1
|
Liu Z, Zhang K, Zhang ZQ. Phototactic behavior and oviposition of seven species of Phytoseiidae (Acari: Mesostigmata). PEST MANAGEMENT SCIENCE 2025; 81:1765-1770. [PMID: 39632773 DOI: 10.1002/ps.8575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Phototactic behavior and oviposition site selection in phytoseiid predators are crucial for understanding their ecological interactions and optimizing their use in agricultural pest management. This study investigated the phototactic responses and oviposition preferences of seven phytoseiid species of proven or potential importance in biocontrol: Amblydromalus limonicus (Garman & McGregor), Amblyseius herbicolus (Chant), Amblyseius lentiginosus Denmark and Schicha, Neoseiulus barkeri Hughes, Neoseiulus cucumeris (Oudemans), Neoseiulus womersleyi (Schicha), and Phytoseiulus persimilis Athias-Henriot. We hypothesized that these phytoseiid predators use light as a cue, with their phototactic behavior aligning with their respective lifestyles. RESULTS By presenting adults of these species with two choices (i.e. light and dark) in acrylic arenas, we found that P. persimilis exhibited a significant preference for light. In contrast, other species showed no phototactic preference. The phototactic preferences were similar between genders of all six sexually reproducing species tested in this study. Furthermore, the oviposition site preferences varied significantly among species. Gravid females of As. herbicolus, N. cucumeris, N. womersleyi, and P. persimilis preferred dark sites for egg laying, whereas Ad. limonicus and As. lentiginosus showed no light preference, and N. barkeri preferred light for oviposition. CONCLUSION This study highlights the importance of light as an ecological factor influencing phytoseiid behavior and suggests that phototactic and oviposition preferences are adaptations to specific environmental niches. These findings have practical implications for enhancing the effectiveness of phytoseiids in pest management. Further research should investigate the mechanisms driving phototactic responses and light perception in these phytoseiid predators. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenguo Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Department of Animal Science, Shandong Agricultural University, Taian, People's Republic of China
| | - Keshi Zhang
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Zhi-Qiang Zhang
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Escuer P, Guirao-Rico S, Arnedo MA, Sánchez-Gracia A, Rozas J. Population Genomics of Adaptive Radiations: Exceptionally High Levels of Genetic Diversity and Recombination in an Endemic Spider From the Canary Islands. Mol Ecol 2024; 33:e17547. [PMID: 39400446 DOI: 10.1111/mec.17547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The spider genus Dysdera has undergone a remarkable diversification in the oceanic archipelago of the Canary Islands, with ~60 endemic species having originated during the 20 million years since the origin of the archipelago. This evolutionary radiation has been accompanied by substantial dietary shifts, often characterised by phenotypic modifications encompassing morphological, metabolic and behavioural changes. Hence, these endemic spiders represent an excellent model for understanding the evolutionary drivers and to pinpoint the genomic determinants underlying adaptive radiations. Recently, we achieved the first chromosome-level genome assembly of one of the endemic species, D. silvatica, providing a high-quality reference sequence for evolutionary genomics studies. Here, we conducted a low coverage-based resequencing study of a natural population of D. silvatica from La Gomera island. Taking advantage of the new high-quality genome, we characterised genome-wide levels of nucleotide polymorphism, divergence and linkage disequilibrium, and inferred the demographic history of this population. We also performed comprehensive genome-wide scans for recent positive selection. Our findings uncovered exceptionally high levels of nucleotide diversity and recombination in this geographically restricted endemic species, indicative of large historical effective population sizes. We also identified several candidate genomic regions that are potentially under positive selection, highlighting relevant biological processes, such as vision and nitrogen extraction as potential adaptation targets. These processes may ultimately drive species diversification in this genus. This pioneering study of spiders that are endemic to an oceanic archipelago lays the groundwork for broader population genomics analyses aimed at understanding the genetic mechanisms driving adaptive radiation in island ecosystems.
Collapse
Affiliation(s)
- Paula Escuer
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sara Guirao-Rico
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miquel A Arnedo
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Kittelmann M, McGregor AP. Looking across the gap: Understanding the evolution of eyes and vision among insects. Bioessays 2024; 46:e2300240. [PMID: 38593308 DOI: 10.1002/bies.202300240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
The compound eyes of insects exhibit stunning variation in size, structure, and function, which has allowed these animals to use their vision to adapt to a huge range of different environments and lifestyles, and evolve complex behaviors. Much of our knowledge of eye development has been learned from Drosophila, while visual adaptations and behaviors are often more striking and better understood from studies of other insects. However, recent studies in Drosophila and other insects, including bees, beetles, and butterflies, have begun to address this gap by revealing the genetic and developmental bases of differences in eye morphology and key new aspects of compound eye structure and function. Furthermore, technical advances have facilitated the generation of high-resolution connectomic data from different insect species that enhances our understanding of visual information processing, and the impact of changes in these processes on the evolution of vision and behavior. Here, we review these recent breakthroughs and propose that future integrated research from the development to function of visual systems within and among insect species represents a great opportunity to understand the remarkable diversification of insect eyes and vision.
Collapse
Affiliation(s)
- Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | |
Collapse
|
4
|
Rathore S, Mitra AT, Hyland-Brown R, Jester A, Layne JE, Benoit JB, Buschbeck EK. Osmosis as nature's method for establishing optical alignment. Curr Biol 2024; 34:1569-1575.e3. [PMID: 38513653 DOI: 10.1016/j.cub.2024.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
For eyes to maintain optimal focus, precise coordination is required between lens optics and retina position, a mechanism that in vertebrates is governed by genetics, visual feedback, and possibly intraocular pressure (IOP).1 While the underlying processes have been intensely studied in vertebrates, they remain elusive in arthropods, though visual feedback may be unimportant.2 How do arthropod eyes remain functional while undergoing substantial growth? Here, we test whether a common physiological process, osmoregulation,3 could regulate growth in the sophisticated camera-type eyes of the predatory larvae of Thermonectus marmoratus diving beetles. Upon molting, their eye tubes elongate in less than an hour, and osmotic pressure measurements reveal that this growth is preceded by a transient increase in hemolymph osmotic pressure. Histological evaluation of support cells that determine the lens-to-retina spacing reveals swelling rather than the addition of new cells. In addition, as expected, treating larvae with hyperosmotic media post-molt leads to far-sighted (hyperopic) eyes due to a failure of proper lengthening of the eye tube and results in impaired hunting success. This study suggests that osmoregulation could be of ubiquitous importance for properly focused eyes.
Collapse
Affiliation(s)
- Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Amartya T Mitra
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ruby Hyland-Brown
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Augusta Jester
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - John E Layne
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
5
|
Buffry AD, Currea JP, Franke-Gerth FA, Palavalli-Nettimi R, Bodey AJ, Rau C, Samadi N, Gstöhl SJ, Schlepütz CM, McGregor AP, Sumner-Rooney L, Theobald J, Kittelmann M. Evolution of compound eye morphology underlies differences in vision between closely related Drosophila species. BMC Biol 2024; 22:67. [PMID: 38504308 PMCID: PMC10953123 DOI: 10.1186/s12915-024-01864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size between D. mauritiana and its sibling species D. simulans. RESULTS We confirmed that D. mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. simulans since they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity for D. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with smaller ommatidia and found evidence for higher temporal resolution. CONCLUSIONS Our study demonstrates that even subtle differences in ommatidia size between closely related Drosophila species can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among other Drosophila species, other dipterans and other insects are needed to better understand compound eye structure-function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches.
Collapse
Affiliation(s)
- Alexandra D Buffry
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - John P Currea
- Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Franziska A Franke-Gerth
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, 04103, Leipzig, Germany
| | - Ravindra Palavalli-Nettimi
- Institute of the Environment and Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Andrew J Bodey
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - Christoph Rau
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - Nazanin Samadi
- Swiss Light Source, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Stefan J Gstöhl
- Swiss Light Source, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Christian M Schlepütz
- Swiss Light Source, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Alistair P McGregor
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Lauren Sumner-Rooney
- Museum Für Naturkunde, Leibniz Institute for Evolution and Biodiversity Research, Berlin, 10115, Germany
| | - Jamie Theobald
- Institute of the Environment and Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
6
|
Lu Y, Liu X, Cao H, Wang C, Shen C, Tang J, Liu J. Nighttime bionic compass based on a short-wave infrared polarization sensing system. APPLIED OPTICS 2024; 63:525-534. [PMID: 38227250 DOI: 10.1364/ao.511496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Sky-bionic polar co-ordinate navigation is an effective means of providing navigational information in the absence of a priori information. Polar co-ordinate navigation during clear daytime conditions has been studied, but there has been a lack of research of it at night due to problems with noise. Therefore, in this paper, a short-wave infrared polarimetric sensor system is designed, which is capable of acquiring atmospheric polarimetric information in low illumination environments at night, compared with traditional visible band sensors. Additionally, based on the statistics of polarization angle information, an algorithm for removing noise and starlight is proposed to solve the influence of starlight and noise on the polarization information at night. After many outdoor experiments, we found that the method can output the heading angle stably and accurately, and its standard deviation is controlled to be 0.42° in a clear night.
Collapse
|
7
|
Rathore S, Stahl A, Benoit JB, Buschbeck EK. Exploring the molecular makeup of support cells in insect camera eyes. BMC Genomics 2023; 24:702. [PMID: 37993800 PMCID: PMC10664524 DOI: 10.1186/s12864-023-09804-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Animals typically have either compound eyes, or camera-type eyes, both of which have evolved repeatedly in the animal kingdom. Both eye types include two important kinds of cells: photoreceptor cells, which can be excited by light, and non-neuronal support cells (SupCs), which provide essential support to photoreceptors. At the molecular level deeply conserved genes that relate to the differentiation of photoreceptor cells have fueled a discussion on whether or not a shared evolutionary origin might be considered for this cell type. In contrast, only a handful of studies, primarily on the compound eyes of Drosophila melanogaster, have demonstrated molecular similarities in SupCs. D. melanogaster SupCs (Semper cells and primary pigment cells) are specialized eye glia that share several molecular similarities with certain vertebrate eye glia, including Müller glia. This led us to question if there could be conserved molecular signatures of SupCs, even in functionally different eyes such as the image-forming larval camera eyes of the sunburst diving beetle Thermonectus marmoratus. To investigate this possibility, we used an in-depth comparative whole-tissue transcriptomics approach. Specifically, we dissected the larval principal camera eyes into SupC- and retina-containing regions and generated the respective transcriptomes. Our analysis revealed several common features of SupCs including enrichment of genes that are important for glial function (e.g. gap junction proteins such as innexin 3), glycogen production (glycogenin), and energy metabolism (glutamine synthetase 1 and 2). To evaluate similarities, we compared our transcriptomes with those of fly (Semper cells) and vertebrate (Müller glia) eye glia as well as respective retinas. T. marmoratus SupCs were found to have distinct genetic overlap with both fly and vertebrate eye glia. These results suggest that T. marmoratus SupCs are a form of glia, and like photoreceptors, may be deeply conserved.
Collapse
Affiliation(s)
- Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA.
| | - Aaron Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Rathore S, Stahl A, Benoit JB, Buschbeck EK. Exploring the molecular makeup of support cells in insect camera eyes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549729. [PMID: 37503285 PMCID: PMC10370194 DOI: 10.1101/2023.07.19.549729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Animals generally have either compound eyes, which have evolved repeatedly in different invertebrates, or camera eyes, which have evolved many times across the animal kingdom. Both eye types include two important kinds of cells: photoreceptor cells, which can be excited by light, and non-neuronal support cells (SupCs), which provide essential support to photoreceptors. Despite many examples of convergence in eye evolution, similarities in the gross developmental plan and molecular signatures have been discovered, even between phylogenetically distant and functionally different eye types. For this reason, a shared evolutionary origin has been considered for photoreceptors. In contrast, only a handful of studies, primarily on the compound eyes of Drosophila melanogaster , have demonstrated molecular similarities in SupCs. D. melanogaster SupCs (Semper cells and primary pigment cells) are specialized eye glia that share several molecular similarities with certain vertebrate eye glia, including Müller glia. This led us to speculate whether there are conserved molecular signatures of SupCs, even in functionally different eyes such as the image-forming larval camera eyes of the sunburst diving beetle Thermonectus marmoratus . To investigate this possibility, we used an in-depth comparative whole-tissue transcriptomics approach. Specifically, we dissected the larval principal camera eyes into SupC- and retina-containing regions and generated the respective transcriptomes. Our analysis revealed several conserved features of SupCs including enrichment of genes that are important for glial function (e.g. gap junction proteins such as innexin 3), glycogen production (glycogenin), and energy metabolism (glutamine synthetase 1 and 2). To evaluate the extent of conservation, we compared our transcriptomes with those of fly (Semper cells) and vertebrate (Müller glia) eye glia as well as respective retinas. T. marmoratus SupCs were found to have distinct genetic overlap with both fly and vertebrate eye glia. These results provide molecular evidence for the deep conservation of SupCs in addition to photoreceptor cells, raising essential questions about the evolutionary origin of eye-specific glia in animals.
Collapse
|
9
|
Tan C, Cai X, Luo Z, Li Z, Xiu C, Chen Z, Bian L. Visual acuity of Empoasca onukii (Hemiptera, Cicadellidae). INSECTS 2023; 14:370. [PMID: 37103185 PMCID: PMC10145553 DOI: 10.3390/insects14040370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Empoasca onukii is a common tea plant pest with a preference for the color yellow. Past work has shown that host leaf color is a key cue for habitat location for E. onukii. Before studying the effect of foliage shape, size, or texture on habitat localization, it is necessary to determine the visual acuity and effective viewing distance of E. onukii. In this study, a combination of 3D microscopy and X-ray microtomography showed that visual acuity did not significantly differ between females and males, but there were significant differences in the visual acuity and optical sensitivity among five regions of E. onukii's compound eyes. The dorsal ommatidia had the highest visual acuity at 0.28 cycles per degree (cpd) but the lowest optical sensitivity (0.02 μm2sr), which indicated a trade-off between visual resolution and optical sensitivity for E. onukii. The visual acuity determined from the behavioral experiment was 0.14 cpd; E. onukii exhibited low-resolution vision and could only distinguish the units in a yellow/red pattern within 30 cm. Therefore, visual acuity contributes to the limited ability of E. onukii to distinguish the visual details of a distant target, which might be perceived as a lump of blurred color of intermediate brightness.
Collapse
Affiliation(s)
- Chang Tan
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Zongxiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Chunli Xiu
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Lei Bian
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| |
Collapse
|
10
|
Rathore S, Meece M, Charlton-Perkins M, Cook TA, Buschbeck EK. Probing the conserved roles of cut in the development and function of optically different insect compound eyes. Front Cell Dev Biol 2023; 11:1104620. [PMID: 37065850 PMCID: PMC10102356 DOI: 10.3389/fcell.2023.1104620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Astonishing functional diversity exists among arthropod eyes, yet eye development relies on deeply conserved genes. This phenomenon is best understood for early events, whereas fewer investigations have focused on the influence of later transcriptional regulators on diverse eye organizations and the contribution of critical support cells, such as Semper cells (SCs). As SCs in Drosophila melanogaster secrete the lens and function as glia, they are critical components of ommatidia. Here, we perform RNAi-based knockdowns of the transcription factor cut (CUX in vertebrates), a marker of SCs, the function of which has remained untested in these cell types. To probe for the conserved roles of cut, we investigate two optically different compound eyes: the apposition optics of D. melanogaster and the superposition optics of the diving beetle Thermonectus marmoratus. In both cases, we find that multiple aspects of ocular formation are disrupted, including lens facet organization and optics as well as photoreceptor morphogenesis. Together, our findings support the possibility of a generalized role for SCs in arthropod ommatidial form and function and introduces Cut as a central player in mediating this role.
Collapse
Affiliation(s)
- Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Michael Meece
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Mark Charlton-Perkins
- Division of Developmental Biology and Department of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tiffany A. Cook
- Center of Molecular Medicine and Genetics, Department of Ophthalmological, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Tiffany A. Cook, ; Elke K. Buschbeck,
| | - Elke K. Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Tiffany A. Cook, ; Elke K. Buschbeck,
| |
Collapse
|
11
|
Lyu F, Hai X, Wang Z. A Review of the Host Plant Location and Recognition Mechanisms of Asian Longhorn Beetle. INSECTS 2023; 14:insects14030292. [PMID: 36975977 PMCID: PMC10054519 DOI: 10.3390/insects14030292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 05/31/2023]
Abstract
The Asian longhorn beetle (ALB), Anoplophora glabripennis Motschulsky, is a polyphagous xylophage with dozens of reported host tree species. However, the mechanisms by which individuals locate and recognize host plants are still unknown. We summarize the current knowledge of the host plant list, host kairomones, odorant-binding proteins (OBPs) and microbial symbionts of this beetle and their practical applications, and finally discuss the host localization and recognition mechanisms. A total of 209 species (or cultivars) were reported as ALB host plants, including 101 species of higher sensitivity; host kairomones were preferentially bound to ALB recombinant OBPs, including cis-3-hexen-1-ol, δ-3-carene, nonanal, linalool, and β-caryophyllene. In addition, microbial symbionts may help ALB degrade their host. Complementarity of tree species with different levels of resistance may reduce damage, but trapping effectiveness for adults was limited using a combination of host kairomones and sex pheromones in the field. Therefore, we discuss host location behavior from a new perspective and show that multiple cues are used by ALB to locate and recognize host plants. Further research into host resistance mechanisms and visual signal recognition, and the interaction of sex pheromone synthesis, symbiont microbiota, and host plants may help reveal the host recognition mechanisms of ALBs.
Collapse
Affiliation(s)
- Fei Lyu
- Correspondence: (F.L.); (Z.W.); Tel.: +86-03127520216 (F.L.)
| | | | - Zhigang Wang
- Correspondence: (F.L.); (Z.W.); Tel.: +86-03127520216 (F.L.)
| |
Collapse
|
12
|
Lavin R, Rathore S, Bauer B, Disalvo J, Mosley N, Shearer E, Elia Z, Cook TA, Buschbeck EK. EyeVolve, a modular PYTHON based model for simulating developmental eye type diversification. Front Cell Dev Biol 2022; 10:964746. [PMID: 36092740 PMCID: PMC9459020 DOI: 10.3389/fcell.2022.964746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Vision is among the oldest and arguably most important sensory modalities for animals to interact with their external environment. Although many different eye types exist within the animal kingdom, mounting evidence indicates that the genetic networks required for visual system formation and function are relatively well conserved between species. This raises the question as to how common developmental programs are modified in functionally different eye types. Here, we approached this issue through EyeVolve, an open-source PYTHON-based model that recapitulates eye development based on developmental principles originally identified in Drosophila melanogaster. Proof-of-principle experiments showed that this program’s animated timeline successfully simulates early eye tissue expansion, neurogenesis, and pigment cell formation, sequentially transitioning from a disorganized pool of progenitor cells to a highly organized lattice of photoreceptor clusters wrapped with support cells. Further, tweaking just five parameters (precursor pool size, founder cell distance and placement from edge, photoreceptor subtype number, and cell death decisions) predicted a multitude of visual system layouts, reminiscent of the varied eye types found in larval and adult arthropods. This suggests that there are universal underlying mechanisms that can explain much of the existing arthropod eye diversity. Thus, EyeVolve sheds light on common principles of eye development and provides a new computational system for generating specific testable predictions about how development gives rise to diverse visual systems from a commonly specified neuroepithelial ground plan.
Collapse
Affiliation(s)
- Ryan Lavin
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Shubham Rathore
- Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Brian Bauer
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Joe Disalvo
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Nick Mosley
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Evan Shearer
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Zachary Elia
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Tiffany A. Cook
- Center of Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Elke K. Buschbeck
- Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Elke K. Buschbeck,
| |
Collapse
|
13
|
Gonzalez-Bellido PT, Talley J, Buschbeck EK. Evolution of visual system specialization in predatory arthropods. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100914. [PMID: 35346895 DOI: 10.1016/j.cois.2022.100914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Under strong selective pressure for survival, image-forming vision set off an ongoing predatory arms race 500 million years ago. Since then, and particularly so in the arthropods, predatory behavior has driven a myriad of eye adaptations that increase visual performance. In this review, we provide examples of how different arthropod predators have achieved improvements in key visual features such as spatial and temporal resolution of their retina. We then describe morphological, neural and behavioral strategies used by animals in this group to gather crucial information about the prey, such as its distance, velocity and size. We also highlight the importance of head and body tracking movements to aid in categorizing the potential prey, and briefly mention the ongoing work on the sensorimotor transformations necessary for target interception.
Collapse
Affiliation(s)
| | - Jennifer Talley
- Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL 32542, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
14
|
Buschbeck E, Warrant E. Editorial. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 63:101073. [PMID: 34052786 DOI: 10.1016/j.asd.2021.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|