1
|
Celiker E, Woodrow C, Guadayol Ò, Davranoglou LR, Schlepütz CM, Mortimer B, Taylor GK, Humphries S, Montealegre-Z F. Mechanical network equivalence between the katydid and mammalian inner ears. PLoS Comput Biol 2024; 20:e1012641. [PMID: 39671449 DOI: 10.1371/journal.pcbi.1012641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/27/2024] [Accepted: 11/14/2024] [Indexed: 12/15/2024] Open
Abstract
Mammalian hearing operates on three basic steps: 1) sound capturing, 2) impedance conversion, and 3) frequency analysis. While these canonical steps are vital for acoustic communication and survival in mammals, they are not unique to them. An equivalent mechanism has been described for katydids (Insecta), and it is unique to this group among invertebrates. The katydid inner ear resembles an uncoiled cochlea, and has a length less than 1 mm. Their inner ears contain the crista acustica, which holds tonotopically arranged sensory cells for frequency mapping via travelling waves. The crista acustica is located on a curved triangular surface formed by the dorsal wall of the ear canal. While empirical recordings show tonotopic vibrations in the katydid inner ear for frequency analysis, the biophysical mechanism leading to tonotopy remains elusive due to the small size and complexity of the hearing organ. In this study, robust numerical simulations are developed for an in silico investigation of this process. Simulations are based on the precise katydid inner ear geometry obtained by synchrotron-based micro-computed tomography, and empirically determined inner ear fluid properties for an accurate representation of the underlying mechanism. We demonstrate that the triangular structure below the hearing organ drives the tonotopy and travelling waves in the inner ear, and thus has an equivalent role to the mammalian basilar membrane. This reveals a stronger analogy between the inner ear basic mechanical networks of two organisms with ancient evolutionary differences and independent phylogenetic histories.
Collapse
Affiliation(s)
- Emine Celiker
- School of Engineering, University of Leicester, Leicester, United Kingdom
| | - Charlie Woodrow
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Òscar Guadayol
- Mediterranean Institute for Advanced Studies, IMEDEA (UIB-CSIC), Mallorca, Spain
| | | | | | - Beth Mortimer
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Graham K Taylor
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Stuart Humphries
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Fernando Montealegre-Z
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
2
|
Martinez V, Sillam-Dussès D, Devetak D, Lorent V, Podlesnik J. Antlion larvae localize long distant preys by a mechanism based on time difference. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:35-45. [PMID: 37261561 DOI: 10.1007/s00359-023-01641-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Pit building antlions Euroleon nostras have been submitted to artificial cues in order to delineate their faculty to localize a prey. Series of propagating pulses in sand have been created from an extended source made of 10 piezoelectric transducers equally spaced on a line and located at a large distance from the pit. The envelope of each pulse encompasses six oscillations at a carrier frequency of 1250 Hz and up to eight oscillations at 1666 Hz. In one set of experiments, the first wave front is followed by similar wave fronts and the antlions respond to the cue by throwing sand in the opposite direction of the wave front propagation direction. In another set of experiments, the first wave front is randomly spatially structured while the propagation of the wave fronts inside the envelope of the pulse are not. In that case, the antlions respond less to the cue by throwing sand, and when they do, their sand throwing is more randomly distributed in direction. The finding shows that the localization of vibration signal by antlions are based on the equivalent for hearing animals of interaural time difference in which the onset has more significance than the interaural phase difference.
Collapse
Affiliation(s)
- Vanessa Martinez
- Université Sorbonne Paris Nord, Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, UR 4443, 93430, Villetaneuse, France
- Université Sorbonne Paris Nord, Laboratoire de Physique des Lasers, LPL, CNRS, UMR 7538, 93430, Villetaneuse, France
| | - David Sillam-Dussès
- Université Sorbonne Paris Nord, Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, UR 4443, 93430, Villetaneuse, France
| | - Dušan Devetak
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Vincent Lorent
- Université Sorbonne Paris Nord, Laboratoire de Physique des Lasers, LPL, CNRS, UMR 7538, 93430, Villetaneuse, France.
| | - Jan Podlesnik
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| |
Collapse
|
3
|
Pantoja-Sánchez H, Leavell BC, Rendon B, de-Silva WAPP, Singh R, Zhou J, Menda G, Hoy RR, Miles RN, Sanscrainte ND, Bernal XE. Tiny spies: mosquito antennae are sensitive sensors for eavesdropping on frog calls. J Exp Biol 2023; 226:jeb245359. [PMID: 37942703 PMCID: PMC10753488 DOI: 10.1242/jeb.245359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Most mosquito and midge species use hearing during acoustic mating behaviors. For frog-biting species, however, hearing plays an important role beyond mating as females rely on anuran calls to obtain blood meals. Despite the extensive work examining hearing in mosquito species that use sound in mating contexts, our understanding of how mosquitoes hear frog calls is limited. Here, we directly investigated the mechanisms underlying detection of frog calls by a mosquito species specialized on eavesdropping on anuran mating signals: Uranotaenia lowii. Behavioral, biomechanical and neurophysiological analyses revealed that the antenna of this frog-biting species can detect frog calls by relying on neural and mechanical responses comparable to those of non-frog-biting species. Our findings show that in Ur. lowii, contrary to most species, males do not use sound for mating, but females use hearing to locate their anuran host. We also show that the response of the antennae of this frog-biting species resembles that of the antenna of species that use hearing for mating. Finally, we discuss our data considering how mosquitoes may have evolved the ability to tap into the communication system of frogs.
Collapse
Affiliation(s)
| | - Brian C. Leavell
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bianca Rendon
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 41163, USA
| | | | - Richa Singh
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jian Zhou
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, USA
| | - Gil Menda
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Ronald R. Hoy
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Ronald N. Miles
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, USA
| | - Neil D. Sanscrainte
- USDA Agricultural Research Service, Centre for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Ximena E. Bernal
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panamá
| |
Collapse
|
4
|
Morris M, Krysl P, Hildebrand J, Cranford T. Resonance of the tympanoperiotic complex of fin whales with implications for their low frequency hearing. PLoS One 2023; 18:e0288119. [PMID: 37819911 PMCID: PMC10566675 DOI: 10.1371/journal.pone.0288119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/20/2023] [Indexed: 10/13/2023] Open
Abstract
The tympanoperiotic complex (TPC) bones of the fin whale skull were studied using experimental measurements and simulation modeling to provide insight into the low frequency hearing of these animals. The study focused on measuring the sounds emitted by the left and right TPC bones when the bones were tapped at designated locations. Radiated sound was recorded by eight microphones arranged around the tympanic bulla. A finite element model was also created to simulate the natural mode vibrations of the TPC and ossicular chain, using a 3D mesh generated from a CT scan. The simulations produced mode shapes and frequencies for various Young's modulus and density values. The recorded sound amplitudes were compared with the normal component of the simulated displacement and it was found that the modes identified in the experiment most closely resembled those found with Young's modulus for stiff and flexible bone set to 25 and 5 GPa, respectively. The first twelve modes of vibration of the TPC had resonance frequencies between 100Hz and 6kHz. Many vibrational modes focused energy at the sigmoidal process, and therefore the ossicular chain. The resonance frequencies of the left and right TPC were offset, suggesting a mechanism for the animals to have improved hearing at a range of frequencies as well as a mechanism for directionality in their perception of sounds.
Collapse
Affiliation(s)
- Margaret Morris
- Scripps Institution of Oceanography, University of California, San Diego, California, United States of Ameirca
| | - Petr Krysl
- Department of Structural Engineering, University of California, San Diego, California, United States of Ameirca
| | - John Hildebrand
- Scripps Institution of Oceanography, University of California, San Diego, California, United States of Ameirca
| | - Ted Cranford
- Department of Biology, San Diego State University, San Diego, California, United States of Ameirca
| |
Collapse
|
5
|
Díaz-García L, Latham B, Reid A, Windmill J. Review of the applications of principles of insect hearing to microscale acoustic engineering challenges. BIOINSPIRATION & BIOMIMETICS 2023; 18:051002. [PMID: 37499689 DOI: 10.1088/1748-3190/aceb29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
When looking for novel, simple, and energy-efficient solutions to engineering problems, nature has proved to be an incredibly valuable source of inspiration. The development of acoustic sensors has been a prolific field for bioinspired solutions. With a diverse array of evolutionary approaches to the problem of hearing at small scales (some widely different to the traditional concept of 'ear'), insects in particular have served as a starting point for several designs. From locusts to moths, through crickets and mosquitoes among many others, the mechanisms found in nature to deal with small-scale acoustic detection and the engineering solutions they have inspired are reviewed. The present article is comprised of three main sections corresponding to the principal problems faced by insects, namely frequency discrimination, which is addressed by tonotopy, whether performed by a specific organ or directly on the tympana; directionality, with solutions including diverse adaptations to tympanal structure; and detection of weak signals, through what is known as active hearing. The three aforementioned problems concern tiny animals as much as human-manufactured microphones and have therefore been widely investigated. Even though bioinspired systems may not always provide perfect performance, they are sure to give us solutions with clever use of resources and minimal post-processing, being serious contenders for the best alternative depending on the requisites of the problem.
Collapse
Affiliation(s)
- Lara Díaz-García
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Brendan Latham
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Andrew Reid
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - James Windmill
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
6
|
Mikel-Stites MR, Salcedo MK, Socha JJ, Marek PE, Staples AE. Reconsidering tympanal-acoustic interactions leads to an improved model of auditory acuity in a parasitoid fly. BIOINSPIRATION & BIOMIMETICS 2023; 18:035007. [PMID: 36854192 DOI: 10.1088/1748-3190/acbffa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Although most binaural organisms locate sound sources using neurological structures to amplify the sounds they hear, some animals use mechanically coupled hearing organs instead. One of these animals, the parasitoid flyOrmia ochracea(O. ochracea), has astoundingly accurate sound localization abilities. It can locate objects in the azimuthal plane with a precision of 2°, equal to that of humans, despite an intertympanal distance of only 0.5 mm, which is less than1/100th of the wavelength of the sound emitted by the crickets that it parasitizes.O. ochraceaaccomplishes this feat via mechanically coupled tympana that interact with incoming acoustic pressure waves to amplify differences in the signals received at the two ears. In 1995, Mileset aldeveloped a model of hearing mechanics inO. ochraceathat represents the tympana as flat, front-facing prosternal membranes, though they lie on a convex surface at an angle from the flies' frontal and transverse planes. The model works well for incoming sound angles less than±30∘but suffers from reduced accuracy (up to 60% error) at higher angles compared to response data acquired fromO. ochraceaspecimens. Despite this limitation, it has been the basis for bio-inspired microphone designs for decades. Here, we present critical improvements to this classic hearing model based on information from three-dimensional reconstructions ofO. ochracea's tympanal organ. We identified the orientation of the tympana with respect to a frontal plane and the azimuthal angle segment between the tympana as morphological features essential to the flies' auditory acuity, and hypothesized a differentiated mechanical response to incoming sound on the ipsi- and contralateral sides that depend on these features. We incorporated spatially-varying model coefficients representing this asymmetric response, making a new quasi-two-dimensional (q2D) model. The q2D model has high accuracy (average errors of under 10%) for all incoming sound angles. This improved biomechanical model may inform the design of new microscale directional microphones and other small-scale acoustic sensor systems.
Collapse
Affiliation(s)
- Max R Mikel-Stites
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, United States of America
- Engineering Mechanics program, Virginia Tech, Blacksburg, VA 24061, United States of America
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Mary K Salcedo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Paul E Marek
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Anne E Staples
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, United States of America
- Engineering Mechanics program, Virginia Tech, Blacksburg, VA 24061, United States of America
| |
Collapse
|
7
|
League GP, Alfonso-Parra C, Pantoja-Sánchez H, Harrington LC. Acoustic-Related Mating Behavior in Tethered and Free-Flying Mosquitoes. Cold Spring Harb Protoc 2022; 2022:Pdb.top107667. [PMID: 35960619 DOI: 10.1101/pdb.top107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acoustics play an essential role in mosquito communication, particularly during courtship and mating. Mosquito mating occurs in flight and is coordinated by the perception of wingbeat tones. Flight tone frequencies have been shown to mediate sex recognition in Aedes, Anopheles, Culex, and Toxorhynchites genera and are thus a conserved feature of mating across the mosquito family (Culicidae). Upon recognizing a flying female, males respond phonotactically by lunging toward the female and initiating a precopulatory courtship flight interaction. During this interaction, males and females often harmonize their flight tones in a behavior known as harmonic convergence, and male acoustics display rapid frequency modulation. These acoustic phenomena have been characterized both in tethered and free-flying mosquitoes using similar audio recording and analysis methods. Further, the manipulation of mosquito acoustic-related mating behavior shows great promise as a tool for reproductive control strategies. In this brief methodological introduction, we provide an overview of the biological and technical concepts necessary for understanding the recording and analysis of mosquito mating acoustics.
Collapse
Affiliation(s)
- Garrett P League
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - Catalina Alfonso-Parra
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Antioquia, Colombia, 055413
- Max Planck Tandem Group in Mosquito Reproductive Biology
| | - Hoover Pantoja-Sánchez
- Departamento de Ingeniería Electrónica, SISTEMIC
- Programa de Estudio y Control de Enfermedades Tropicales, PECET, Universidad de Antioquia, Medellín, Antioquia, Colombia, 050010
| | - Laura C Harrington
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
8
|
Pantoja-Sánchez H, League GP, Harrington LC, Alfonso-Parra C. Recording and Analysis of Mosquito Acoustic-Related Mating Behavior. Cold Spring Harb Protoc 2022; 2022:Pdb.prot107989. [PMID: 35960617 DOI: 10.1101/pdb.prot107989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In mosquitoes, courtship and mating sounds are produced by the movement of the wings during flight. These sounds, usually referred to as flight tones, have been studied using tethered and free-flying individuals. Here, we describe a general approach for recording and analyzing mosquito acoustic-related mating behaviors that can be broadly adapted to a variety of experimental designs.
Collapse
Affiliation(s)
- Hoover Pantoja-Sánchez
- Departamento de Ingeniería Electrónica, SISTEMIC
- Programa de Estudio y Control de Enfermedades Tropicales, PECET, Universidad de Antioquia, Medellín, Antioquia, Colombia, 050010
| | - Garrett P League
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - Laura C Harrington
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - Catalina Alfonso-Parra
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Antioquia, Colombia, 055413
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Antioquia, Colombia, 050010
| |
Collapse
|
9
|
Pulver CA, Celiker E, Woodrow C, Geipel I, Soulsbury CD, Cullen DA, Rogers SM, Veitch D, Montealegre-Z F. Ear pinnae in a neotropical katydid (Orthoptera: Tettigoniidae) function as ultrasound guides for bat detection. eLife 2022; 11:77628. [PMID: 36170144 PMCID: PMC9519150 DOI: 10.7554/elife.77628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Early predator detection is a key component of the predator-prey arms race and has driven the evolution of multiple animal hearing systems. Katydids (Insecta) have sophisticated ears, each consisting of paired tympana on each foreleg that receive sound both externally, through the air, and internally via a narrowing ear canal running through the leg from an acoustic spiracle on the thorax. These ears are pressure-time difference receivers capable of sensitive and accurate directional hearing across a wide frequency range. Many katydid species have cuticular pinnae which form cavities around the outer tympanal surfaces, but their function is unknown. We investigated pinnal function in the katydid Copiphora gorgonensis by combining experimental biophysics and numerical modelling using 3D ear geometries. We found that the pinnae in C. gorgonensis do not assist in directional hearing for conspecific call frequencies, but instead act as ultrasound detectors. Pinnae induced large sound pressure gains (20–30 dB) that enhanced sound detection at high ultrasonic frequencies (>60 kHz), matching the echolocation range of co-occurring insectivorous gleaning bats. These findings were supported by behavioural and neural audiograms and pinnal cavity resonances from live specimens, and comparisons with the pinnal mechanics of sympatric katydid species, which together suggest that katydid pinnae primarily evolved for the enhanced detection of predatory bats.
Collapse
Affiliation(s)
- Christian A Pulver
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Emine Celiker
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Charlie Woodrow
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Inga Geipel
- Smithsonian Tropical Research Institute, Balboa, Panama.,CoSys Lab, Faculty of Applied Engineering, University of Antwerp, Antwerp, Belgium.,Flanders Make Strategic Research Centre, Lommel, Belgium
| | - Carl D Soulsbury
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Darron A Cullen
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Stephen M Rogers
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Daniel Veitch
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Fernando Montealegre-Z
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| |
Collapse
|
10
|
Insect antennae: Coupling blood pressure with cuticle deformation to control movement. Acta Biomater 2022; 147:102-119. [PMID: 35649508 DOI: 10.1016/j.actbio.2022.05.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/13/2023]
Abstract
Insect antennae are hollow, blood-filled fibers with complex shape. Muscles in the two basal segments control antennal movement, but the rest (flagellum) is muscle-free. The insect can controllably flex, twist, and maneuver its antennae laterally. To explain this behavior, we performed a comparative study of structural and tensile properties of the antennae of Periplaneta americana (American cockroach), Manduca sexta (Carolina hawkmoth), and Vanessa cardui (painted lady butterfly). These antennae demonstrate a range of distinguishable tensile properties, responding either as brittle or strain-adaptive fibers that stiffen when stretched. Scanning electron microscopy and high-speed imaging of antennal breakup during stretching revealed complex coupling of blood pressure and cuticle deformation in antennae. A generalized Lamé theory of solid mechanics was developed to include the force-driven deformation of blood-filled antennal tubes. We validated the theory against experiments with artificial antennae with no adjustable parameters. Blood pressure increased when the insect inflated its antennae or decreased below ambient pressure when an external tensile load was applied to the antenna. The pressure-cuticle coupling can be controlled through changes of the blood volume in the antennal lumen. In insects that do not fill the antennal lumen with blood, this blood pressure control is lacking, and the antennae react only by muscular activation. We suggest that the principles we have discovered for insect antennae apply to other appendages that share a leg-derived ancestry. Our work offers promising new applications for multifunctional fiber-based microfluidics that could transport fluids and be manipulated by the same fluid on demand. STATEMENT OF SIGNIFICANCE: Insect antennae are blood-filled, segmented fibers with muscles in the two basal segments. The long terminal segment is muscle-free but can be flexed. To explain this behavior, we examined structure-function relationships of antennae of cockroaches, hawkmoths, and butterflies. Hawkmoth antennae behaved as brittle fibers, but butterfly and cockroach antennae showed strain-adaptive behavior like fibers that stiffen when stretched. Videomicroscopy of antennal breakup during stretching revealed complex coupling of blood pressure and cuticle deformation. Our solid mechanics model explains this behavior. Because antennae are leg-derived appendages, we suggest that the principles we found apply to other appendages of leg-derived ancestry. Our work offers new applications for multifunctional fiber-based microfluidics that could transport fluids and be manipulated by the fluid on demand.
Collapse
|
11
|
Strauß J. The tracheal system in the stick insect prothorax and prothoracic legs: Homologies to Orthoptera and relations to mechanosensory functions. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 63:101074. [PMID: 34116374 DOI: 10.1016/j.asd.2021.101074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Arthropod respiration depends on the tracheal system running from spiracles at the body surface through the body and appendages. Here, three species of stick insects (Carausius morosus, Ramulus artemis, Sipyloidea sipylus) are investigated for the tracheae in the prothorax and foreleg. The origin of the tracheae from the mesothoracic spiracle that enter the foreleg is identified: five tracheae originate from the mesothoracic spiracle, of which two enter the foreleg (supraventral trachea, trachea pedalis anterior). These two tracheae run separately through the leg to the femur-tibia joint where they fuse, but in the proximal tibia split again into two tracheae. The leg tracheae in stick insects are homologous to those in Tettigoniidae (bushcrickets). Stick insects have two chordotonal organs in the proximal tibia (subgenual organ and distal organ) which locate dorsally of the leg trachea. The tracheal system shows no adaptation specific to the propagation of airborne sound, like enlarged spiracles or tracheal volumes. Tracheal vesicles form in the tibia proximally to the mechanosensory organs, but no tracheal sacks or expansions occur at the level of the sensory organs that could mediate the detection of airborne sound or amplify substrate vibrations transmitted in the hemolymph fluid. Rather, the morphological characteristics indicate a respiratory function.
Collapse
Affiliation(s)
- Johannes Strauß
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Gießen, Germany.
| |
Collapse
|
12
|
Neurophysiology goes wild: from exploring sensory coding in sound proof rooms to natural environments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:303-319. [PMID: 33835199 PMCID: PMC8079291 DOI: 10.1007/s00359-021-01482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 10/27/2022]
Abstract
To perform adaptive behaviours, animals have to establish a representation of the physical "outside" world. How these representations are created by sensory systems is a central issue in sensory physiology. This review addresses the history of experimental approaches toward ideas about sensory coding, using the relatively simple auditory system of acoustic insects. I will discuss the empirical evidence in support of Barlow's "efficient coding hypothesis", which argues that the coding properties of neurons undergo specific adaptations that allow insects to detect biologically important acoustic stimuli. This hypothesis opposes the view that the sensory systems of receivers are biased as a result of their phylogeny, which finally determine whether a sound stimulus elicits a behavioural response. Acoustic signals are often transmitted over considerable distances in complex physical environments with high noise levels, resulting in degradation of the temporal pattern of stimuli, unpredictable attenuation, reduced signal-to-noise levels, and degradation of cues used for sound localisation. Thus, a more naturalistic view of sensory coding must be taken, since the signals as broadcast by signallers are rarely equivalent to the effective stimuli encoded by the sensory system of receivers. The consequences of the environmental conditions for sensory coding are discussed.
Collapse
|
13
|
A narrow ear canal reduces sound velocity to create additional acoustic inputs in a microscale insect ear. Proc Natl Acad Sci U S A 2021; 118:2017281118. [PMID: 33658360 PMCID: PMC7958352 DOI: 10.1073/pnas.2017281118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The katydid tympanal ears have outer, middle, and inner ear components analogous to mammalian ears. Unlike mammals, each ear has two tympana exposed to sound both externally and internally, with a delayed internal version arriving via the gas-filled ear canal (EC). The two combined inputs in each ear play a significant role in directional hearing. Here, we demonstrate that the major factor causing the internal delay is the EC geometry. The EC bifurcates asymmetrically, producing two additional internal paths that impose different sound velocities for each tympanum. Therefore, various versions of the same signal reach the ears at various times, increasing the chance to pinpoint the sound source. Findings could inspire algorithms for accurate acoustic triangulation in detection sensors. Located in the forelegs, katydid ears are unique among arthropods in having outer, middle, and inner components, analogous to the mammalian ear. Unlike mammals, sound is received externally via two tympanic membranes in each ear and internally via a narrow ear canal (EC) derived from the respiratory tracheal system. Inside the EC, sound travels slower than in free air, causing temporal and pressure differences between external and internal inputs. The delay was suspected to arise as a consequence of the narrowing EC geometry. If true, a reduction in sound velocity should persist independently of the gas composition in the EC (e.g., air, CO2). Integrating laser Doppler vibrometry, microcomputed tomography, and numerical analysis on precise three-dimensional geometries of each experimental animal EC, we demonstrate that the narrowing radius of the EC is the main factor reducing sound velocity. Both experimental and numerical data also show that sound velocity is reduced further when excess CO2 fills the EC. Likewise, the EC bifurcates at the tympanal level (one branch for each tympanic membrane), creating two additional narrow internal sound paths and imposing different sound velocities for each tympanic membrane. Therefore, external and internal inputs total to four sound paths for each ear (only one for the human ear). Research paths and implication of findings in avian directional hearing are discussed.
Collapse
|