE had a more diverse fecal and jejunal microbiome compared to EE on day 14 (feces: observed richness: P = 0.052; jejunum: observed richness and Shannon: P <0.05); the principal component analysis (PCA) showed differences between NE and EE within both HH and OH in fecal samples on day 14, as well as significant differences in bacterial genera such as Lactobacillus and Lachnospiraceae (P <0.05). On day 35, PCA in jejunal samples only showed a trend (P = 0.068) for differences between NE vs. EE within the OH. In conclusion, these results suggest that especially the dark brooder affected the behavior and had a positive effect on welfare as well as affected the composition and diversity of the microbiome. Whether or not the behavior was modulated by the microbiome or vice versa remains to be investigated.
Collapse
Affiliation(s)
- Ingrid C. de Jong
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Ingrid C. de Jong
| | - Dirkjan Schokker
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Henk Gunnink
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Maudia van Wijhe
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Johanna M. J. Rebel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| |
Collapse
|
8
|
Utilizing the Gastrointestinal Microbiota to Modulate Cattle Health through the Microbiome-Gut-Organ Axes. Microorganisms 2022; 10:microorganisms10071391. [PMID: 35889109 PMCID: PMC9324549 DOI: 10.3390/microorganisms10071391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
The microorganisms inhabiting the gastrointestinal tract (GIT) of ruminants have a mutualistic relationship with the host that influences the efficiency and health of the ruminants. The GIT microbiota interacts with the host immune system to influence not only the GIT, but other organs in the body as well. The objective of this review is to highlight the importance of the role the gastrointestinal microbiota plays in modulating the health of a host through communication with different organs in the body through the microbiome-gut-organ axes. Among other things, the GIT microbiota produces metabolites for the host and prevents the colonization of pathogens. In order to prevent dysbiosis of the GIT microbiota, gut microbial therapies can be utilized to re-introduce beneficial bacteria and regain homeostasis within the rumen environment and promote gastrointestinal health. Additionally, controlling GIT dysbiosis can aid the immune system in preventing disfunction in other organ systems in the body through the microbiome-gut-brain axis, the microbiome-gut-lung axis, the microbiome-gut-mammary axis, and the microbiome-gut-reproductive axis.
Collapse
|
9
|
Bari MS, Kheravii SK, Bajagai YS, Wu SB, Keerqin C, Campbell DLM. Cecal Microbiota of Free-Range Hens Varied With Different Rearing Enrichments and Ranging Patterns. Front Microbiol 2022; 12:797396. [PMID: 35222302 PMCID: PMC8881003 DOI: 10.3389/fmicb.2021.797396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/27/2021] [Indexed: 01/04/2023] Open
Abstract
Free-range pullets are reared indoors but the adult hens can go outside which is a mismatch that may reduce adaptation in the laying environment. Rearing enrichments might enhance pullet development and adaptations to subsequent free-range housing with impact on behavior and health measures including gut microbiota. Adult free-range hens vary in range use which may also be associated with microbiota composition. A total of 1,700 Hy-Line Brown® chicks were reared indoors across 16 weeks with three enrichment treatment groups: “control” with standard litter housing, “novelty” with weekly changed novel objects, and “structural” with custom-designed perching structures in the pens. At 15 weeks, 45 pullet cecal contents were sampled before moving 1,386 pullets to the free-range housing system. At 25 weeks, range access commenced, and movements were tracked via radio-frequency identification technology. At 65 weeks, 91 hens were selected based on range use patterns (“indoor”: no ranging; “high outdoor”: daily ranging) across all rearing enrichment groups and cecal contents were collected for microbiota analysis via 16S rRNA amplicon sequencing at V3-V4 regions. The most common bacteria in pullets were unclassified Barnesiellaceae, Prevotella, Blautia and Clostridium and in hens Unclassified, Ruminococcus, unclassified Lachnospiraceae, unclassified Bacteroidales, unclassified Paraprevotellaceae YRC22, and Blautia. The microbial alpha diversity was not significant within the enrichment/ranging groups (pullets: P ≥ 0.17, hen rearing enrichment groups: P ≥ 0.06, hen ranging groups: P ≥ 0.54), but beta diversity significantly varied between these groups (pullets: P ≤ 0.002, hen rearing enrichment groups: P ≤ 0.001, hen ranging groups: P ≤ 0.008). Among the short-chain fatty acids (SCFAs), the propionic acid content was higher (P = 0.03) in the novelty group of pullets than the control group. There were no other significant differences in the SCFA contents between the rearing enrichment groups (all P ≥ 0.10), and the ranging groups (all P ≥ 0.17). Most of the genera identified were more abundant in the indoor than high outdoor hens. Overall, rearing enrichments affected the cecal microbiota diversity of both pullets and adult hens and was able to distinguish hens that remained inside compared with hens that ranging daily for several hours.
Collapse
Affiliation(s)
- Md Saiful Bari
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia
- Department of Dairy and Poultry Science, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- *Correspondence: Md Saiful Bari,
| | - Sarbast K. Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Yadav S. Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Chake Keerqin
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Dana L. M. Campbell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia
- Dana L. M. Campbell,
| |
Collapse
|
10
|
Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals (Basel) 2021; 12:ani12010093. [PMID: 35011199 PMCID: PMC8749645 DOI: 10.3390/ani12010093] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Farm animal health and welfare have been paid increasing concern in the world, which is generally assessed by the measurements of physical health, immune response, behavior, and physiological indicators, such as stress-related hormone, cortisone, and norepinephrine. Gut microbiota as a “forgotten organ” has been reported for its great influence on the host phenotypes through the immune, neural, and endocrine pathways to affect the host health and behavior. In addition, fecal microbiota transplantation as a novel approach is applied to regulating the composition and function of the recipient farm animals. In this review, we summarized recent studies that gut microbiota influenced health, immunity, behavior, and stress response, as well as the progress of fecal microbiota transplantation in farm animals. The review will provide new insights into the measurement of farm animal health and welfare concerning gut microbiota, and the implication of fecal microbiota transplantation to improve productivity, health, and welfare. Above all, this review suggests that gut microbiota is a promising field to evaluate and improve animal welfare. Abstract In the past few decades, farm animal health and welfare have been paid increasing concern worldwide. Farm animal health and welfare are generally assessed by the measurements of physical health, immune response, behavior, and physiological indicators. The gut microbiota has been reported to have a great influence on host phenotypes, possibly via the immune processes, neural functions, and endocrine pathways, thereby influencing host phenotypes. However, there are few reviews regarding farm animals’ health and welfare status concerning the gut microbiota. In this point of view, (1) we reviewed recent studies showing that gut microbiota (higher alpha diversity, beneficial composition, and positive functions) effectively influenced health characteristics, immunity, behaviors, and stress response in farm animals (such as pigs, chickens, and cows), which would provide a novel approach to measure and evaluate the health status and welfare of farm animals. In addition, fecal microbiota transplantation (FMT) as one of the methods can modulate the recipient individual’s gut microbiota to realize the expected phenotype. Further, (2) we highlighted the application of FMT on the improvement of the production performance, the reduction in disease and abnormal behavior, as well as the attenuation of stress in farm animals. It is concluded that the gut microbiota can be scientifically used to assess and improve the welfare of farm animals. Moreover, FMT may be a helpful strategy to reduce abnormal behavior and improve stress adaption, as well as the treatment of disease for farm animals. This review suggests that gut microbiota is a promising field to evaluate and improve animal welfare.
Collapse
|
11
|
Yan C, Xiao J, Li Z, Liu H, Zhao X, Liu J, Chen S, Zhao X. Exogenous Fecal Microbial Transplantation Alters Fearfulness, Intestinal Morphology, and Gut Microbiota in Broilers. Front Vet Sci 2021; 8:706987. [PMID: 34660756 PMCID: PMC8517117 DOI: 10.3389/fvets.2021.706987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
Fecal microbiota transplantation (FMT) documented transplanting a donor fecal sample to a receipt individual for a desired physiologic effect. However, whether the gut microbiota construction, intestinal maturation, and behavioral plasticity are modulated by FMT during the early life of broilers is waiting for verification. To evaluate the role of transfer of fecal microbiota from aged broilers donor (BD) to another individual, 96 birds were equally divided into a check (CK, control) group and a broiler recipient (BR) group. FMT was conducted daily from 5 to 12 days of age to determine the future impact on body weight, behavior, intestinal development, and gut microbiota. Results indicated that fearfulness in the CK group was higher than the BR group in both the behavioral tests (p < 0.05). The muscularis mucosa, thickness of muscle layer, and thickness of serous membrane layer in the BR group were higher compared with those of the CK group in the jejunum (p < 0.05). In the gut microbiota, Shannon diversity showed no difference, while beta diversity presented a difference in principal coordination analysis (PCoA) between the CK and BR groups. At the phylum level, the relative abundance of Lentisphaerae in the CK group was lower than the BR (p = 0.052) and BD (p = 0.054) groups. The relative abundance of Tenericutes in the BD group was higher than that in the CK and BR groups (p < 0.05). At the genus level, Megamonas in the CK group was higher than the BR (p = 0.06) and BD (p < 0.05) groups. In the BR group, the functional capabilities of microbial communities analyzed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were increased in the glutamatergic synapse and N-glycan biosynthesis pathways in comparison with the CK and BD groups (p < 0.05). Some characteristics of gut microbiota in the donor chickens could be transferred to recipient chickens by FMT. In conclusion, exogenous FMT as a probiotic-like administration might be an efficient way to improve the physiology and behavior of chickens. Notably, the role of microbiota for various individuals and periods remains undefined, and the mechanism of microbiota on behaviors still needs further investigation.
Collapse
Affiliation(s)
- Chao Yan
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Jinlong Xiao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Zhiwei Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinjie Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Liu
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Siyu Chen
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xingbo Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
12
|
Borda-Molina D, Iffland H, Schmid M, Müller R, Schad S, Seifert J, Tetens J, Bessei W, Bennewitz J, Camarinha-Silva A. Gut Microbial Composition and Predicted Functions Are Not Associated with Feather Pecking and Antagonistic Behavior in Laying Hens. Life (Basel) 2021; 11:235. [PMID: 33809351 PMCID: PMC8001194 DOI: 10.3390/life11030235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Feather pecking is a well-known problem in layer flocks that causes animal welfare restrictions and contributes to economic losses. Birds' gut microbiota has been linked to feather pecking. This study aims to characterize the microbial communities of two laying hen lines divergently selected for high (HFP) and low (LFP) feather pecking and investigates if the microbiota is associated with feather pecking or agonistic behavior. METHODS Besides phenotyping for the behavioral traits, microbial communities from the digesta and mucosa of the ileum and caeca were investigated using target amplicon sequencing and functional predictions. Microbiability was estimated with a microbial mixed linear model. RESULTS Ileum digesta showed an increase in the abundance of the genus Lactobacillus in LFP, while Escherichia was abundant in HFP hens. In the caeca digesta and mucosa of the LFP line were more abundant Faecalibacterium and Blautia. Tryptophan metabolism and lysine degradation were higher in both digesta and mucosa of the HFP hens. Linear models revealed that the two lines differ significantly in all behavior traits. Microbiabilities were close to zero and not significant in both lines and for all traits. CONCLUSIONS Trait variation was not affected by the gut microbial composition in both selection lines.
Collapse
Affiliation(s)
- Daniel Borda-Molina
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Hanna Iffland
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Markus Schmid
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Regina Müller
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Svenja Schad
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Jens Tetens
- Department of Animal Sciences, University of Göttingen, 37073 Göttingen, Germany;
- Center for Integrated Breeding Research, University of Göttingen, 37075 Göttingen, Germany
| | - Werner Bessei
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| |
Collapse
|
13
|
Tahamtani FM, Riber AB. The effect of qualitative feed restriction in broiler breeder pullets on fear and motivation to explore. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
van der Eijk JAJ, Rodenburg TB, de Vries H, Kjaer JB, Smidt H, Naguib M, Kemp B, Lammers A. Early-life microbiota transplantation affects behavioural responses, serotonin and immune characteristics in chicken lines divergently selected on feather pecking. Sci Rep 2020; 10:2750. [PMID: 32066789 PMCID: PMC7026165 DOI: 10.1038/s41598-020-59125-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota influences host behaviour and physiology, such as anxiety, stress, serotonergic and immune systems. These behavioural and physiological characteristics are related to feather pecking (FP), a damaging behaviour in chickens that reduces animal welfare and productivity. Moreover, high FP (HFP) and low FP (LFP) lines differed in microbiota composition. However, it is unknown whether microbiota can influence the development of FP. For the first time, we identified the effects of microbiota transplantation on FP, and behavioural and physiological characteristics related to FP. HFP and LFP chicks received sterile saline (control), HFP or LFP microbiota transplantation during the first two weeks post-hatch. Microbiota transplantation influenced behavioural responses of the HFP line during treatment and of the LFP line after treatment. In both lines, homologous microbiota transplantation (i.e., receiving microbiota from their line) resulted in more active behavioural responses. Furthermore, microbiota transplantation influenced immune characteristics (natural antibodies) in both lines and peripheral serotonin in the LFP line. However, limited effects on microbiota composition, stress response (corticosterone) and FP were noted. Thus, early-life microbiota transplantation had immediate and long-term effects on behavioural responses and long-term effects on immune characteristics and peripheral serotonin; however, the effects were dependent on host genotype. Since early-life microbiota transplantation influenced behavioural and physiological characteristics that are related to FP, it could thus influence the development of FP later in life.
Collapse
Affiliation(s)
- Jerine A J van der Eijk
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands.
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands.
| | - T Bas Rodenburg
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
- Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Hugo de Vries
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Joergen B Kjaer
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Marc Naguib
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
15
|
Kraimi N, Dawkins M, Gebhardt-Henrich SG, Velge P, Rychlik I, Volf J, Creach P, Smith A, Colles F, Leterrier C. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol Behav 2019; 210:112658. [PMID: 31430443 DOI: 10.1016/j.physbeh.2019.112658] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
There is increasing evidence of a pivotal role of the gut microbiota (GUT-M) in key physiological functions in vertebrates. Many studies discuss functional implications of the GUT-M not only on immunity, growth, metabolism, but also on brain development and behavior. However, while the influence of the microbiota-gut-brain axis (MGBA) on behavior is documented in rodents and humans, data on farm animals are scarce. This review will first report the well-known influence of the MGBA on behavior in rodent and human and then describe its influence on emotion, memory, social and feeding behaviors in farm animals. This corpus of experiments suggests that a better understanding of the effects of the MGBA on behavior could have large implications in various fields of animal production. Specifically, animal welfare and health could be improved by selection, nutrition and management processes that take into account the role of the GUT-M in behavior.
Collapse
Affiliation(s)
- Narjis Kraimi
- INRA, CNRS, IFCE, Université de Tours, UMR 85, Centre Val de Loire, 37380 Nouzilly, France
| | - Marian Dawkins
- University of Oxford, Department of Zoology, OX1 3PS Oxford, United Kingdom
| | | | - Philippe Velge
- ISP, INRA, Université de Tours, UMR 1282, Centre Val de Loire, 37380 Nouzilly, France
| | - Ivan Rychlik
- Veterinary Research Institute, Brno 62100, Czech Republic
| | - Jiří Volf
- Veterinary Research Institute, Brno 62100, Czech Republic
| | | | - Adrian Smith
- University of Oxford, Department of Zoology, OX1 3PS Oxford, United Kingdom
| | - Frances Colles
- University of Oxford, Department of Zoology, OX1 3PS Oxford, United Kingdom
| | - Christine Leterrier
- INRA, CNRS, IFCE, Université de Tours, UMR 85, Centre Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|