1
|
Juefeng Z, Fang L, Haiying Z, Liwei L, Jianming C. Integrated microbiome and metabolomic analysis of Spodoptera litura under Metarhizium flavoviride qc1401 stress. Int Microbiol 2025; 28:721-737. [PMID: 39145832 PMCID: PMC11991939 DOI: 10.1007/s10123-024-00574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Metarhizium spp. have emerged as an alternative to chemical pesticides for protecting crops from insect pest. Here, we investigated midgut microbial community and metabolites of Spodoptera litura at three different timepoints after infection with Metarhizium flavoviride. The innate immune system of S. litura was activated with levels of polyphenol oxidase, carboxylesterase, multifunctional oxidase, and glutathione S-transferase activity significantly increasing. Exposure to the fungal pathogen also altered bacterial abundance and diversity in host's midgut, and these changes varied depending on the time elapsed since exposure. We identified more operational taxonomic units in the treated samples as compared to the control samples at all tested time points. A total of 372 metabolites were identified, and 88, 149, and 142 differentially accumulated metabolites (DAMs) were identified between the treatment and control groups at 3 timepoints after treatment, respectively. Based on the changes of DAMs in response to M. flavoviride infection at different timepoints and significantly enriched KEGG pathways, we speculated that "tyrosine metabolism," "galactose metabolism," "ATP-binding cassette transporters," "neuroactive ligand-receptor interaction," "purine metabolism," "arginine and proline metabolism," "beta-alanine metabolism," "lysosome," and "carbon metabolism" may participate in the metabolic-level defense response. An integrated pathway-level analysis of the 16S-rDNA and metabolomic data illustrated the connections and interdependencies between the metabolic responses of S. litura and the midgut microorganisms to M. flavoviride infection. This work emphasizes the value of integrated analyses of insect-pathogen interactions, provides a framework for future studies of critical microorganisms and metabolic determinants of these interactions, establishes a theoretical basis for the sustainable use of M. flavoviride.
Collapse
Affiliation(s)
- Zhang Juefeng
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Li Fang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhong Haiying
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Liu Liwei
- Zhejiang Natural Museum, Hangzhou, Zhejiang, China
| | - Chen Jianming
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Arora AK, Kang DS. Efficacy and Fate of RNA Interference Molecules in the Green Pea Aphid, Acyrthosiphon pisum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70018. [PMID: 39726327 DOI: 10.1002/arch.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest. The application of these RNA biopesticides generally falls under two methods: foliar sprays and expression of RNAi constructs within transgenic plants. Here, we provide evidence supporting feasibility of using transgenic plants to deliver RNAi-based biopesticides against their aphid pests. Our findings suggest that, under the Cucumis melo galactinol synthase 1 promoter, the companion cells of transformed Arabidopsis thaliana plants express dsRNAs but not siRNAs at detectable levels. Further, oral application of either siRNAs or dsRNAs is equally effective in reducing the expression of transcripts of the integral membrane protein aquaporin 1 in Acyrthosiphon pisum pea aphids. We did not find any dsRNAs or siRNAs remaining in the insects or honeydew 48 h post-exposure, suggesting a low risk of contamination of these molecules beyond the target phloem-piercing insect pests.
Collapse
Affiliation(s)
- Arinder K Arora
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - David S Kang
- Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA
| |
Collapse
|
3
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
4
|
Pan Q, Yu SJ, Lei S, Zhang SH, Ding LL, Liu L, Li SC, Wang XF, Lou BH, Ran C. Bacterial Symbionts Contribute to Insecticide Susceptibility of Diaphorina citri via Changing the Expression Level of Host Detoxifying Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15164-15175. [PMID: 38938126 DOI: 10.1021/acs.jafc.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Insecticide susceptibility is mainly determined by the insect host, but symbiotic bacteria are also an important affecting factor. In this study, we investigate the relationship between the structure of gut bacterial symbionts and insecticide susceptibility in Diaphorina citri, the important carrier of Candidatus Liberibacter asiaticus (CLas), the causal agent of Huanglongbing (HLB). Our results indicated that antibiotic treatment significantly increased the susceptibility of D. citri to bifenthrin and thiamethoxam, and significantly decreased the relative abundance of Wolbachia and Profftella, enzyme activities of CarEs, and expression level of multiple CarE genes. The relative loads of Wolbachia and Profftella were positively correlated with DcitCCE13, DcitCCE14, DcitCCE15, and DcitCCE16. RNAi and prokaryotic expression revealed that DcitCCE15 is associated with bifenthrin metabolism. These results revealed that bacterial symbionts might regulate DcitCCE15 expression, which is involved in the susceptibility of D. citri to bifenthrin.
Collapse
Affiliation(s)
- Qi Pan
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Shi-Jiang Yu
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Shuang Lei
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Shao-Hui Zhang
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Li-Li Ding
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Liu Liu
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Si-Chen Li
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Xue-Feng Wang
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Bing-Hai Lou
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, Guangxi, China
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, Guangxi, China
| | - Chun Ran
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| |
Collapse
|
5
|
Wesseltoft JB, Danielsen CD, Andersen AM, de Jonge N, Olsen A, Rohde PD, Kristensen TN. Feeding Drosophila gut microbiomes from young and old flies modifies the microbiome. Sci Rep 2024; 14:7799. [PMID: 38565609 PMCID: PMC10987527 DOI: 10.1038/s41598-024-58500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024] Open
Abstract
It is becoming increasingly evident that the myriad of microbes in the gut, within cells and attached to body parts (or roots of plants), play crucial roles for the host. Although this has been known for decades, recent developments in molecular biology allow for expanded insight into the abundance and function of these microbes. Here we used the vinegar fly, Drosophila melanogaster, to investigate fitness measures across the lifetime of flies fed a suspension of gut microbes harvested from young or old flies, respectively. Our hypothesis was that flies constitutively enriched with a 'Young microbiome' would live longer and be more agile at old age (i.e. have increased healthspan) compared to flies enriched with an 'Old microbiome'. Three major take home messages came out of our study: (1) the gut microbiomes of young and old flies differ markedly; (2) feeding flies with Young and Old microbiomes altered the microbiome of recipient flies and (3) the two different microbial diets did not have any effect on locomotor activity nor lifespan of the recipient flies, contradicting our working hypothesis. Combined, these results provide novel insight into the interplay between hosts and their microbiomes and clearly highlight that the phenotypic effects of gut transplants and probiotics can be complex and unpredictable.
Collapse
Affiliation(s)
| | | | | | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
6
|
Mirzaei M, Younkin GC, Powell AF, Alani ML, Strickler SR, Jander G. Aphid Resistance Segregates Independently of Cardenolide and Glucosinolate Content in an Erysimum cheiranthoides (Wormseed Wallflower) F2 Population. PLANTS (BASEL, SWITZERLAND) 2024; 13:466. [PMID: 38498451 PMCID: PMC10893121 DOI: 10.3390/plants13040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/20/2024]
Abstract
Plants in the genus Erysimum produce both glucosinolates and cardenolides as a defense mechanism against herbivory. Two natural isolates of Erysimum cheiranthoides (wormseed wallflower) differed in their glucosinolate content, cardenolide content, and their resistance to Myzus persicae (green peach aphid), a broad generalist herbivore. Both classes of defensive metabolites were produced constitutively and were not further induced by aphid feeding. To investigate the relative importance of glucosinolates and cardenolides in E. cheiranthoides defense, we generated an improved genome assembly, genetic map, and segregating F2 population. The genotypic and phenotypic analysis of the F2 plants identified quantitative trait loci, which affected glucosinolates and cardenolides, but not the aphid resistance. The abundance of most glucosinolates and cardenolides was positively correlated in the F2 population, indicating that similar processes regulate their biosynthesis and accumulation. Aphid reproduction was positively correlated with glucosinolate content. Although the overall cardenolide content had little effect on aphid growth and survival, there was a negative correlation between aphid reproduction and helveticoside abundance. However, this variation in defensive metabolites could not explain the differences in aphid growth on the two parental lines, suggesting that processes other than the abundance of glucosinolates and cardenolides have a predominant effect on aphid resistance in E. cheiranthoides.
Collapse
Affiliation(s)
- Mahdieh Mirzaei
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA; (M.M.); (G.C.Y.); (A.F.P.); (M.L.A.)
| | - Gordon C. Younkin
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA; (M.M.); (G.C.Y.); (A.F.P.); (M.L.A.)
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Adrian F. Powell
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA; (M.M.); (G.C.Y.); (A.F.P.); (M.L.A.)
| | - Martin L. Alani
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA; (M.M.); (G.C.Y.); (A.F.P.); (M.L.A.)
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Susan R. Strickler
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL 60022, USA;
- Plant Biology and Conservation Program, Northwestern University, Evanston, IL 60208, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA; (M.M.); (G.C.Y.); (A.F.P.); (M.L.A.)
| |
Collapse
|
7
|
Guo Y, Zhao Y, Yang Y, Zhang Y, Li Y, Tian H, Liu TX, Li Z. Plants affect the horizontal transmission of a new densovirus infecting the green peach aphid Myzus persicae by modulating honeydew production. INSECT SCIENCE 2024; 31:236-254. [PMID: 37370252 DOI: 10.1111/1744-7917.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 06/29/2023]
Abstract
In a tritrophic context of plant-insect-entomopathogen, plants play important roles in modulating the interaction of insects and their pathogenic viruses. Currently, the influence of plants on the transmission of insect viruses has been mainly studied on baculoviruses and some RNA viruses, whereas the impact of plants on other insect viruses is largely unknown. Here, we identified a new densovirus infecting the green peach aphid Myzus persicae and tested whether and how host plants influence the transmission of the aphid densovirus. The complete single-stranded DNA genome of the virus, M. persicae densovirus 2, is 5 727 nt and contains inverted terminal repeats. Transcription and phylogenetic analysis indicated that the virus was distinct from other a few identified aphid densoviruses. The virus abundance was detected highly in the intestinal tract of aphids, compared with the lower level of it in other tissues including head, embryo, and epidermis. Cabbage and pepper plants had no obvious effect on the vertical transmission and saliva-mediated horizontal transmission of the virus. However, the honeydew-mediated horizontal transmission among aphids highly depended on host plants (65% on cabbages versus 17% on peppers). Although the virus concentration in the honeydew produced by aphids between 2 plants was similar, the honeydew production of the infected aphids reared on peppers was dramatically reduced. Taken together, our results provide evidence that plants influence the horizontal transmission of a new densovirus in an aphid population by modulating honeydew secretion of aphids, suggesting plants may manipulate the spread of an aphid-pathogenic densovirus in nature.
Collapse
Affiliation(s)
- Ya Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yani Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yahong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Honggang Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
- Institute of Entomology and Institute of Plant Health & Medicine, Guizhou University, Guiyang, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Mirzaei M, Younkin GC, Powell AF, Alani ML, Strickler SR, Jander G. Aphid resistance segregates independently of cardiac glycoside and glucosinolate content in an Erysimum cheiranthoides (wormseed wallflower) F2 population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575310. [PMID: 38293015 PMCID: PMC10827086 DOI: 10.1101/2024.01.11.575310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Plants in the genus Erysimum produce both glucosinolates and cardiac glycosides as defense against herbivory. Two natural isolates of Erysimum cheiranthoides (wormseed wallflower) differed in their glucosinolate content, cardiac glycoside content, and resistance to Myzus persicae (green peach aphid), a broad generalist herbivore. Both classes of defensive metabolites were produced constitutively and were not induced further by aphid feeding. To investigate the relative importance of glucosinolates and cardiac glycosides in E. cheiranthoides defense, we generated an improved genome assembly, genetic map, and segregating F2 population. Genotypic and phenotypic analysis of the F2 plants identified quantitative trait loci affecting glucosinolates and cardiac glycosides, but not aphid resistance. The abundance of most glucosinolates and cardiac glycosides was positively correlated in the F2 population, indicating that similar processes regulate their biosynthesis and accumulation. Aphid reproduction was positively correlated with glucosinolate content. Although overall cardiac glycoside content had little effect on aphid growth and survival, there was a negative correlation between aphid reproduction and helveticoside abundance. However, this variation in defensive metabolites could not explain the differences in aphid growth on the two parental lines, suggesting that processes other than the abundance of glucosinolates and cardiac glycosides have a predominant effect on aphid resistance in E. cheiranthoides.
Collapse
Affiliation(s)
- Mahdieh Mirzaei
- Boyce Thompson Institute, 533 Tower Road, Ithaca NY 14853, USA
| | - Gordon C. Younkin
- Boyce Thompson Institute, 533 Tower Road, Ithaca NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | | | - Martin L. Alani
- Boyce Thompson Institute, 533 Tower Road, Ithaca NY 14853, USA
- Present address: Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Susan R. Strickler
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL 60022, USA
- Plant Biology and Conservation Program, Northwestern University, Evanston, IL 60208, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca NY 14853, USA
| |
Collapse
|
9
|
Gao YF, Ren YJ, Chen JC, Cao LJ, Qiao GH, Zong SX, Hoffmann AA, Wei SJ, Yang Q. Effects of fungicides on fitness and Buchnera endosymbiont density in Aphis gossypii. PEST MANAGEMENT SCIENCE 2023; 79:4282-4289. [PMID: 37345405 DOI: 10.1002/ps.7625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Several agricultural fungicides are known to affect insect pests directly and these effects may be transgenerational and mediated through impacts on endosymbionts, providing opportunities for pest control. The cotton aphid Aphis gossypii is a polyphagous pest that can cause large crop yield losses. Here, we tested the effects of three fungicides, pyraclostrobin, trifloxystrobin and chlorothalonil, on the fitness and Buchnera endosymbiont of A. gossypii. RESULTS The formulations of trifloxystrobin and pyraclostrobin, and the active ingredient of pyraclostrobin produced dose-dependent mortality in A. gossypii, whereas there was no dose-dependent mortality for chlorothalonil. The formulations of trifloxystrobin and pyraclostrobin significantly reduced the lifespan and fecundity of A. gossypii, and increased the density of Buchnera in the parental generation but not the (unexposed) F1 . When the active ingredient of pyraclostrobin was tested, the lifespan of the F0 generation was also reduced, but the density of Buchnera was not, indicating that non-insecticidal chemicals in the fungicide formulation may affect the density of the endosymbiont of A. gossypii. There was no transgenerational effect of the active ingredient of pyraclostrobin on the lifespan and Buchnera of (unexposed) F1 . CONCLUSIONS Our results suggest that formulations of two strobilurin fungicides have immediate impacts on the fitness of A. gossypii, and chemicals in the formulation impact the density of the primary Buchnera endosymbiont. Our study highlights the potential effects of non-insecticidal chemicals of fungicides on aphid pests and their primary endosymbionts but direct connections between fitness and Buchnera densities remain unclear. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong-Fu Gao
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jing Ren
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guang-Hang Qiao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shi-Xiang Zong
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
| | - Ary A Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qiong Yang
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Jácome-Hernández A, Lamelas A, Desgarennes D, Huerta C, Cruz-Rosales M, Favila ME. Influence of phylogenetic, environmental, and behavioral factors on the gut bacterial community structure of dung beetles (Scarabaeidae: Scarabaeinae) in a Neotropical Biosphere Reserve. Front Microbiol 2023; 14:1224601. [PMID: 37731932 PMCID: PMC10508338 DOI: 10.3389/fmicb.2023.1224601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/10/2023] [Indexed: 09/22/2023] Open
Abstract
Gut bacteria help dung beetles metabolize nutrients contained and synthesize those unavailable in their food, depending on the ecological scenario in which they develop. However, less is known about the influence of environmental and behavioral factors on the taxonomic composition of bacterial gut communities in Scarabaeinae beetles. To address this research topic, we analyzed 13 tropical dung beetle species in the Los Tuxtlas Biosphere Reserve, Mexico, to understand how the beetle tribe, habitat, food preference, food relocation, and parental care influence the composition of gut bacterial communities. We found that the beetle tribe is the primary factor impacting the taxonomic composition of gut bacterial communities. Among them, Deltochilini displayed the highest variability in diversity due to the different combinations of habitat and food preferences among its species. On the other hand, the other tribes studied did not exhibit such variable combinations. Habitat emerged as the second most influential factor, with forest-dwelling beetles displaying higher diversity. This can be attributed to the heterogeneous environments within tropical forests, which offer a greater diversity of food resources. In contrast, grassland beetles, living in more homogeneous environments and relying on cow feces as their main food source, exhibited lower diversity. Our findings suggest a correlation between bacterial diversity and food resource availability in complex habitats, such as tropical forests, which offer a wider array of food sources compared to simpler environments like grasslands.
Collapse
Affiliation(s)
| | - Araceli Lamelas
- ADM-Biopolis, ADM, Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Xalapa, Mexico
| | - Carmen Huerta
- Red de Ecoetología, Instituto de Ecología A. C., Xalapa, Mexico
| | | | - Mario E. Favila
- Red de Ecoetología, Instituto de Ecología A. C., Xalapa, Mexico
| |
Collapse
|
11
|
Rupawate PS, Roylawar P, Khandagale K, Gawande S, Ade AB, Jaiswal DK, Borgave S. Role of gut symbionts of insect pests: A novel target for insect-pest control. Front Microbiol 2023; 14:1146390. [PMID: 36992933 PMCID: PMC10042327 DOI: 10.3389/fmicb.2023.1146390] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
Insects possess beneficial and nuisance values in the context of the agricultural sector and human life around them. An ensemble of gut symbionts assists insects to adapt to diverse and extreme environments and to occupy every available niche on earth. Microbial symbiosis helps host insects by supplementing necessary diet elements, providing protection from predators and parasitoids through camouflage, modulation of signaling pathway to attain homeostasis and to trigger immunity against pathogens, hijacking plant pathways to circumvent plant defence, acquiring the capability to degrade chemical pesticides, and degradation of harmful pesticides. Therefore, a microbial protection strategy can lead to overpopulation of insect pests, which can drastically reduce crop yield. Some studies have demonstrated increased insect mortality via the destruction of insect gut symbionts; through the use of antibiotics. The review summarizes various roles played by the gut microbiota of insect pests and some studies that have been conducted on pest control by targeting the symbionts. Manipulation or exploitation of the gut symbionts alters the growth and population of the host insects and is consequently a potential target for the development of better pest control strategies. Methods such as modulation of gut symbionts via CRISPR/Cas9, RNAi and the combining of IIT and SIT to increase the insect mortality are further discussed. In the ongoing insect pest management scenario, gut symbionts are proving to be the reliable, eco-friendly and novel approach in the integrated pest management.
Collapse
Affiliation(s)
- Pravara S. Rupawate
- Department of Zoology, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner, Maharashtra, India
| | - Praveen Roylawar
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner, Maharashtra, India
| | | | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research, Pune, India
| | - Avinash B. Ade
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Durgesh Kumar Jaiswal
- Department of Botany, Savitribai Phule Pune University, Pune, India
- *Correspondence: Durgesh Kumar Jaiswal,
| | - Seema Borgave
- Department of Zoology, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner, Maharashtra, India
- Seema Borgave,
| |
Collapse
|
12
|
Yorimoto S, Hattori M, Kondo M, Shigenobu S. Complex host/symbiont integration of a multi-partner symbiotic system in the eusocial aphid Ceratovacuna japonica. iScience 2022; 25:105478. [PMID: 36404929 PMCID: PMC9672956 DOI: 10.1016/j.isci.2022.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/11/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
Some hemipteran insects rely on multiple endosymbionts for essential nutrients. However, the evolution of multi-partner symbiotic systems is not well-established. Here, we report a co-obligate symbiosis in the eusocial aphid, Ceratovacuna japonica. 16S rRNA amplicon sequencing unveiled co-infection with a novel Arsenophonus sp. symbiont and Buchnera aphidicola, a common obligate endosymbiont in aphids. Both symbionts were housed within distinct bacteriocytes and were maternally transmitted. The Buchnera and Arsenophonus symbionts had streamlined genomes of 432,286 bp and 853,149 bp, respectively, and exhibited metabolic complementarity in riboflavin and peptidoglycan synthesis pathways. These anatomical and genomic properties were similar to those of independently evolved multi-partner symbiotic systems, such as Buchnera-Serratia in Lachninae and Periphyllus aphids, representing remarkable parallelism. Furthermore, symbiont populations and bacteriome morphology differed between reproductive and soldier castes. Our study provides the first example of co-obligate symbiosis in Hormaphidinae and gives insight into the evolutionary genetics of this complex system.
Collapse
Affiliation(s)
- Shunta Yorimoto
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Mitsuru Hattori
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Maki Kondo
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
13
|
Wang C, Li X, Jin D, Gong P, Li Q, Zhang Y, Li X, Deng Y, Cernava T, Zhu X. Implications of environmentally shaped microbial communities for insecticide resistance in Sitobion miscanthi. ENVIRONMENTAL RESEARCH 2022; 215:114409. [PMID: 36152886 DOI: 10.1016/j.envres.2022.114409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Insect-associated bacteria play an important role in the resistance to pesticides, yet bacterial community compositions in wild insect host populations and the environmental factors that shape them are mostly elusive. In this study, Sitobion miscanthi (Takahashi) populations were collected from major wheat growing regions in China. Following high-throughput sequencing of 16S rRNA gene fragments, association analyses were performed within the bacterial community associated with S. miscanthi, as well as with population resistance levels to four commonly used pesticides and different environmental factors. We found that bacterial community structures differed in various regions, and that the abundances of dominant bacteria such as Buchnera, Candidatus Regiella, Candidatus Hamiltonella showed high variations. The resistance of S. miscanthi to avermectin and bifenthrin was shown to decline with increasing bacterial diversity. Meanwhile, with the increase of bacterial network modularity, the resistance of S. miscanthi populations to imidacloprid, avermectin and bifenthrin also increased correspondingly. In addition, correlation analysis indicated that altitude and air pressure had the strongest impact on bacterial community diversity and relative abundance, followed by humidity, rainfall and temperature. Overall, insights into such complex interactions between bacteria and their insect hosts offer new directions for biological pest control.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Decai Jin
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Peipan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiuchi Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
14
|
Du L, Xue H, Hu F, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Luo J, Cui J, Gao X. Dynamics of symbiotic bacterial community in whole life stage of Harmonia axyridis (Coleoptera: Coccinellidae). Front Microbiol 2022; 13:1050329. [PMID: 36532478 PMCID: PMC9751998 DOI: 10.3389/fmicb.2022.1050329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 02/06/2024] Open
Abstract
INTRODUCTION Bacteria play critical roles in the reproduction, metabolism, physiology, and detoxification of their insect hosts. The ladybird beetle (Harmonia axyridis) harbors a myriad of endosymbiotic microbes. However, to date, little is known about how the microbial composition of H. axyridis varies throughout its life cycle. METHODS In this study, 16S rRNA amplicon sequencing and quantitative PCR were employed to investigate the diversity and dynamics of bacterial symbionts across the egg, larval, pupae, and adults stages of H. axyridis. RESULTS Higher bacterial community richness and diversity were observed in eggs, followed by those in adults and pupae. The community richness index differed significantly between second-instar larvae and other developmental stages. Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla. Staphylococcus, Enterobacter, Glutamicibacter, and Acinetobacter were the dominant bacteria genera; however, their relative abundances fluctuated across host developmental stages. Interestingly, the larval stage harbored high proportions of Firmicutes, whereas the adult microbial community largely consisted of Proteobacteria. DISCUSSION This study is the first to determine the symbiotic bacterial composition across key life stages of H. axyridis. These outcomes can foster the development of environmental risk assessments and novel biological control strategies.
Collapse
Affiliation(s)
- Lingen Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hui Xue
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fangmei Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jichao Ji
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Tavares CS, Bonning BC. Mpp51Aa1 toxicity to Diaphorina citri nymphs demonstrated using a new, long-term bioassay method. J Invertebr Pathol 2022; 195:107845. [DOI: 10.1016/j.jip.2022.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
|
16
|
Moriyama M, Fukatsu T. Host’s demand for essential amino acids is compensated by an extracellular bacterial symbiont in a hemipteran insect model. Front Physiol 2022; 13:1028409. [PMID: 36246139 PMCID: PMC9561257 DOI: 10.3389/fphys.2022.1028409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Plant sap is a nutritionally unbalanced diet that constitutes a challenge for insects that feed exclusively on it. Sap-sucking hemipteran insects generally overcome this challenge by harboring beneficial microorganisms in their specialized symbiotic organ, either intracellularly or extracellularly. Genomic information of these bacterial symbionts suggests that their primary role is to supply essential amino acids, but empirical evidence has been virtually limited to the intracellular symbiosis between aphids and Buchnera. Here we investigated the amino acid complementation by the extracellular symbiotic bacterium Ishikawaella harbored in the midgut symbiotic organ of the stinkbug Megacopta punctatissima. We evaluated amino acid compositions of the phloem sap of plants on which the insect feeds, as well as those of its hemolymph, whole body hydrolysate, and excreta. The results highlighted that the essential amino acids in the diet are apparently insufficient for the stinkbug development. Experimental symbiont removal caused severe shortfalls of some essential amino acids, including branched-chain and aromatic amino acids. In vitro culturing of the isolated symbiotic organ demonstrated that hemolymph-circulating metabolites, glutamine and trehalose, efficiently fuel the production of essential amino acids. Branched-chain amino acids and aromatic amino acids are the ones preferentially synthesized despite the symbiont’s synthetic capability of all essential amino acids. These results indicate that the symbiont-mediated amino acid compensation is quantitatively optimized in the stinkbug-Ishikawaella gut symbiotic association as in the aphid-Buchnera intracellular symbiotic association. The convergence of symbiont functions across distinct nutritional symbiotic systems provides insight into how host-symbiont interactions have been shaped over evolutionary time.
Collapse
Affiliation(s)
- Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- *Correspondence: Minoru Moriyama, ; Takema Fukatsu,
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Minoru Moriyama, ; Takema Fukatsu,
| |
Collapse
|
17
|
Kanyile SN, Engl T, Kaltenpoth M. Nutritional symbionts enhance structural defence against predation and fungal infection in a grain pest beetle. J Exp Biol 2022; 225:jeb243593. [PMID: 34854911 PMCID: PMC8778805 DOI: 10.1242/jeb.243593] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/26/2021] [Indexed: 01/18/2023]
Abstract
Many insects benefit from bacterial symbionts that provide essential nutrients and thereby extend the hosts' adaptive potential and their ability to cope with challenging environments. However, the implications of nutritional symbioses for the hosts' defence against natural enemies remain largely unstudied. Here, we investigated whether the cuticle-enhancing nutritional symbiosis of the saw-toothed grain beetle Oryzaephilus surinamensis confers protection against predation and fungal infection. We exposed age-defined symbiotic and symbiont-depleted (aposymbiotic) beetles to two antagonists that must actively penetrate the cuticle for a successful attack: wolf spiders (Lycosidae) and the fungal entomopathogen Beauveria bassiana. While young beetles suffered from high predation and fungal infection rates regardless of symbiont presence, symbiotic beetles were able to escape this period of vulnerability and reach high survival probabilities significantly faster than aposymbiotic beetles. To understand the mechanistic basis of these differences, we conducted a time-series analysis of cuticle development in symbiotic and aposymbiotic beetles by measuring cuticular melanisation and thickness. The results reveal that the symbionts accelerate their host's cuticle formation and thereby enable it to quickly reach a cuticle quality threshold that confers structural protection against predation and fungal infection. Considering the widespread occurrence of cuticle enhancement via symbiont-mediated tyrosine supplementation in beetles and other insects, our findings demonstrate how nutritional symbioses can have important ecological implications reaching beyond the immediate nutrient-provisioning benefits.
Collapse
Affiliation(s)
- Sthandiwe Nomthandazo Kanyile
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Tobias Engl
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
18
|
Metabolic Response of Aphid Cinara tujafilina to Cold Stress. BIOLOGY 2021; 10:biology10121288. [PMID: 34943203 PMCID: PMC8698524 DOI: 10.3390/biology10121288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/23/2023]
Abstract
Climate changes enable thermophilic insect species to expand their ranges, but also force them to adapt to unfavourable environmental conditions in new habitats. Focusing on Cinara tujafilina, we investigated the metabolic changes in the body of the aphid that enabled it to survive the low temperatures of winter. Using GC–MS analysis, differences in the chemical composition of the aphids in summer and winter were found. The metabolic changes were mainly related to the increased activity of the pathways of carbohydrate metabolism, such as glycolysis and the pentose phosphate pathway; a decrease in tricarboxylic acid cycle (TCA); accumulation of polyols; and increased levels of proline, tyrosine, and fatty acids.
Collapse
|
19
|
Zhou F, Gao Y, Liu M, Xu L, Wu X, Zhao X, Zhang X. Bacterial Inhibition on Beauveria bassiana Contributes to Microbiota Stability in Delia antiqua. Front Microbiol 2021; 12:710800. [PMID: 34690955 PMCID: PMC8527029 DOI: 10.3389/fmicb.2021.710800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/01/2021] [Indexed: 02/01/2023] Open
Abstract
Given the multiple roles of associated microbiota in improving animal host fitness in a microbial environment, increasing numbers of researchers have focused on how the associated microbiota keeps stable under complex environmental factors, especially some biological ones. Recent studies show that associated microbiota interacts with pathogenic microbes. However, whether and how the interaction would influence microbiota stability is limitedly investigated. Based on the interaction among Delia antiqua, its associated microbiota, and one pathogen Beauveria bassiana, the associated microbiota's response to the pathogen was determined in this study. Besides, the underlying mechanism for the response was also preliminarily investigated. Results showed that B. bassiana neither infect D. antiqua larvae nor did it colonize inside the associated microbiota, and both the bacterial and fungal microbiota kept stable during the interaction. Further experiments showed that bacterial microbiota almost completely inhibited conidial germination and mycelial growth of B. bassiana during its invasion, while fungal microbiota did not inhibit conidial germination and mycelial growth of B. bassiana. According to the above results, individual dominant bacterial species were isolated, and their inhibition on conidial germination and mycelial growth of B. bassiana was reconfirmed. Thus, these results indicated that bacterial instead of fungal microbiota blocked B. bassiana conidia and stabilized the associated microbiota of D. antiqua larvae during B. bassiana invasion. The findings deepened the understanding of the role of associated microbiota–pathogen microbe interaction in maintaining microbiota stability. They may also contribute to the development of novel biological control agents and pest management strategies.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Yunxiao Gao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Mei Liu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xiaoyan Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| |
Collapse
|
20
|
Zhang C, Wickham JD, Zhao L, Sun J. A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle. INSECT SCIENCE 2021; 28:1087-1102. [PMID: 32443173 DOI: 10.1111/1744-7917.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 05/17/2023]
Abstract
Symbiotic microbes play a crucial role in regulating parasite-host interactions; however, the role of bacterial associates in parasite-host interactions requires elucidation. In this study, we showed that, instead of introducing numerous symbiotic bacteria, dispersal of 4th-stage juvenile (JIV ) pinewood nematodes (PWNs), Bursaphelenchus xylophilus, only introduced few bacteria to its vector beetle, Monochamus alternatus (Ma). JIV showed weak binding ability to five dominant bacteria species isolated from the beetles' pupal chamber. This was especially the case for binding to the opportunistic pathogenic species Serratia marcescens; the nematodes' bacteria binding ability at this critical stage when it infiltrates Ma for dispersal was much weaker compared with Caenorhabditis elegans, Diplogasteroides asiaticus, and propagative-stage PWN. The associated bacterium S. marcescens, which was isolated from the beetles' pupal chambers, was unfavorable to Ma, because it caused a higher mortality rate upon injection into tracheae. In addition, S. marcescens in the tracheae caused more immune effector disorders compared with PWN alone. Ma_Galectin2 (MaGal2), a pattern-recognition receptor, was up-regulated following PWN loading. Recombinant MaGal2 protein formed aggregates with five dominant associated bacteria in vitro. Moreover, MaGal2 knockdown beetles had up-regulated prophenoloxidase gene expression, increased phenoloxidase activity, and decreased PWN loading. Our study revealed a previously unknown strategy for immune evasion of this plant pathogen inside its vector, and provides novel insights into the role of bacteria in parasite-host interactions.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Huo SM, Yan ZC, Zhang F, Chen L, Sun JT, Hoffmann AA, Hong XY. Comparative genome and transcriptome analyses reveal innate differences in response to host plants by two color forms of the two-spotted spider mite Tetranychus urticae. BMC Genomics 2021; 22:569. [PMID: 34301178 PMCID: PMC8306301 DOI: 10.1186/s12864-021-07894-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background The two-spotted spider mite, Tetranychus urticae, is a major agricultural pest with a cosmopolitan distribution, and its polyphagous habits provide a model for investigating herbivore-plant interactions. There are two body color forms of T. urticae with a different host preference. Comparative genomics and transcriptomics are used here to investigate differences in responses of the forms to host plants at the molecular level. Biological responses of the two forms sourced from multiple populations are also presented. Results We carried out principal component analysis of transcription changes in three red and three green T. urticae populations feeding on their original host (common bean), and three hosts to which they were transferred: cotton, cucumber and eggplant. There were differences among the forms in gene expression regardless of their host plant. In addition, different changes in gene expression were evident in the two forms when responding to the same host transfer. We further compared biological performance among populations of the two forms after feeding on each of the four hosts. Fecundity of 2-day-old adult females showed a consistent difference between the forms after feeding on bean. We produced a 90.1-Mb genome of the red form of T. urticae with scaffold N50 of 12.78 Mb. Transcriptional profiles of genes associated with saliva, digestion and detoxification showed form-dependent responses to the same host and these genes also showed host-specific expression effects. Conclusions Our research revealed that forms of T. urticae differ in host-determined transcription responses and that there is form-dependent plasticity in the transcriptomic responses. These differences may facilitate the extreme polyphagy shown by spider mites, although fitness differences on hosts are also influenced by population differences unrelated to color form. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07894-7.
Collapse
Affiliation(s)
- Shi-Mei Huo
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhi-Chao Yan
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Feng Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
22
|
Michell CT, Nyman T. Microbiomes of willow-galling sawflies: effects of host plant, gall type, and phylogeny on community structure and function. Genome 2021; 64:615-626. [PMID: 33825503 DOI: 10.1139/gen-2020-0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
While free-living herbivorous insects are thought to harbor microbial communities composed of transient bacteria derived from their diet, recent studies indicate that insects that induce galls on plants may be involved in more intimate host-microbe relationships. We used 16S rDNA metabarcoding to survey larval microbiomes of 20 nematine sawfly species that induce bud or leaf galls on 13 Salix species. The 391 amplicon sequence variants (ASVs) detected represented 69 bacterial genera in six phyla. Multi-variate statistical analyses showed that the structure of larval microbiomes is influenced by willow host species as well as by gall type. Nevertheless, a "core" microbiome composed of 58 ASVs is shared widely across the focal galler species. Within the core community, the presence of many abundant, related ASVs representing multiple distantly related bacterial taxa is reflected as a statistically significant effect of bacterial phylogeny on galler-microbe associations. Members of the core community have a variety of inferred functions, including degradation of phenolic compounds, nutrient supplementation, and production of plant hormones. Hence, our results support suggestions of intimate and diverse interactions between galling insects and microbes and add to a growing body of evidence that microbes may play a role in the induction of insect galls on plants.
Collapse
Affiliation(s)
- Craig T Michell
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| |
Collapse
|
23
|
Arora AK, Chung SH, Douglas AE. Non-Target Effects of dsRNA Molecules in Hemipteran Insects. Genes (Basel) 2021; 12:genes12030407. [PMID: 33809132 PMCID: PMC8000911 DOI: 10.3390/genes12030407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Insect pest control by RNA interference (RNAi)-mediated gene expression knockdown can be undermined by many factors, including small sequence differences between double-stranded RNA (dsRNA) and the target gene. It can also be compromised by effects that are independent of the dsRNA sequence on non-target organisms (known as sequence-non-specific effects). This study investigated the species-specificity of RNAi in plant sap-feeding hemipteran pests. We first demonstrated sequence-non-specific suppression of aphid feeding by dsRNA at dietary concentrations ≥0.5 µg µL−1. Then we quantified the expression of NUC (nuclease) genes in insects administered homologous dsRNA (with perfect sequence identity to the target species) or heterologous dsRNA (generated against a related gene of non-identical sequence in a different insect species). For the aphids Acyrthosiphon pisum and Myzus persicae, significantly reduced NUC expression was obtained with the homologous but not heterologous dsRNA at 0.2 µg µL−1, despite high dsNUC sequence identity. Follow-up experiments demonstrated significantly reduced expression of NUC genes in the whitefly Bemisia tabaci and mealybug Planococcus maritimus administered homologous dsNUCs, but not heterologous aphid dsNUCs. Our demonstration of inefficient expression knockdown by heterologous dsRNA in these insects suggests that maximal dsRNA sequence identity is required for RNAi targeting of related pest species, and that heterologous dsRNAs at appropriate concentrations may not be a major risk to non-target sap-feeding hemipterans.
Collapse
Affiliation(s)
- Arinder K. Arora
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA; (S.H.C.); (A.E.D.)
- Correspondence:
| | - Seung Ho Chung
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA; (S.H.C.); (A.E.D.)
| | - Angela E. Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA; (S.H.C.); (A.E.D.)
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Blow F, Bueno E, Clark N, Zhu DT, Chung SH, Güllert S, Schmitz RA, Douglas AE. B-vitamin nutrition in the pea aphid-Buchnera symbiosis. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104092. [PMID: 32763248 DOI: 10.1016/j.jinsphys.2020.104092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 05/09/2023]
Abstract
Various insects that utilize vitamin-deficient diets derive a supplementary supply of these micronutrients from their symbiotic microorganisms. Here, we tested the inference from genome annotation that the symbiotic bacterium Buchnera aphidicola in the pea aphid Acyrthosiphon pisum provides the insect with vitamins B2 and B5 but no other B-vitamins. Contrary to expectation, aphid survival over five days of larval development on artificial diets individually lacking each B-vitamin not synthesized by Buchnera was not significantly reduced, despite significantly lower carcass B1, B3, B6 and B7 concentrations in the aphids on diets lacking each of these B-vitamins than on the vitamin-complete diet. Aphid survival was, however, significantly reduced on diet containing low concentrations (≤0.2 mM) or no pantothenate (B5). Complementary transcriptome analysis revealed low abundance of the sense-transcript, but high abundance of the antisense transcript, of the Buchnera gene panC encoding the enzyme mediating the terminal reaction in pantothenate synthesis. We hypothesize that metabolic constraints or antisense transcripts may reduce Buchnera-mediated production of pantothenate, resulting in poor aphid performance on pantothenate-free diets. The discrepancy between predictions from genome data and empirical data illustrates the need for physiological study to test functional inferences made from genome annotations.
Collapse
Affiliation(s)
- Frances Blow
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Eduardo Bueno
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Noah Clark
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Dan Tong Zhu
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Seung Ho Chung
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Simon Güllert
- Institute of General Microbiology, Christian-Albrechts University Kiel, Germany
| | - Ruth A Schmitz
- Institute of General Microbiology, Christian-Albrechts University Kiel, Germany
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
25
|
Liu F, Wickham JD, Cao Q, Lu M, Sun J. An invasive beetle-fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles. ISME JOURNAL 2020; 14:2829-2842. [PMID: 32814865 PMCID: PMC7784882 DOI: 10.1038/s41396-020-00740-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/05/2020] [Indexed: 11/09/2022]
Abstract
Mutualisms between symbiotic microbes and animals have been well documented, and nutritional relationships provide the foundation for maintaining beneficial associations. The well-studied mutualism between bark beetles and their fungi has become a classic model system in the study of symbioses. Despite the nutritional competition between bark beetles and beneficial fungi in the same niche due to poor nutritional feeding substrates, bark beetles still maintain mutualistic associations with beneficial fungi over time. The mechanism behind this phenomenon, however, remains largely unknown. Here, we demonstrated the bark beetle Dendroctonus valens LeConte relies on the symbiotic bacterial volatile ammonia, as a nitrogen source, to regulate carbohydrate metabolism of its mutualistic fungus Leptographium procerum to alleviate nutritional competition, thereby maintaining the stability of the bark beetle–fungus mutualism. Ammonia significantly reduces competition of L. procerum for carbon resources for D. valens larval growth and increases fungal growth. Using stable isotope analysis, we show the fungus breakdown of phloem starch into d-glucose by switching on amylase genes only in the presence of ammonia. Deletion of amylase genes interferes with the conversion of starch to glucose. The acceleration of carbohydrate consumption and the conversion of starch into glucose benefit this invasive beetle–fungus complex. The nutrient consumption–compensation strategy mediated by tripartite beetle–fungus–bacterium aids the maintenance of this invasive mutualism under limited nutritional conditions, exacerbating its invasiveness with this competitive nutritional edge.
Collapse
Affiliation(s)
- Fanghua Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qingjie Cao
- College of Forestry, Hebei Agricultural University, 071000, Baoding, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,State Key Laboratory of Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
26
|
Yoon JS, Tian HG, McMullen JG, Chung SH, Douglas AE. Candidate genetic determinants of intraspecific variation in pea aphid susceptibility to RNA interference. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103408. [PMID: 32446747 DOI: 10.1016/j.ibmb.2020.103408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) plays a key role in insect defense against viruses and transposable elements, and it is being applied as an experimental tool and for insect pest control. However, RNAi efficiency is highly variable for some insects, notably the pea aphid Acyrthosiphon pisum. In this study, we used natural variation in RNAi susceptibility of pea aphids to identify genes that influence RNAi efficiency. Susceptibility to orally-delivered dsRNA against the gut aquaporin gene AQP1 (ds-AQP1) varied widely across a panel of 83 pea aphid genotypes, from zero to total mortality. Genome-wide association between aphid performance on ds-AQP1 supplemented diet and aphid genetic variants yielded 103 significantly associated single nucleotide polymorphisms (SNPs), including variants in 55 genes, at the 10-4 probability cut-off. When ds-AQP1 was co-administered with dsRNA against six candidate genes, aphid mortality was reduced for three (50%) genes: the orthologs of the Drosophila genes trachealess (CG42865), headcase (CG15532) and a gene coding a peritrophin-A domain (CG8192), indicating that these genes function to promote RNAi efficiency against AQP1 in the pea aphid. Aphid susceptibility (quantified as mortality) to ds-AQP1 was correlated with RNAi against a further gene, snakeskin with essential gut function unrelated to AQP1, for some but not all aphid genotypes tested, suggesting that the determinants of RNAi efficiency may be partly gene-specific. This study demonstrates high levels of natural variation in susceptibility to RNAi and demonstrates the value of harnessing this variation to identify genes influencing RNAi efficiency.
Collapse
Affiliation(s)
- June-Sun Yoon
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| | - Hong-Gang Tian
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| | - John G McMullen
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| | - Seung Ho Chung
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY14853, USA; Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853, USA.
| |
Collapse
|
27
|
Abstract
Beneficial microorganisms associated with animals derive their nutritional requirements entirely from the animal host, but the impact of these microorganisms on host metabolism is largely unknown. The focus of this study was the experimentally tractable tripartite symbiosis between the pea aphid Acyrthosiphon pisum, its obligate intracellular bacterial symbiont Buchnera, and the facultative bacterium Hamiltonella which is localized primarily to the aphid hemolymph (blood). Metabolome experiments on, first, multiple aphid genotypes that naturally bear or lack Hamiltonella and, second, one aphid genotype from which Hamiltonella was experimentally eliminated revealed no significant effects of Hamiltonella on aphid metabolite profiles, indicating that Hamiltonella does not cause major reconfiguration of host metabolism. However, the titer of just one metabolite, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), displayed near-significant enrichment in Hamiltonella-positive aphids in both metabolome experiments. AICAR is a by-product of biosynthesis of the essential amino acid histidine in Buchnera and, hence, an index of histidine biosynthetic rates, suggesting that Buchnera-mediated histidine production is elevated in Hamiltonella-bearing aphids. Consistent with this prediction, aphids fed on [13C]histidine yielded a significantly elevated 12C/13C ratio of histidine in Hamiltonella-bearing aphids, indicative of increased (∼25%) histidine synthesized de novo by Buchnera However, in silico analysis predicted an increase of only 0.8% in Buchnera histidine synthesis in Hamiltonella-bearing aphids. We hypothesize that Hamiltonella imposes increased host demand for histidine, possibly for heightened immune-related functions. These results demonstrate that facultative bacteria can alter the dynamics of host metabolic interactions with co-occurring microorganisms, even when the overall metabolic homeostasis of the host is not substantially perturbed.IMPORTANCE Although microbial colonization of the internal tissues of animals generally causes septicemia and death, various animals are persistently associated with benign or beneficial microorganisms in their blood or internal organs. The metabolic consequences of these persistent associations for the animal host are largely unknown. Our research on the facultative bacterium Hamiltonella, localized primarily to the hemolymph of pea aphids, demonstrated that although Hamiltonella imposed no major reconfiguration of the aphid metabolome, it did alter the metabolic relations between the aphid and its obligate intracellular symbiont, Buchnera Specifically, Buchnera produced more histidine in Hamiltonella-positive aphids to support both Hamiltonella demand for histidine and Hamiltonella-induced increase in host demand. This study demonstrates how microorganisms associated with internal tissues of animals can influence specific aspects of metabolic interactions between the animal host and co-occurring microorganisms.
Collapse
|
28
|
Noman MS, Liu L, Bai Z, Li Z. Tephritidae bacterial symbionts: potentials for pest management. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:1-14. [PMID: 31223102 DOI: 10.1017/s0007485319000403] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tephritidae is a large family that includes several fruit and vegetable pests. These organisms usually harbor a variegated bacterial community in their digestive systems. Symbiotic associations of bacteria and fruit flies have been well-studied in the genera Anastrepha, Bactrocera, Ceratitis, and Rhagoletis. Molecular and culture-based techniques indicate that many genera of the Enterobacteriaceae family, especially the genera of Klebsiella, Enterobacter, Pectobacterium, Citrobacter, Erwinia, and Providencia constitute the most prevalent populations in the gut of fruit flies. The function of symbiotic bacteria provides a promising strategy for the biological control of insect pests. Gut bacteria can be used for controlling fruit fly through many ways, including attracting as odors, enhancing the success of sterile insect technique, declining the pesticide resistance, mass rearing of parasitoids and so on. New technology and recent research improved our knowledge of the gut bacteria diversity and function, which increased their potential for pest management. In this review, we discussed the diversity of bacteria in the economically important fruit fly and the use of these bacteria for controlling fruit fly populations. All the information is important for strengthening the future research of new strategies developed for insect pest control by the understanding of symbiotic relationships and multitrophic interactions between host plant and insects.
Collapse
Affiliation(s)
- M S Noman
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - L Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Z Bai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Z Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
29
|
Pers D, Hansen AK. The Effects of Different Diets and Transgenerational Stress on Acyrthosiphon pisum Development. INSECTS 2019; 10:E260. [PMID: 31438654 PMCID: PMC6780513 DOI: 10.3390/insects10090260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/29/2022]
Abstract
Despite the fact that sap-feeding hemipterans are major agricultural pests, little is known about the pea aphid's (Acyrthosiphon pisum) nymphal development, compared to other insect models. Given our limited understanding of A. pisum nymphal development and variability in the naming/timing of its developmental events between different environmental conditions and studies, here, we address developmental knowledge gaps by elucidating how diet impacts A. pisum nymphal development for the LSR1 strain when it develops on its universal host plant (Vicia faba), isolated leaves, and artificial diet. Moreover, we test how plant age and transgenerational stressors, such as overcrowding and low plant vigor, can affect nymphal development. We also validate a morphological method to quickly confirm the life stage of each nymphal instar within a mixed population. Overall, we found extremely high variation in the timing of developmental events and a significant delay in nymphal (~5-25-h/instar) and pre-reproductive adult (~40-h) development when reared on isolated leaves and artificial diets, compared to intact host plants. Also, delays in development were observed when reared on older host plants (~9-17-h/event, post 2nd instar) or when previous generations were exposed to overcrowding on host plants (~20-h delay in nymph laying) compared to controls.
Collapse
Affiliation(s)
- Daniel Pers
- Department of Entomology, University of California, Riverside, CA 92507, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, CA 92507, USA.
| |
Collapse
|
30
|
Bottom-up regulation of a tritrophic system by Beet yellows virus infection: consequences for aphid-parasitoid foraging behaviour and development. Oecologia 2019; 191:113-125. [PMID: 31342255 DOI: 10.1007/s00442-019-04467-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Effects of plants on herbivores can cascade up the food web and modulate the abundance of higher trophic levels. In agro-ecosystems, plant viruses can affect the interactions between crops, crop pests, and natural enemies. Little is known, however, about the effects of viruses on higher trophic levels, including parasitoids and their ability for pest regulation. We tested the hypothesis that a plant virus affects parasitoid foraging behaviour through cascading effects on higher trophic levels. We predicted that the semi-persistent Beet yellows virus (BYV) would influence plant (Beta vulgaris) quality, as well as aphid host (Aphis fabae) quality for a parasitoid Lysiphlebus fabarum. We determined amino acid and sugar content in healthy and infected plants (first trophic level), lipid content and body size of aphids (second trophic level) fed on both plants, as well as foraging behaviour and body size of parasitoids (third trophic level) that developed on aphids fed on both plants. Our results showed that virus infection increased sugars and decreased total amino acid content in B. vulgaris. We further observed an increase in aphid size without modification in host aphid quality (i.e., lipid content), and a slight effect on parasitoid behaviour through an increased number of antennal contacts with host aphids. Although the BYV virus clearly affected the first two trophic levels, it did not affect development or emergence of parasitoids. As the parasitoid L. fabarum does not seem to be affected by the virus, we discuss the possibility of using it for the development of targeted biological control against aphids.
Collapse
|
31
|
Microbial Communities in Different Developmental Stages of the Oriental Fruit Fly, Bactrocera dorsalis, Are Associated with Differentially Expressed Peptidoglycan Recognition Protein-Encoding Genes. Appl Environ Microbiol 2019; 85:AEM.00803-19. [PMID: 31028032 DOI: 10.1128/aem.00803-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 01/03/2023] Open
Abstract
The insect microbiota can change dramatically to enable adaptation of the host in different developmental stages and environments; however, little is known about how the host maintains its microbiota to achieve such adaptations. In this study, 16S rRNA sequencing revealed that the microorganisms in larvae and adults of the Oriental fruit fly, Bactrocera dorsalis, are primarily Gram-negative bacteria but that the major components in pupae are Gram-positive bacteria. Using suppression subtractive hybridization (SSH) and transcriptome analysis, we screened two specifically expressed genes encoding peptidoglycan recognition proteins (PGRP-LB and PGRP-SB1) and analyzed their relationship to B. dorsalis microbial communities. Knockdown of the PGRP-LB gene in larvae and adults led to increased ratios of Gram-positive bacteria; knockdown of the PGRP-SB1 gene in pupae led to increased ratios of Gram-negative bacteria. Our results suggest that maintenance of the microbiota in different developmental stages of B. dorsalis may be associated with the PGRP-LB and PGRP-SB1 genes.IMPORTANCE Microorganisms are ubiquitous in insects and have widespread impacts on multiple aspects of insect biology. However, the microorganisms present in insects can change dramatically in different developmental stages, and it is critical to maintain the appropriate microorganisms in specific host developmental stages. Therefore, analysis of the factors associated with the microbiota in specific development stages of the host is needed. In this study, we applied suppression subtractive hybridization (SSH) combined with transcriptome analysis to investigate whether the microbiota in development stages of the Oriental fruit fly, Bactrocera dorsalis, is associated with expression of PGRP genes. We found that two different PGRP genes were specifically expressed during development and that these genes may be associated with changes in microbial communities in different developmental stages of B. dorsalis.
Collapse
|
32
|
Effects of Endosymbiont Disruption on the Nutritional Dynamics of the Pea Aphid Acyrthosiphon pisum. INSECTS 2018; 9:insects9040161. [PMID: 30423824 PMCID: PMC6317143 DOI: 10.3390/insects9040161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 11/23/2022]
Abstract
Pea aphid (Acyrthosiphon pisum) is a worldwide pest that feeds exclusively on the phloem sap of numerous host plants. It harbours a well-known primary endosymbiont Buchneraaphidicola that helps to overcome the nutritional deficiency of a plant-based diet. However, how the Buchnera contributes to the nutritional and energy metabolism of its aphid host is unclear to date. In the current study, the function of Buchnera in relation to nutritional synthesis of pea aphid was investigated by disrupting the primary endosymbiont with an antibiotic rifampicin. Our findings revealed that the disruption of Buchnera led to infertility and higher loss in body mass of aphid hosts. Body length and width were also decreased significantly compared to healthy aphids. The detection of nutrition indicated that the quantity of proteins, soluble sugars, and glycogen in aposymbiotic pea aphids increased slowly with the growth of the aphid host. In comparison, the quantities of all the nutritional factors were significantly lower than those of symbiotic pea aphids, while the quantity of total lipid and neutral fat in aposymbiotic pea aphids were distinctly higher than those of symbiotic ones. Thus, we concluded that the significant reduction of the total amount of proteins, soluble sugars, and glycogen and the significant increase of neutral fats in aposymbiotic pea aphids were due to the disruption of Buchnera, which confirmed that the function of Buchnera is irreplaceable in the pea aphid.
Collapse
|
33
|
Chung SH, Jing X, Luo Y, Douglas AE. Targeting symbiosis-related insect genes by RNAi in the pea aphid-Buchnera symbiosis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 95:55-63. [PMID: 29526771 DOI: 10.1016/j.ibmb.2018.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 05/24/2023]
Abstract
The growth and reproduction of phloem sap-feeding insects requires the sustained function of intracellular bacteria localized in specialized cells known as bacteriocytes, giving the potential to target the bacterial symbiosis as a novel strategy for controlling sap-feeding insect pests. We focused on two genes in the pea aphid Acyrthosiphon pisum, amiD and ldcA1, which were acquired horizontally from bacteria and have the annotated function to degrade immunogenic bacterial peptidoglycan. We hypothesized that AmiD and LdcA1 function to eliminate peptidoglycan fragments released by the bacterial symbiont Buchnera inhabiting the bacteriocytes, thereby protecting the Buchnera from host attack. Consistent with this hypothesis, expression of amiD and ldcA1 was enriched in bacteriocytes and varied significantly with aphid age, conforming to an inverse curvilinear relationship for amiD and negative linear relationship for ldcA1. RNAi against amiD and ldcA1 administered orally to larval pea aphids caused a significant reduction in Buchnera abundance and activity, accompanied by depressed aphid growth rates. For RNAi experiments, the aphids were co-administered with dsRNA against an aphid nuclease nuc1, protecting the dsRNA against non-specific degradation. These experiments demonstrate that selective suppression of insect symbiosis-related gene function can reduce the performance of an insect pest. Phylogenetic analysis identified amiD and ldcA1 in sequenced genomes of other aphid species, and amiD in related groups of phloem-feeding insects, offering the opportunity for specific controls against a range of insect pests.
Collapse
Affiliation(s)
- Seung Ho Chung
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Xiangfeng Jing
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Yuan Luo
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA; Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
34
|
Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat Commun 2018; 9:964. [PMID: 29511180 PMCID: PMC5840417 DOI: 10.1038/s41467-018-03357-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/07/2018] [Indexed: 11/08/2022] Open
Abstract
Nitrogen acquisition is a major challenge for herbivorous animals, and the repeated origins of herbivory across the ants have raised expectations that nutritional symbionts have shaped their diversification. Direct evidence for N provisioning by internally housed symbionts is rare in animals; among the ants, it has been documented for just one lineage. In this study we dissect functional contributions by bacteria from a conserved, multi-partite gut symbiosis in herbivorous Cephalotes ants through in vivo experiments, metagenomics, and in vitro assays. Gut bacteria recycle urea, and likely uric acid, using recycled N to synthesize essential amino acids that are acquired by hosts in substantial quantities. Specialized core symbionts of 17 studied Cephalotes species encode the pathways directing these activities, and several recycle N in vitro. These findings point to a highly efficient N economy, and a nutritional mutualism preserved for millions of years through the derived behaviors and gut anatomy of Cephalotes ants.
Collapse
|
35
|
Ponce-de-Leon M, Tamarit D, Calle-Espinosa J, Mori M, Latorre A, Montero F, Pereto J. Determinism and Contingency Shape Metabolic Complementation in an Endosymbiotic Consortium. Front Microbiol 2017; 8:2290. [PMID: 29213256 PMCID: PMC5702781 DOI: 10.3389/fmicb.2017.02290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/06/2017] [Indexed: 01/06/2023] Open
Abstract
Bacterial endosymbionts and their insect hosts establish an intimate metabolic relationship. Bacteria offer a variety of essential nutrients to their hosts, whereas insect cells provide the necessary sources of matter and energy to their tiny metabolic allies. These nutritional complementations sustain themselves on a diversity of metabolite exchanges between the cell host and the reduced yet highly specialized bacterial metabolism—which, for instance, overproduces a small set of essential amino acids and vitamins. A well-known case of metabolic complementation is provided by the cedar aphid Cinara cedri that harbors two co-primary endosymbionts, Buchnera aphidicola BCc and Ca. Serratia symbiotica SCc, and in which some metabolic pathways are partitioned between different partners. Here we present a genome-scale metabolic network (GEM) for the bacterial consortium from the cedar aphid iBSCc. The analysis of this GEM allows us the confirmation of cases of metabolic complementation previously described by genome analysis (i.e., tryptophan and biotin biosynthesis) and the redefinition of an event of metabolic pathway sharing between the two endosymbionts, namely the biosynthesis of tetrahydrofolate. In silico knock-out experiments with iBSCc showed that the consortium metabolism is a highly integrated yet fragile network. We also have explored the evolutionary pathways leading to the emergence of metabolic complementation between reduced metabolisms starting from individual, complete networks. Our results suggest that, during the establishment of metabolic complementation in endosymbionts, adaptive evolution is significant in the case of tryptophan biosynthesis, whereas vitamin production pathways seem to adopt suboptimal solutions.
Collapse
Affiliation(s)
- Miguel Ponce-de-Leon
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Daniel Tamarit
- Science for Life Laboratory, Department of Molecular Evolution, Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jorge Calle-Espinosa
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Matteo Mori
- Department of Physics, University of California, San Diego, La Jolla, CA, United States
| | - Amparo Latorre
- Departament de Genètica, Universitat de València, València, Spain.,Institute for Integrative Systems Biology, Universitat de València-CSIC, València, Spain
| | - Francisco Montero
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juli Pereto
- Institute for Integrative Systems Biology, Universitat de València-CSIC, València, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, València, Spain
| |
Collapse
|
36
|
He M, Jiang J, Cheng D. The plant pathogen Gluconobacter cerinus strain CDF1 is beneficial to the fruit fly Bactrocera dorsalis. AMB Express 2017; 7:207. [PMID: 29150728 PMCID: PMC5691827 DOI: 10.1186/s13568-017-0514-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
Plant pathogens can build relationships with insect hosts to complete their life cycles, and they often modify the behavior and development of hosts to improve their own fitness. In order to unravel whether some bacteria that can make fruit rot could have developed symbiotic interactions with Bactrocera dorsalis, we studied the symbiont bacteria profiles of the fly. We identified the bacterium Gluconobacter cerinus strain CDF1 from the ovaries and eggs of the oriental fruit fly B. dorsalis and the amount of Gluconobacter cerinus strain CDF1 increased significantly as the ovaries developed and in fruits on which non-sterile eggs were laid. Gluconobacter cerinus strain CDF1 addition to bananas fastens the rotting process and its addition to the eggs fastens their development/hatching rate. All in all, our data suggest that Gluconobacter cerinus strain CDF1 is beneficial to the fruit fly.
Collapse
|
37
|
Luo Y, Chen Q, Luan J, Chung SH, Van Eck J, Turgeon R, Douglas AE. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 88:21-29. [PMID: 28736300 PMCID: PMC5595799 DOI: 10.1016/j.ibmb.2017.07.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/15/2017] [Accepted: 07/19/2017] [Indexed: 05/10/2023]
Abstract
In planta RNAi against essential insect genes offers a promising route to control insect crop pests, but is constrained for many insect groups, notably phloem sap-feeding hemipterans, by poor RNAi efficacy. This study conducted on the phloem-feeding whitefly Bemisia tabaci reared on tomato plants investigated the causes of low RNAi efficacy and routes to ameliorate the problem. Experiments using tomato transgenic lines containing ds-GFP (green fluorescent protein) revealed that full-length dsRNA is phloem-mobile, ingested by the insects, and degraded in the insect. We identified B. tabaci homologs of nuclease genes (dsRNases) in other insects that degrade dsRNA, and demonstrated that degradation of ds-GFP in B. tabaci is suppressed by administration of dsRNA against these genes. dsRNA against the nuclease genes was co-administered with dsRNA against two insect genes, an aquaporin AQP1 and sucrase SUC1, that are predicted to protect B. tabaci against osmotic collapse. When dsRNA constructs for AQP1, SUC1, dsRNase1 and dsRNase2 were stacked, insect mortality was significantly elevated to 50% over 6 days on artificial diets. This effect was accompanied by significant reduction in gene expression of the target genes in surviving diet-fed insects. This study offers proof-of-principle that the efficacy of RNAi against insect pests can be enhanced by using dsRNA to suppress the activity of RNAi-suppressing nuclease genes, especially where multiple genes with related physiological function but different molecular function are targeted.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Qingguo Chen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Junbo Luan
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Seung Ho Chung
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - R Turgeon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
38
|
Abstract
Many aspects of an individual's biology derive from its interaction with symbiotic microbes, which further define many aspects of the ecology and evolution of the host species. The centrality of microbes in the function of individual organisms has given rise to the concept of the holobiont—that an individual's biology is best understood as a composite of the ‘host organism’ and symbionts within. This concept has been further elaborated to posit the holobiont as a unit of selection. In this review, I critically examine whether it is useful to consider holobionts as a unit of selection. I argue that microbial heredity—the direct passage of microbes from parent to offspring—is a key factor determining the degree to which the holobiont can usefully be considered a level of selection. Where direct vertical transmission (VT) is common, microbes form part of extended genomes whose dynamics can be modelled with simple population genetics, but that nevertheless have subtle quantitative distinctions from the classic mutation/selection model for nuclear genes. Without direct VT, the correlation between microbial fitness and host individual fitness erodes, and microbe fitness becomes associated with host survival only (rather than reproduction). Furthermore, turnover of microbes within a host may lessen associations between microbial fitness with host survival, and in polymicrobial communities, microbial fitness may derive largely from the ability to outcompete other microbes, to avoid host immune clearance and to minimize mortality through phage infection. These competing selection pressures make holobiont fitness a very minor consideration in determining symbiont evolution. Nevertheless, the importance of non-heritable microbes in organismal function is undoubted—and as such the evolutionary and ecological processes giving rise to variation and evolution of the microbes within and between host individuals represent a key research area in biology.
Collapse
Affiliation(s)
- Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
39
|
von Dohlen CD, Spaulding U, Patch KB, Weglarz KM, Foottit RG, Havill NP, Burke GR. Dynamic Acquisition and Loss of Dual-Obligate Symbionts in the Plant-Sap-Feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea). Front Microbiol 2017; 8:1037. [PMID: 28659877 PMCID: PMC5468457 DOI: 10.3389/fmicb.2017.01037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/23/2017] [Indexed: 11/29/2022] Open
Abstract
Sap-sucking insects typically engage in obligate relationships with symbiotic bacteria that play nutritional roles in synthesizing nutrients unavailable or in scarce supply from the plant-sap diets of their hosts. Adelgids are sap-sucking insects with complex life cycles that involve alternation between conifer tree species. While all adelgid species feed on spruce during the sexual phase of their life cycle, each adelgid species belongs to a major lineage that feeds on a distinct genus of conifers as their alternate host. Previous work on adelgid symbionts had discovered pairs of symbionts within each host species, and unusual diversity across the insect family, but left several open questions regarding the status of bacterial associates. Here, we explored the consistency of symbionts within and across adelgid lineages, and sought evidence for facultative vs. obligate symbiont status. Representative species were surveyed for symbionts using 16S ribosomal DNA gene sequencing, confirming that different symbiont pairs were consistently present within each major adelgid lineage. Several approaches were used to establish whether symbionts exhibited characteristics of long-term, obligate mutualists. Patterns of symbiont presence across adelgid species and diversification with host insects suggested obligate relationships. Fluorescent in situ hybridization and electron microscopy localized symbionts to bacteriocyte cells within the bacteriome of each species (with one previously known exception), and detection of symbionts in eggs indicated their vertical transmission. Common characteristics of long-term obligate symbionts, such as nucleotide compositional bias and pleomorphic symbiont cell shape were also observed. Superimposing microbial symbionts on the adelgid phylogeny revealed a dynamic pattern of symbiont gains and losses over a relatively short period of time compared to other symbionts associated with sap-sucking insects, with each adelgid species possessing an older, “senior” symbiont and a younger “junior” symbiont. A hypothesis relating adelgid life cycles to relaxed constraints on symbionts is proposed, with the degradation of senior symbionts and repeated acquisition of more junior symbionts creating opportunities for repeated colonization of new alternate-conifer hosts by adelgids.
Collapse
Affiliation(s)
| | - Usha Spaulding
- Department of Biology, Utah State University, LoganUT, United States
| | - Kistie B Patch
- Department of Biology, Utah State University, LoganUT, United States
| | - Kathryn M Weglarz
- Department of Biology, Utah State University, LoganUT, United States
| | | | - Nathan P Havill
- United States Forest Service, Northern Research Station, HamdenCT, United States
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, AthensGA, United States
| |
Collapse
|
40
|
Lu M, Hulcr J, Sun J. The Role of Symbiotic Microbes in Insect Invasions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032050] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China;
| | - Jiri Hulcr
- School of Forest Resources and Conservation and the Entomology and Nematology Department, University of Florida, Gainesville, Florida 32611
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China;
| |
Collapse
|
41
|
Ayayee PA, Larsen T, Sabree Z. Symbiotic essential amino acids provisioning in the American cockroach, Periplaneta americana (Linnaeus) under various dietary conditions. PeerJ 2016; 4:e2046. [PMID: 27231663 PMCID: PMC4878363 DOI: 10.7717/peerj.2046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/26/2016] [Indexed: 11/24/2022] Open
Abstract
Insect gut microbes have been shown to provide nutrients such as essential amino acids (EAAs) to their hosts. How this symbiotic nutrient provisioning tracks with the host’s demand is not well understood. In this study, we investigated microbial essential amino acid (EAA) provisioning in omnivorous American cockroaches (Periplaneta americana), fed low-quality (LQD) and comparatively higher-quality dog food (DF) diets using carbon stable isotope ratios of EAAs (δ13CEAA). We assessed non-dietary EAA input, quantified as isotopic offsets (Δ13C) between cockroach (δ13CCockroach EAA) and dietary (δ13CDietary EAA) EAAs, and subsequently determined biosynthetic origins of non-dietary EAAs in cockroaches using 13C-fingerprinting with dietary and representative bacterial and fungal δ13CEAA. Investigation of biosynthetic origins of de novo non-dietary EAAs indicated bacterial origins of EAA in cockroach appendage samples, and a mixture of fungal and bacterial EAA origins in gut filtrate samples for both LQD and DF-fed groups. We attribute the bacteria-derived EAAs in cockroach appendages to provisioning by the fat body residing obligate endosymbiont, Blattabacterium and gut-residing bacteria. The mixed signatures of gut filtrate samples are attributed to the presence of unassimilated dietary, as well as gut microbial (bacterial and fungal) EAAs. This study highlights the potential impacts of dietary quality on symbiotic EAA provisioning and the need for further studies investigating the interplay between host EAA demands, host dietary quality and symbiotic EAA provisioning in response to dietary sufficiency or deficiency.
Collapse
Affiliation(s)
- Paul A Ayayee
- Department of Evolution, Ecology and Organismal Biology, Ohio State University , USA
| | - Thomas Larsen
- Laboratory for Radiometric Dating and Stable Isotope Research, Christian-Albrechts-Universität Kiel , Kiel , Germany
| | - Zakee Sabree
- Department of Evolution, Ecology and Organismal Biology, Ohio State University , USA
| |
Collapse
|
42
|
Nachappa P, Culkin CT, Saya PM, Han J, Nalam VJ. Water Stress Modulates Soybean Aphid Performance, Feeding Behavior, and Virus Transmission in Soybean. FRONTIERS IN PLANT SCIENCE 2016; 7:552. [PMID: 27200027 PMCID: PMC4847208 DOI: 10.3389/fpls.2016.00552] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/11/2016] [Indexed: 05/21/2023]
Abstract
Little is known about how water stress including drought and flooding modifies the ability of plants to resist simultaneous attack by insect feeding and transmission of insect-vectored pathogen. We analyzed insect population growth, feeding behaviors, virus transmission, and plant amino acid profiles and defense gene expression to characterize mechanisms underlying the interaction between water stress, soybean aphid and aphid-transmitted, Soybean mosaic virus, on soybean plants. Population growth of non-viruliferous aphids was reduced under drought stress and saturation, likely because the aphids spent less time feeding from the sieve element on these plants compared to well-watered plants. Water stress did not impact population growth of viruliferous aphids. However, virus incidence and transmission rate was lowest under drought stress and highest under saturated conditions since viruliferous aphids took the greatest amount time to puncture cells and transmit the virus under saturated conditions and lowest time under drought stress. Petiole exudates from drought-stressed plants had the highest level of total free amino acids including asparagine and valine that are critical for aphid performance. Aphids did not benefit from improved phloem sap quality as indicated by their lower densities on drought-stressed plants. Saturation, on the other hand, resulted in low amino acid content compared to all of the other treatments. Drought and saturation had significant and opposing effects on expression of marker genes involved in abscisic acid (ABA) signaling. Drought alone significantly increased expression of ABA marker genes, which likely led to suppression of salicylic acid (SA)- and jasmonic acid (JA)-related genes. In contrast, ABA marker genes were down-regulated under saturation, while expression of SA- and JA-related genes was up-regulated. We propose that the apparent antagonism between ABA and SA/JA signaling pathways contributed to an increase in aphid densities under drought and their decrease under saturation. Taken together, our findings suggests that plant responses to water stress is complex involving changes in phloem amino acid composition and signaling pathways, which can impact aphid populations and virus transmission.
Collapse
Affiliation(s)
- Punya Nachappa
- Department of Biology, Indiana University-Purdue University Fort WayneFort Wayne, IN, USA
| | | | | | | | | |
Collapse
|
43
|
Nitrogen hurdle of host alternation for a polyphagous aphid and the associated changes of endosymbionts. Sci Rep 2016; 6:24781. [PMID: 27094934 PMCID: PMC4837378 DOI: 10.1038/srep24781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/31/2016] [Indexed: 02/02/2023] Open
Abstract
Low proportion of essential amino acids (EAAs) is one of the barriers for animals to use phloem as a diet. Endosymbionts with EAAs synthesis functions are considered crucial for ameliorating the lack of EAAs in insects’ diets. In this study, we transferred the insects from a cabbage-reared Myzus persicae population onto 3 new plant species including eggplant, tobacco and spinach. The performance on these plants was evaluated and the dynamics of endosymbionts in relation to this host alternation were recorded. We found that the EAAs ratio in phloem was largely determined by the concentrations of non-essential amino acids and the higher proportion of EAAs seemed to favor the population establishment on new plant species and the growth of primary endosymbionts inside insects, which indicated that nitrogen quality was an important factor for aphids to infest and spread on new plant hosts.
Collapse
|
44
|
Host Plant Determines the Population Size of an Obligate Symbiont (Buchnera aphidicola) in Aphids. Appl Environ Microbiol 2016; 82:2336-2346. [PMID: 26850304 DOI: 10.1128/aem.04131-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/02/2016] [Indexed: 12/24/2022] Open
Abstract
Buchnera aphidicolais an obligate endosymbiont that provides aphids with several essential nutrients. Though much is known about aphid-Buchnera interactions, the effect of the host plant on Buchnera population size remains unclear. Here we used quantitative PCR (qPCR) techniques to explore the effects of the host plant on Buchnera densities in the cotton-melon aphid, Aphis gossypii Buchneratiters were significantly higher in populations that had been reared on cucumber for over 10 years than in populations maintained on cotton for a similar length of time. Aphids collected in the wild from hibiscus and zucchini harbored more Buchnera symbionts than those collected from cucumber and cotton. The effect of aphid genotype on the population size of Buchnera depended on the host plant upon which they fed. When aphids from populations maintained on cucumber or cotton were transferred to novel host plants, host survival and Buchnera population size fluctuated markedly for the first two generations before becoming relatively stable in the third and later generations. Host plant extracts from cucumber, pumpkin, zucchini, and cowpea added to artificial diets led to a significant increase in Buchnera titers in the aphids from the population reared on cotton, while plant extracts from cotton and zucchini led to a decrease in Buchnera titers in the aphids reared on cucumber. Gossypol, a secondary metabolite from cotton, suppressed Buchnera populations in populations from both cotton and cucumber, while cucurbitacin from cucurbit plants led to higher densities. Together, the results suggest that host plants influence Buchnera population processes and that this may provide phenotypic plasticity in host plant use for clonal aphids.
Collapse
|
45
|
Li XY, Pietschke C, Fraune S, Altrock PM, Bosch TCG, Traulsen A. Which games are growing bacterial populations playing? J R Soc Interface 2016; 12:20150121. [PMID: 26236827 PMCID: PMC4528578 DOI: 10.1098/rsif.2015.0121] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microbial communities display complex population dynamics, both in frequency and absolute density. Evolutionary game theory provides a natural approach to analyse and model this complexity by studying the detailed interactions among players, including competition and conflict, cooperation and coexistence. Classic evolutionary game theory models typically assume constant population size, which often does not hold for microbial populations. Here, we explicitly take into account population growth with frequency-dependent growth parameters, as observed in our experimental system. We study the in vitro population dynamics of the two commensal bacteria (Curvibacter sp. (AEP1.3) and Duganella sp. (C1.2)) that synergistically protect the metazoan host Hydra vulgaris (AEP) from fungal infection. The frequency-dependent, nonlinear growth rates observed in our experiments indicate that the interactions among bacteria in co-culture are beyond the simple case of direct competition or, equivalently, pairwise games. This is in agreement with the synergistic effect of anti-fungal activity observed in vivo. Our analysis provides new insight into the minimal degree of complexity needed to appropriately understand and predict coexistence or extinction events in this kind of microbial community dynamics. Our approach extends the understanding of microbial communities and points to novel experiments.
Collapse
Affiliation(s)
- Xiang-Yi Li
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemannstraße 2, 24306 Plön, Germany
| | - Cleo Pietschke
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemannstraße 2, 24306 Plön, Germany
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Sebastian Fraune
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Philipp M. Altrock
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | - Thomas C. G. Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemannstraße 2, 24306 Plön, Germany
- e-mail:
| |
Collapse
|
46
|
Russell CW, Poliakov A, Haribal M, Jander G, van Wijk KJ, Douglas AE. Matching the supply of bacterial nutrients to the nutritional demand of the animal host. Proc Biol Sci 2015; 281:20141163. [PMID: 25080346 DOI: 10.1098/rspb.2014.1163] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Various animals derive nutrients from symbiotic microorganisms with much-reduced genomes, but it is unknown whether, and how, the supply of these nutrients is regulated. Here, we demonstrate that the production of essential amino acids (EAAs) by the bacterium Buchnera aphidicola in the pea aphid Acyrthosiphon pisum is elevated when aphids are reared on diets from which that EAA are omitted, demonstrating that Buchnera scale EAA production to host demand. Quantitative proteomics of bacteriocytes (host cells bearing Buchnera) revealed that these metabolic changes are not accompanied by significant change in Buchnera or host proteins, suggesting that EAA production is regulated post-translationally. Bacteriocytes in aphids reared on diet lacking the EAA methionine had elevated concentrations of both methionine and the precursor cystathionine, indicating that methionine production is promoted by precursor supply and is not subject to feedback inhibition by methionine. Furthermore, methionine production by isolated Buchnera increased with increasing cystathionine concentration. We propose that Buchnera metabolism is poised for EAA production at certain maximal rates, and the realized release rate is determined by precursor supply from the host. The incidence of host regulation of symbiont nutritional function via supply of key nutritional inputs in other symbioses remains to be investigated.
Collapse
Affiliation(s)
- Calum W Russell
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Anton Poliakov
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Meena Haribal
- Boyce Thompson Institute, Tower Road, Ithaca, NY 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, Tower Road, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
47
|
Abstract
All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.
Collapse
|
48
|
Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance. ISME JOURNAL 2014; 9:1543-56. [PMID: 25514534 DOI: 10.1038/ismej.2014.239] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 10/23/2014] [Accepted: 11/13/2014] [Indexed: 02/04/2023]
Abstract
Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection.
Collapse
|
49
|
Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci U S A 2013; 110:E3730-8. [PMID: 24003149 DOI: 10.1073/pnas.1304960110] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animals are colonized by coevolved bacterial communities, which contribute to the host's health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations.
Collapse
|
50
|
Microbial brokers of insect-plant interactions revisited. J Chem Ecol 2013; 39:952-61. [PMID: 23793897 DOI: 10.1007/s10886-013-0308-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/01/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Recent advances in sequencing methods have transformed the field of microbial ecology, making it possible to determine the composition and functional capabilities of uncultured microorganisms. These technologies have been instrumental in the recognition that resident microorganisms can have profound effects on the phenotype and fitness of their animal hosts by modulating the animal signaling networks that regulate growth, development, behavior, etc. Against this backdrop, this review assesses the impact of microorganisms on insect-plant interactions, in the context of the hypothesis that microorganisms are biochemical brokers of plant utilization by insects. There is now overwhelming evidence for a microbial role in insect utilization of certain plant diets with an extremely low or unbalanced nutrient content. Specifically, microorganisms enable insect utilization of plant sap by synthesizing essential amino acids. They also can broker insect utilization of plant products of extremely high lignocellulose content, by enzymatic breakdown of complex plant polysaccharides, nitrogen fixation, and sterol synthesis. However, the experimental evidence for microbial-mediated detoxification of plant allelochemicals is limited. The significance of microorganisms as brokers of plant utilization by insects is predicted to vary, possibly widely, as a result of potentially complex interactions between the composition of the microbiota and the diet and insect developmental age or genotype. For every insect species feeding on plant material, the role of resident microbiota as biochemical brokers of plant utilization is a testable hypothesis.
Collapse
|