1
|
Zhang B, Yu C, Xu Y, Huang Z, Cai Y, Li Y. Hepatopancreas immune response during different photoperiods in the Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108482. [PMID: 36503058 DOI: 10.1016/j.fsi.2022.108482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Photoperiod plays an important role in the growth, development, and metabolism of crustaceans. The growth and reproduction of crabs are closely related to the photoperiod. The hepatopancreas is an important source of innate immune molecules; however, hepatopancreatic patterns of gene expression depending on the photoperiod-which may underlie changes in immune mechanisms-remain unknown. To study the molecular basis of immune regulation in the Chinese mitten crab (Eriocheir sinensis) under different light conditions, a new generation of high-throughput Illumina sequencing technology was used, and functional genes associated with immune function in the hepatopancreas of this crab were explored via assembly of high-quality sequences, gene annotation, and classification. A total of 383,899,798 clean reads from the hepatopancreas of the normal group (12 h/12 h L:D), 387,936,676 clean reads from the continuous light group (24 h/0 h L:D), and 384,872,734 clean reads from the continuous darkness group (0 h/24 h L:D) were obtained. Compared with the normal group, 141, 152, 60, 87, 90, and 101 differentially expressed genes were identified in the groups exposed to continuous light for 2 days, continuous darkness for 2 days, continuous light for 4 days, continuous darkness for 4 days, continuous light for 6 days, and continuous darkness for 6 days, respectively. The results of this study revealed that under continuous light and dark conditions, the crabs were most affected by light on day 2, but the interference gradually decreased with time. We suggest that long-term light or dark treatment makes crabs adaptable to fluctuations in the photoperiod. The expression of genes associated with immune response patterns was found to change during different photoperiods. Prophenoloxidase (proPO) and serine proteinase (kazal-type serine proteinase inhibitor 1 and serine proteinase inhibitor-3) in the proPO-activating system were significantly upregulated in the 2-day continuous light group. Glutathione peroxidase 3 was significantly downregulated under continuous light exposure, while cyclooxygenase was upregulated in the continuous light and dark environments. These results provide insights into the molecular mechanism underlying the effects of the photoperiod on immune regulation and the physiological activity of E. sinensis.
Collapse
Affiliation(s)
- Baoli Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Changyue Yu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yingkai Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Ziwei Huang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yuqiao Cai
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China.
| |
Collapse
|
2
|
Kotsyuba E, Dyachuk V. Immunocytochemical Localization of Enzymes Involved in Dopamine, Serotonin, and Acetylcholine Synthesis in the Optic Neuropils and Neuroendocrine System of Eyestalks of Paralithodes camtschaticus. Front Neuroanat 2022; 16:844654. [PMID: 35464134 PMCID: PMC9024244 DOI: 10.3389/fnana.2022.844654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Identifying the neurotransmitters secreted by specific neurons in crustacean eyestalks is crucial to understanding their physiological roles. Here, we combined immunocytochemistry with confocal microscopy and identified the neurotransmitters dopamine (DA), serotonin (5-HT), and acetylcholine (ACh) in the optic neuropils and X-organ sinus gland (XO-SG) complex of the eyestalks of Paralithodes camtschaticus (red king crab). The distribution of Ach neurons was studied by choline acetyltransferase (ChAT) immunohistochemistry and compared with that of DA neurons examined in the same or adjacent sections by tyrosine hydroxylase (TH) immunohistochemistry. We detected 5-HT, TH, and ChAT in columnar, amacrine, and tangential neurons in the optic neuropils and established the presence of immunoreactive fibers and neurons in the terminal medulla in the XO region of the lateral protocerebrum. Additionally, we detected ChAT and 5-HT in the endogenous cells of the SG of P. camtschaticus for the first time. Furthermore, localization of 5-HT- and ChAT-positive cells in the SG indicated that these neurotransmitters locally modulate the secretion of neurohormones that are synthesized in the XO. These findings establish the presence of several neurotransmitters in the XO-SG complex of P. camtschaticus.
Collapse
|
3
|
She Q, Han Z, Liang S, Xu W, Li X, Zhao Y, Wei H, Dong J, Li Y. Impacts of circadian rhythm and melatonin on the specific activities of immune and antioxidant enzymes of the Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2019; 89:345-353. [PMID: 30974217 DOI: 10.1016/j.fsi.2019.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Many physiological functions of crustaceans show a rhythmic change to adapt to daily environmental cycles. However, daily variation in the immune and antioxidant status and its possible correlation with circulatory melatonin levels during the daily cycle have not been reported in the Chinese mitten crab, Eriocheir sinensis. In this study, the specific activities of immune and antioxidant enzymes of E. sinensis during the 24 h cycle and its relationship with injected doses of melatonin were evaluated. The results showed that the immune parameters in the hemolymph, such as total hemolymph count, alkaline phosphatase, lysozyme, acid phosphatase, and phenol oxidase, exhibited bimodal patterns during the 24 h cycle, these parameters were synchronized with the activity of antioxidant enzymes such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase, and catalase. However, there was only one peak in the muscle (during 1200-1600 h) and gills (during 0400-0800 h). The survival rate reached approximately 80% in 5 days when melatonin concentrations were lower than 0.05 g/L, significantly decreasing as melatonin concentrations increased. Four hours after melatonin injection, MDA levels in the muscle and hemolymph were significantly lower than those in the control group. Eight hours after melatonin injection, SOD levels in the hemolymph were significantly higher than those in the control group. These findings highlight the importance of considering circadian regulation of innate immunity when comparing immune responses at fixed times.
Collapse
Affiliation(s)
- Qiuxin She
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Zhibin Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Shudong Liang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Weibin Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yingying Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Hua Wei
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jing Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yingdong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China.
| |
Collapse
|
4
|
Li Y, Han Z, She Q, Zhao Y, Wei H, Dong J, Xu W, Li X, Liang S. Comparative transcriptome analysis provides insights into the molecular basis of circadian cycle regulation in Eriocheir sinensis. Gene 2019; 694:42-49. [DOI: 10.1016/j.gene.2018.12.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/05/2018] [Accepted: 12/27/2018] [Indexed: 11/26/2022]
|
5
|
Crustacean hyperglycemic hormone is synthesized in the eyestalk and brain of the crayfish Procambarus clarkii. PLoS One 2017; 12:e0175046. [PMID: 28369112 PMCID: PMC5378376 DOI: 10.1371/journal.pone.0175046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Crustacean hyperglycemic hormone (CHH) is a neuropeptide that is synthesized, stored, and released by brain and eyestalk structures in decapods. CHH participates in the regulation of several mechanisms, including increasing the level of glucose in hemolymph. Although CHH mRNA levels have been quantified and the CHH protein has been localized in various structures of the crayfish P. clarkii, CHH synthesis has only been reported in the X-organ-sinus gland (XO-SG). Therefore, the aim of this study was to use in situ hybridization to determine whether CHH mRNA is located in other structures, including the putative pacemaker, eyestalk and brain, of crayfish P. clarkii at two times of day. CHH mRNA was observed in both the eyestalk and the brain of P. clarkii, indicating that CHH is synthesized in several structures in common with other crustaceans, possibly to provide metabolic support for these regions by increasing glucose levels.
Collapse
|
6
|
Rajendiran S, Vasudevan S. Localization and identification of crustacean hyperglycemic hormone producing neurosecretory cells in the eyestalk of blue swimmer crab, Portunus pelagicus. Microsc Res Tech 2016; 79:1024-1030. [PMID: 27460068 DOI: 10.1002/jemt.22737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/08/2022]
Abstract
This study intensely focuses on to the localization and identification of crustacean hyperglycemic hormone (CHH) producing neurosecretory cells in the eyestalk of the blue swimmer crab Portunus pelagicus. Anti-Carcinus maenas-CHH was used to identify the location of CHH neurosecretory cells by immunohistochemistry. Ten pairs of eyestalks were collected from intact adult intermoult female crab and fixed in Bouin's fixative. Eyestalks were serially sectioned and stained with chrome-hematoxylin-phloxine stain. Histological studies show the presence of different types of neurosecretory cells namely A (multipolar), B (tripolar), C (bipolar), D (unipolar), E (oval), and F (spherical) in the medulla interna, externa, and terminalis regions based on their size, shape, and tinctorial properties. The neurohemal organ, sinus gland (SG) was observed laterally between medulla interna and terminalis regions. Immunohistochemical studies showed the presence of distinct CHH-like immunoreactivity in the optic ganglia. Divergent group of neurosecretory cells with varying degree of immunoreactivity with Anti-Carcinus maenas-CHH (low, moderate, and intense reactivity) were identified in medulla terminalis, medulla interna, medulla externa, and sinus gland. The present study maps the various types of neurosecretory cells in the optic ganglia and also shows the presence of CHH-like immunoreactivity in various regions of optic ganglia in P. pelagicus. The presence of these unique neurosecretory cell types with larger cell diameter in medulla terminalis, a region that bears the neurosecretory cell bodies, suggest high secretory activity.
Collapse
Affiliation(s)
- Saravanan Rajendiran
- Department of Oceanography and Coastal Area Studies, Alagappa University, Thondi Campus, Thondi, Tamil Nadu, 623409, India
| | - Sugumar Vasudevan
- Department of Oceanography and Coastal Area Studies, Alagappa University, Thondi Campus, Thondi, Tamil Nadu, 623409, India.
| |
Collapse
|
7
|
Hoelters L, O'Grady JF, Webster SG, Wilcockson DC. Characterization, localization and temporal expression of crustacean hyperglycemic hormone (CHH) in the behaviorally rhythmic peracarid crustaceans, Eurydice pulchra (Leach) and Talitrus saltator (Montagu). Gen Comp Endocrinol 2016; 237:43-52. [PMID: 27468954 DOI: 10.1016/j.ygcen.2016.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/19/2016] [Accepted: 07/24/2016] [Indexed: 11/15/2022]
Abstract
Crustacean hyperglycemic hormone (CHH) has been extensively studied in decapod crustaceans where it is known to exert pleiotropic effects, including regulation of blood glucose levels. Hyperglycemia in decapods seems to be temporally gated to coincide with periods of activity, under circadian clock control. Here, we used gene cloning, in situ hybridization and immunohistochemistry to describe the characterization and localization of CHH in two peracarid crustaceans, Eurydice pulchra and Talitrus saltator. We also exploited the robust behavioral rhythmicity of these species to test the hypothesis that CHH mRNA expression would resonate with their circatidal (12.4h) and circadian (24h) behavioral phenotypes. We show that both species express a single CHH transcript in the cerebral ganglia, encoding peptides featuring all expected, conserved characteristics of other CHHs. E. pulchra preproCHH is an amidated 73 amino acid peptide N-terminally flanked by a short, 18 amino acid precursor related peptide (CPRP) whilst the T. saltator prohormone is also amidated but 72 amino acids in length and has a 56 residue CPRP. The localization of both was mapped by immunohistochemistry to the protocerebrum with axon tracts leading to the sinus gland and into the tritocerebrum, with striking similarities to terrestrial isopod species. We substantiated the cellular position of CHH immunoreactive cells by in situ hybridization. Although both species showed robust activity rhythms, neither exhibited rhythmic transcriptional activity indicating that CHH transcription is not likely to be under clock control. These data make a contribution to the inventory of CHHs that is currently lacking for non-decapod species.
Collapse
Affiliation(s)
- Laura Hoelters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK.
| | - Joseph Francis O'Grady
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK.
| | - Simon George Webster
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| | - David Charles Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK; School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| |
Collapse
|
8
|
Robert A, Monsinjon T, Delbecque JP, Olivier S, Poret A, Foll FL, Durand F, Knigge T. Neuroendocrine disruption in the shore crab Carcinus maenas: Effects of serotonin and fluoxetine on chh- and mih-gene expression, glycaemia and ecdysteroid levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:192-204. [PMID: 27060239 DOI: 10.1016/j.aquatox.2016.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Serotonin, a highly conserved neurotransmitter, controls many biological functions in vertebrates, but also in invertebrates. Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are commonly used in human medication to ease depression by affecting serotonin levels. Their residues and metabolites can be detected in the aquatic environment and its biota. They may also alter serotonin levels in aquatic invertebrates, thereby perturbing physiological functions. To investigate whether such perturbations can indeed be expected, shore crabs (Carcinus maenas) were injected either with serotonin, fluoxetine or a combination of both. Dose-dependent effects of fluoxetine ranging from 250 to 750nM were investigated. Gene expression of crustacean hyperglycemic hormone (chh) as well as moult inhibiting hormone (mih) was assessed by RT-qPCR at 2h and 12h after injection. Glucose and ecdysteroid levels in the haemolymph were monitored in regular intervals until 12h. Serotonin led to a rapid increase of chh and mih expression. On the contrary, fluoxetine only affected chh and mih expression after several hours, but kept expression levels significantly elevated. Correspondingly, serotonin rapidly increased glycaemia, which returned to normal or below normal levels after 12h. Fluoxetine, however, resulted in a persistent low-level increase of glycaemia, notably during the period when negative feedback regulation reduced glycaemia in the serotonin treated animals. Ecdysteroid levels were significantly decreased by serotonin and fluoxetine, with the latter showing less pronounced and less rapid, but longer lasting effects. Impacts of fluoxetine on glycaemia and ecdysteroids were mostly observed at higher doses (500 and 750nM) and affected principally the response dynamics, but not the amplitude of glycaemia and ecdysteroid-levels. These results suggest that psychoactive drugs are able to disrupt neuroendocrine control in decapod crustaceans, as they interfere with the normal regulation of the serotonergic system.
Collapse
Affiliation(s)
- Alexandrine Robert
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Tiphaine Monsinjon
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Jean-Paul Delbecque
- University of Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Avenue des Facultés, F-33405 Talence Cedex, France
| | - Stéphanie Olivier
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Agnès Poret
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Frank Le Foll
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Fabrice Durand
- Normandy University, UNIHAVRE, Faculty of Science and Technics, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Thomas Knigge
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France.
| |
Collapse
|
9
|
Identification, Characterization, and Diel Pattern of Expression of Canonical Clock Genes in Nephrops norvegicus (Crustacea: Decapoda) Eyestalk. PLoS One 2015; 10:e0141893. [PMID: 26524198 PMCID: PMC4629887 DOI: 10.1371/journal.pone.0141893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022] Open
Abstract
The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h) governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12–12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions) obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50) was equal to 1796 (light) and 2055 (darkness). We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI) with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79%) and Macrobrachium rosenbergii (clock: 100%). We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster.
Collapse
|
10
|
Eye extract improves cell migration out of lymphoid organ explants of L. vannamei and viability of the primary cell cultures. In Vitro Cell Dev Biol Anim 2015; 51:651-4. [DOI: 10.1007/s11626-015-9882-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
|
11
|
Swetha CH, Sainath SB, Reddy PS. Mode of action of dopamine in inducing hyperglycemia in the fresh water edible crab,Oziothelphusa senex senex. ACTA ACUST UNITED AC 2014; 321:531-9. [DOI: 10.1002/jez.1884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/22/2014] [Accepted: 06/18/2014] [Indexed: 11/12/2022]
Affiliation(s)
- CH. Swetha
- Department of Biotechnology; Sri Venkateswara University; Tirupati India
| | - S. B. Sainath
- Department of Biotechnology; Vikrama Simhapuri University; Nellore India
| | | |
Collapse
|
12
|
Aquiloni L, Giulianini PG, Mosco A, Guarnaccia C, Ferrero E, Gherardi F. Crustacean hyperglycemic hormone (cHH) as a modulator of aggression in crustacean decapods. PLoS One 2012; 7:e50047. [PMID: 23166815 PMCID: PMC3500340 DOI: 10.1371/journal.pone.0050047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/19/2012] [Indexed: 11/18/2022] Open
Abstract
Biogenic amines, particularly serotonin, are recognised to play an important role in controlling the aggression of invertebrates, whereas the effect of neurohormones is still underexplored. The crustacean Hyperglycemic Hormone (cHH) is a multifunctional member of the eyestalk neuropeptide family. We expect that this neuropeptide influences aggression either directly, by controlling its expression, or indirectly, by mobilizing the energetic stores needed for the increased activity of an animal. Our study aims at testing such an influence and the possible reversion of hierarchies in the red swamp crayfish, Procambarus clarkii, as a model organism. Three types of pairs of similarly sized males were formed: (1) 'control pairs' (CP, n = 8): both individuals were injected with a phosphate saline solution (PBS); (2) 'reinforced pairs' (RP, n = 9): the alpha alone was injected with native cHH, and the beta with PBS; (3) 'inverted pairs' (IP, n = 9): the opposite of (2). We found that, independently of the crayfish's prior social experience, cHH injections induced (i) the expression of dominance behaviour, (ii) higher glycemic levels, and (iii) lower time spent motionless. In CP and RP, fight intensity decreased with the establishment of dominance. On the contrary, in IP, betas became increasingly likely to initiate and escalate fights and, consequently, increased their dominance till a temporary reversal of the hierarchy. Our results demonstrate, for the first time, that, similarly to serotonin, cHH enhances individual aggression, up to reverse, although transitorily, the hierarchical rank. New research perspectives are thus opened in our intriguing effort of understanding the role of cHH in the modulation of agonistic behaviour in crustaceans.
Collapse
Affiliation(s)
- Laura Aquiloni
- Dipartimento di Biologia Evoluzionistica Leo Pardi, Università degli Studi di Firenze, Firenze, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Two type I crustacean hyperglycemic hormone (CHH) genes in Morotoge shrimp (Pandalopsis japonica): cloning and expression of eyestalk and pericardial organ isoforms produced by alternative splicing and a novel type I CHH with predicted structure shared with type II CHH peptides. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:88-99. [PMID: 22525298 DOI: 10.1016/j.cbpb.2012.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/04/2012] [Accepted: 04/07/2012] [Indexed: 11/23/2022]
Abstract
Crustacean hyperglycemic hormone (CHH) peptide family members play critical roles in growth and reproduction in decapods. Three cDNAs encoding CHH family members (Pj-CHH1ES, Pj-CHH1PO, and Pj-CHH2) were isolated by a combination of bioinformatic analysis and conventional cloning strategies. Pj-CHH1ES and Pj-CHH1PO were products of the same gene that were generated by alternative mRNA splicing, whereas Pj-CHH2 was the product of a second gene. The Pj-CHH1 and Pj-CHH2 genes had four exons and three introns, suggesting the two genes arose from gene duplication. The three cDNAs were classified in the type I CHH subfamily, as the deduced amino acid sequences had a CHH precursor-related peptide sequence positioned between the N-terminal signal sequence and C-terminal mature peptide sequence. The Pj-CHH1ES isoform was expressed at a higher level in the eyestalk X-organ/sinus gland (XO/SG) complex and at a lower level in the gill. The Pj-CHH1PO isoform was expressed at higher levels in the XO/SG complex, brain, abdominal ganglion, and thoracic ganglion and at a lower level in the epidermis. Pj-CHH2 was expressed at a higher level in the thoracic ganglion and at a lower level in the gill. Real-time polymerase chain reaction was used to quantify the effects of eyestalk ablation on the mRNA levels of the three Pj-CHHs in the brain, thoracic ganglion, and gill. Eyestalk ablation reduced expression of Pj-CHH1ES in the brain and Pj-CHH1PO and Pj-CHH2 in the thoracic ganglion. Sequence alignment of the Pj-CHHs with CHHs from other species indicated that Pj-CHH2 had an additional alanine at position #9 of the mature peptide. Molecular modeling showed that the Pj-CHH2 mature peptide had a short alpha helix (α1) in the N-terminal region, which is characteristic of type II CHHs. This suggests that Pj-CHH2 differs in function from other type I CHHs.
Collapse
|
14
|
Webster SG, Keller R, Dircksen H. The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. Gen Comp Endocrinol 2012; 175:217-33. [PMID: 22146796 DOI: 10.1016/j.ygcen.2011.11.035] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/21/2011] [Indexed: 12/21/2022]
Abstract
Apart from providing an up-to-date review of the literature, considerable emphasis was placed in this article on the historical development of the field of "crustacean eyestalk hormones". A role of the neurosecretory eyestalk structures of crustaceans in endocrine regulation was recognized about 80 years ago, but it took another half a century until the first peptide hormones were identified. Following the identification of crustacean hyperglycaemic hormone (CHH) and moult-inhibiting hormone (MIH), a large number of homologous peptides have been identified to this date. They comprise a family of multifunctional peptides which can be divided, according to sequences and precursor structure, into two subfamilies, type-I and -II. Recent results on peptide sequences, structure of genes and precursors are described here. The best studied biological activities include metabolic control, moulting, gonad maturation, ionic and osmotic regulation and methyl farnesoate synthesis in mandibular glands. Accordingly, the names CHH, MIH, and GIH/VIH (gonad/vitellogenesis-inhibiting hormone), MOIH (mandibular organ-inhibiting hormone) were coined. The identification of ITP (ion transport peptide) in insects showed, for the first time, that CHH-family peptides are not restricted to crustaceans, and data mining has recently inferred their occurrence in other ecdysozoan clades as well. The long-held tenet of exclusive association with the eyestalk X-organ-sinus gland tract has been challenged by the finding of several extra nervous system sites of expression of CHH-family peptides. Concerning mode of action and the question of target tissues, second messenger mechanisms are discussed, as well as binding sites and receptors. Future challenges are highlighted.
Collapse
|
15
|
Velázque-Amado RM, Escamilla-Chimal EG, Fanjul-Moles ML. Daily Light-Dark Cycles Influence Hypoxia-Inducible Factor 1 and Heat Shock Protein Levels in the Pacemakers of Crayfish. Photochem Photobiol 2011; 88:81-9. [DOI: 10.1111/j.1751-1097.2011.01012.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Valdés-Fuentes M, Prieto-Sagredo J, Fanjul-Moles ML. Crayfish brain-protocerebrum and retina show serotonergic functional relationship. Brain Res 2011; 1417:36-44. [DOI: 10.1016/j.brainres.2011.08.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
|
17
|
Tinikul Y, Poljaroen J, Kornthong N, Chotwiwatthanakun C, Anuracpreeda P, Poomtong T, Hanna PJ, Sobhon P. Distribution and changes of serotonin and dopamine levels in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei, during ovarian maturation cycle. Cell Tissue Res 2011; 345:103-24. [PMID: 21607566 DOI: 10.1007/s00441-011-1176-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/13/2011] [Indexed: 11/28/2022]
Abstract
We investigated changes in serotonin (5-HT) and dopamine (DA) levels and in their distribution patterns in the central nervous system (CNS) and ovary during the ovarian maturation cycle in the Pacific white shrimp, Litopenaeus vannamei. The concentrations of these two neurotransmitters were determined by using high performance liquid chromatography with electrochemical detection. The 5-HT concentration exhibited a gradual increase in the brain and thoracic ganglia during early ovarian stages I, II, and III, reaching a maximum at the mature ovarian stage IV, whereas DA showed its highest concentration at ovarian stage II in the brain and thoracic ganglia and then declined to its lowest concentration at ovarian stage IV. In the ovaries, 5-HT was lowest at ovarian stage I and gradually increased to a peak at ovarian stage IV. Conversely, the concentration of DA was highest at ovarian stages I and II and lowest at ovarian stage IV. In the brain, 5-HT immunoreactivity (-ir) from stage IV and DA-ir from stage II were distributed extensively in neurons of clusters 6, 11, and 17, in fibers, and in the anterior and posterior medial protocerebral, olfactory, antenna II, and tegumentary neuropils. In the circumesophageal, subesophageal, thoracic, and abdominal ganglia, both 5-HT-ir and DA-ir were detected in neuropils and surrounding neurons and fibers. 5-HT-ir and DA-ir were more intense in the thoracic ganglia than in other parts of the CNS. In the ovary, 5-HT-ir exhibited high intensity in late oocytes, whereas DA-ir was more intense in early oocytes. Thus, opposing changes occur in the levels of these two neurotransmitters and in their specific localizations in the CNS and ovary during ovarian maturation, indicating their important involvement in female reproduction.
Collapse
Affiliation(s)
- Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fanjul-Moles ML, Escamilla-Chimal EG, Salceda R, Giulianini PG, Sánchez-Chávez G. Circadian modulation of crustacean hyperglycemic hormone in crayfish eyestalk and retina. Chronobiol Int 2010; 27:34-51. [PMID: 20205556 DOI: 10.3109/07420520903398526] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous studies suggested the retina could be a putative locus of daily crustacean hyperglycemic hormone (CHH) secretion, as it possesses its own metabolic machinery and is independent of the well-known CHH eyestalk locus responsible for the circadian secretion of this peptide. However, it has been proposed that hemolymph glucose and lactate concentrations play a dual role in the regulation of CHH in crayfish. To elucidate the temporal relationship between these two different CHH production loci and to examine their relationship with glucose regulation, we investigated the expression of CHH daily and circadian rhythms in the eyestalk and retina of crayfish using biochemical methods and time series analysis. We wanted to determine whether (1) putative retina and eyestalk CHH rhythmic expressions are correlated and if the oscillations of the two metabolic products of lactate and glucose in the blood due to CHH action on the target tissue correlate, and (2) retina CHH (RCHH) and the possible retinal substrate glycogen and its product glucose are temporally correlated. We found a negative correlation between daily and circadian changes of relative CHH abundance in the retina and eyestalk. This correlation and the cross-correlation values found between eyestalk CHH and hemolymph and glucose confirm that CHH produced by the X-organ sinus gland complex is under the previously proposed dual feedback control system over the 24 h time period. However, the presence of both glycogen and glucose in the retina, the cross-correlation values found between these parameters and hemolymph lactate and glucose, as well as RCHH and hemolymph and retina metabolic markers suggest RCHH is not under the same temporal metabolic control as eyestalk CHH. Nonetheless, their expression may be linked to common rhythms-generating processes.
Collapse
Affiliation(s)
- Maria Luisa Fanjul-Moles
- Laboratorio de Neurofisología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. 04510 México, DF, México.
| | | | | | | | | |
Collapse
|
19
|
Sainath SB, Reddy PS. Melatonergic regulation of hemolymph sugar levels in the freshwater edible crab, Oziotelphusa senex senex. ACTA ACUST UNITED AC 2010; 313:201-8. [PMID: 20140952 DOI: 10.1002/jez.594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, the hyperglycemic effect of melatonin in the freshwater edible crab, Oziotelphusa senex senex, is investigated. Injection of melatonin induced hyperglycemia in a dose-dependent manner. Administration of melatonin produced hyperglycemia in both intact and eyestalk-ablated crabs. Bilateral eyestalk ablation resulted in significant increase in the total carbohydrates and glycogen levels with a significant decrease in phosphorylase activity in the hepatopancreas and muscle of the crabs. Injection of melatonin resulted in significant decrease in the total carbohydrate and glycogen levels, with an increase in phosphorylase activity in hepatopancreas and muscle of both intact and eyestalk-ablated crabs. From the results, it is hypothesized that melatonin-induced hyperglycemia in the crab, O. senex senex, is not mediated by eyestalk hyperglycemic hormone.
Collapse
Affiliation(s)
- S B Sainath
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra pradesh, India
| | | |
Collapse
|
20
|
Santhoshi S, Sugumar V, Munuswamy N. Histological and immunocytochemical localization of serotonin-like immunoreactivity in the brain and optic ganglia of the Indian white shrimp, Fenneropenaeus indicus. Microsc Res Tech 2008; 71:186-95. [PMID: 17661386 DOI: 10.1002/jemt.20511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Serotonin is one of the important neurotransmitter and neuromodulator so far studied in crustacean models. With its secretory sites well-studied in higher crustaceans, its function in controlling the release of metabolic hormones from their storage and release sites has been well proved. The present study attempts to localize serotonin-like immunoreactivity in Fenneropenaeus indicus, a commercially important shrimp species and a natural inhabitant of the Indian oceans. Histological studies were employed to visualize the different types of neurosecretory cells and their regions of occurrence in brain and optic ganglia on the basis of their size, shape, and tinctorial properties. Immunocytochemical studies were performed in the brain and optic ganglia with specific antisera against serotonin in combination with peroxidase anti-peroxidase to map the serotonin-like immunoreactive cells. Variations in the immunoreactivity were observed on comparing the cells of brain and optic ganglia. Medulla terminalis region had intense serotonin immunoreactivity suggesting it to be the primary source of the neurotransmitter.
Collapse
Affiliation(s)
- S Santhoshi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | | | | |
Collapse
|
21
|
Calderón-Rosete G, Flores G, Rodríguez-Sosa L. Diurnal rhythm in the levels of the serotonin 5-HT1A receptors in the crayfish eyestalk. Synapse 2006; 59:368-73. [PMID: 16447179 DOI: 10.1002/syn.20252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The crayfish eyestalk (ES) has been postulated as a possible circadian clock. 5-Hydroxytryptamine (5-HT) has been shown to play the role of a neurotransmitter or a modulator in the ES. However, little is known about the 5-HT receptors in the ES. The purpose of this work is to determine the specific binding sites using [(3)H]8-hydroxy-2(di-n-propylamino)tetralin ([(3)H]8-OH-DPAT), a specific agonist of the 5-HT(1A) receptor, and to characterize the diurnal rhythm in the binding by an autoradiography procedure in the crayfish ES. Data show the presence of a circadian rhythmicity in the level of the 5-HT(1A) receptors, principally in two regions: (a) the complex retina (R)-lamina ganglionaris (LG), with the acrophase at dusk and (b) the medulla terminalis (MT), where it was in antiphase. It is suggested that (1) the expression of levels of 5-HT(1A) receptors is modulated by light-dark (LD) cycles, (2) the level of 5-HT(1A) receptors in the R-LG and MT are in antiphase during the 24-h cycle, and (3) there is a different mechanism of action of LD cycles in each of these two anatomical regions of the crayfish ES.
Collapse
Affiliation(s)
- Gabina Calderón-Rosete
- División de Estudios de Posgrado e Investigación, Facultad de Medicina, UNAM., Av. Universidad 3000, Circuito Interior, Unidad de Posgrado, 1er. Piso., 04510 México D. F., México
| | | | | |
Collapse
|
22
|
Fanjul-Moles ML. Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:390-400. [PMID: 16403679 DOI: 10.1016/j.cbpc.2005.11.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/24/2005] [Accepted: 11/25/2005] [Indexed: 11/22/2022]
Abstract
In crustaceans, neuroendocrine centers are located in different structures of the nervous system. One of these structures, the X-organ-sinus gland complex of the eyestalk, produces several neuropeptides that belong to the two main functionally different families: firstly, the chromatophorotropins, and secondly, a large family comprising various closely related peptides, commonly named CHH/MIH/GIH family. This review updates some aspects of the structural, biochemical and functional properties of the main hyperglycemic neuropeptide of this family, the crustacean hyperglycemic hormone (CHH). The first part of this work is a survey of the neuroendocrine system that produces the neurohormones of the CHH/MIH/GIH family, focusing on recent reports that propose new possible neuroendocrine loci of CHH production, secondly we revise general aspects of the CHH biochemical, and structural characteristics and thirdly, we present a review of the role of CHH in the regulation of several physiological processes of crustaceans as well as new reports on the ontogenetic aspects of CHH. The review is centered only on one group of malacostracan crustaceans, the Decapoda.
Collapse
Affiliation(s)
- María Luisa Fanjul-Moles
- Lab. Neurofisiología Comparada, Departamento de Ecología Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F., Mexico.
| |
Collapse
|
23
|
Spitzer N, Antonsen BL, Edwards DH. Immunocytochemical mapping and quantification of expression of a putative type 1 serotonin receptor in the crayfish nervous system. J Comp Neurol 2005; 484:261-82. [PMID: 15739232 DOI: 10.1002/cne.20456] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin is an important neurotransmitter that is involved in modulation of sensory, motor, and higher functions in many species. In the crayfish, which has been developed as a model for nervous system function for over a century, serotonin modulates several identified circuits. Although the cellular and circuit effects of serotonin have been extensively studied, little is known about the receptors that mediate these signals. Physiological data indicate that identified crustacean cells and circuits are modulated via several different serotonin receptors. We describe the detailed immunocytochemical localization of the crustacean type 1 serotonin receptor, 5-HT1crust, throughout the crayfish nerve cord and on abdominal superficial flexor muscles. 5-HT1crust is widely distributed in somata, including those of several identified neurons, and neuropil, suggesting both synaptic and neurohormonal roles. Individual animals show very different levels of 5-HT1crust immunoreactivity (5-HT(1crust)ir) ranging from preparations with hundreds of labeled cells per ganglion to some containing only a handful of 5-HT(1crust)ir cells in the entire nerve cord. The interanimal variability in 5-HT(1crust)ir is great, but individual nerve cords show a consistent level of labeling between ganglia. Quantitative RT-PCR shows that 5-HT1crust mRNA levels between animals are also variable but do not directly correlate with 5-HT(1crust)ir levels. Although there is no correlation of 5-HT1crust expression with gender, social status, molting or feeding, dominant animals show significantly greater variability than subordinates. Functional analysis of 5-HT1crust in combination with this immunocytochemical map will aid further understanding of this receptor's role in the actions of serotonin on identified circuits and cells.
Collapse
Affiliation(s)
- Nadja Spitzer
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | |
Collapse
|
24
|
Wildt M, Goergen EM, Benton JL, Sandeman DC, Beltz BS. Regulation of serotonin levels by multiple light-entrainable endogenous rhythms. J Exp Biol 2004; 207:3765-74. [PMID: 15371484 DOI: 10.1242/jeb.01205] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
This study examined whether serotonin levels in the brain of the American lobster, Homarus americanus, are under circadian control. Using high-performance liquid chromatography and semi-quantitative immunocytochemical methods, we measured serotonin levels in the brains of lobsters at six time points during a 24-h period. Lobsters were maintained for 2 weeks on a 12 h:12 h light:dark cycle followed by 3 days of constant darkness. Under these conditions, brain serotonin levels varied rhythmically,with a peak before subjective dusk and a trough before subjective dawn. This persistent circadian rhythm in constant darkness indicates that serotonin levels are controlled by an endogenous clock. Animals exposed to a shifted light cycle for >10 days, followed by 3 days in constant darkness,demonstrate that this rhythm is light entrainable. Separate analyses of two pairs of large deutocerebral neuropils, the accessory and olfactory lobes,show that serotonin levels in these functionally distinct areas also exhibit circadian rhythms but that these rhythms are out of phase with one another. The olfactory and accessory lobe rhythms are also endogenous and light entrainable, suggesting the presence of multiple clock mechanisms regulating serotonin levels in different brain regions.
Collapse
Affiliation(s)
- M Wildt
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | | | | | | | | |
Collapse
|
25
|
Serrano L, Grousset E, Charmantier G, Spanings-Pierrot C. Occurrence of L- and D-crustacean hyperglycemic hormone isoforms in the eyestalk X-organ/sinus gland complex during the ontogeny of the crayfish Astacus leptodactylus. J Histochem Cytochem 2004; 52:1129-40. [PMID: 15314080 DOI: 10.1369/jhc.4a6292.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the ontogeny of the eyestalk structure and of the L-CHH and d-Phe3-CHH synthesis in the X-organ/sinus gland (XO/SG) complex by light microscopy and immunocytochemistry in the freshwater crustacean Astacus leptodactylus. The optic ganglia start to differentiate in embryos at EI 190 microm (EI: eye index; close to 410 microm at hatching). At EI 270 microm, the three medullae (externa, interna, and terminalis) and the lamina ganglionaris are present and are organized as in the adult eyestalk. The L-CHH was localized in perikarya of neuroendocrine cells, in their tracts, and in SG from the metanauplius stage to the adult. The d-Phe3-CHH was visualized in XO perikarya, in their tracts and in SG of embryos from EI 350 microm and in all later studied stages. Co-localization of both CHH stereoisomers always occurred in the d-Phe3-CHH-producing cells. These results show that the synthesis of CHH enantiomers starts during the embryonic life in A. leptodactylus, and that the d-isomer is synthesized later than its L-counterpart. We discuss the post-translational isomerization as a way to generate hormonal diversity and the putative relation between d-Phe3-CHH synthesis and the ability to osmoregulate, occurring late during the embryonic life of Astacus leptodactylus.
Collapse
Affiliation(s)
- Laetitia Serrano
- Laboratoire Génome, Populations, Interactions, Adaptation, UMR 5171, Equipe Adaptation Ecophysiologique et Ontogenèse, Université Montpellier II, Place E. Bataillon, CP 092, 34095 Montpellier Cédex 05, France
| | | | | | | |
Collapse
|
26
|
Fanjul-Moles ML, Escamilla-Chimal EG, Gloria-Soria A, Hernández-Herrera G. The crayfish Procambarus clarkii CRY shows daily and circadian variation. J Exp Biol 2004; 207:1453-60. [PMID: 15037639 DOI: 10.1242/jeb.00900] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The circadian rhythms of crayfish are entrained by blue light, through putative extra retinal photoreceptors. We investigated the presence and daily variation of CRY, a protein photosensitive to blue light spectra and ubiquitous in animals and plants, in the putative pacemakers of Procambarus clarkii, namely the eyestalk and brain, at different times of the 24 h light:dark cycles. Using different experimental light protocols and by means of qualitative/quantitative immunofluorescence anatomical and biochemical methods, we identified CRY immunoreactivity in cells located in the medulla-terminalis-hemiellipsoidal complex (MT-HB) and the anterior margin of the median protocerebrum (PR). The immunoreaction varied with the time of day and the two neural structures showed a semi-mirror image. The results of the biochemical analysis matched these variations. Western blotting demonstrated statistically significant circadian rhythms in brain CRY abundance, but no daily circadian CRY abundance oscillations in the eyestalk. These immunocytochemical and biochemical results link a specific photoreceptor molecule to circadian rhythmicity. We propose that CRY may be linked to the photoreception of the clock and to the generation of circadian rhythmicity.
Collapse
Affiliation(s)
- María Luisa Fanjul-Moles
- Laboratorio de Neurofisiología Comparada, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 11000.
| | | | | | | |
Collapse
|
27
|
Escamilla-Chimal EG, Hiriart M, Sánchez-Soto MC, Fanjul-Moles ML. Serotonin modulation of CHH secretion by isolated cells of the crayfish retina and optic lobe. Gen Comp Endocrinol 2002; 125:283-90. [PMID: 11884074 DOI: 10.1006/gcen.2001.7752] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The authors used the reverse hemolytic plaque assay to investigate whether single retinal and optic lobe cells of juvenile and adult crayfish secrete crustacean hyperglycemic hormone (CHH) and whether the secretion rate depends on extracellular serotonin (5-HT) concentration. Nearly 25% of individual retinal and optic lobe cells of juvenile and adult organisms secrete CHH in response to KCl depolarization. In this condition, CHH secretion increased as a function of 5-HT concentration. In both cases, the dose-response curve indicates two different populations of CHH-secreting cells. Juveniles showed a higher CHH secretion index than did adult organisms, demonstrating a developmental interstage variation of CHH secretion. The authors conclude that (1) retinal CHH-secreting cells correspond to a population of retinal tapetal cells and (2) optic lobe CHH-secreting cells correspond to two subpopulations of CHH of medulla terminalis-X organ.
Collapse
Affiliation(s)
- Elsa G Escamilla-Chimal
- Lab. Neurofisiologia Comparada, Universidad Nacional Autónoma de México, México, Ap. Postal 41-630, CP 11000, D.F. México
| | | | | | | |
Collapse
|