1
|
Mossor AM, McKamy AJ, Young MW, Rochté AJ, Avey‐Arroyo JA, Nyakatura JA, Granatosky MC, Butcher MT, Young JW. Three-Dimensional Limb Kinematics in Brown-Throated Three-Toed Sloths (Bradypus variegatus) During Suspensory Quadrupedal Locomotion. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:564-577. [PMID: 40033687 PMCID: PMC12053029 DOI: 10.1002/jez.2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Suspensory locomotion differs significantly from upright quadrupedal locomotion in mammals. Nevertheless, we know little concerning joint kinematics of suspensory movement. Here, we report three-dimensional kinematic data during locomotion in brown-throated three-toed sloths (Bradypus variegatus). Individuals were recorded with four calibrated high-speed cameras while performing below-branch locomotion on a simulated branch. The elbow (range 73°-177°; mean 114°) and knee (range 107°-175°; mean 140°) were extended throughout support phase, with elbow extension increasing with speed. Both the fore- and hindlimb displayed abducted proximal limb elements (i.e., arm and thigh) and adducted distal elements (i.e., forearm and leg) during all support phase points. Comparisons of elbow and knee angles between brown-throated three-toed sloths and Linnaeus's two-toed sloths (Choloepus didactylus) showed that brown-throated three-toed sloths had significantly more extended joint positions during all support phase points. Additionally, across all kinematic measurements, brown-throated three-toed sloths showed significant differences between homologous fore- and hindlimb segments, with the knee being more extended than the elbow and the arm being more abducted than the thigh. These results are consistent with previously established morphological and behavioral differences between extant sloth genera, with three-toed sloths showing significantly longer forelimbs than hindlimbs and typically favoring locomotion on angled supports. Our findings show that, despite overall similarities in the use of below-branch quadrupedal locomotion, the two sloth lineages achieve this locomotor mode with differing kinematic strategies (e.g., degree of joint flexion). These differences may be attributed to the distinct evolutionary pathways through which obligate suspensory locomotion arose in each lineage.
Collapse
Affiliation(s)
- Angela M. Mossor
- Kent State UniversityKentOhioUSA
- Northeast Ohio Medical UniversityRootstownOhioUSA
| | | | - Melody W. Young
- Department of AnatomyNew York Institute of Technology, College of Osteopathic MedicineOld WestburyNew YorkUSA
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Andrew J. Rochté
- The Sloth Sanctuary of Costa Rica, PenshurstLimonCosta Rica
- Dallas World AquariumDallasTexasUSA
| | - Judy A. Avey‐Arroyo
- The Sloth Sanctuary of Costa Rica, PenshurstLimonCosta Rica
- Dallas World AquariumDallasTexasUSA
| | | | - Michael C. Granatosky
- Department of AnatomyNew York Institute of Technology, College of Osteopathic MedicineOld WestburyNew YorkUSA
- Center for Biomedical Innovation, New York Institute of Technology, College of Osteopathic MedicineOld WestburyNew YorkUSA
- Duke Lemur CenterDuke UniversityDurhamNorth CarolinaUSA
| | | | - Jesse W. Young
- Kent State UniversityKentOhioUSA
- Northeast Ohio Medical UniversityRootstownOhioUSA
| |
Collapse
|
2
|
Deak MD, Porter WP, Mathewson PD, Lovelace DM, Flores RJ, Tripati AK, Eagle RA, Schwartz DM, Butcher MT. Metabolic skinflint or spendthrift? Insights into ground sloth integument and thermophysiology revealed by biophysical modeling and clumped isotope paleothermometry. J MAMM EVOL 2025; 32:1. [PMID: 39822851 PMCID: PMC11732909 DOI: 10.1007/s10914-024-09743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Remains of megatheres have been known since the 18th -century and were among the first megafaunal vertebrates to be studied. While several examples of preserved integument show a thick coverage of fur for smaller ground sloths living in cold climates such as Mylodon and Nothrotheriops, comparatively very little is known about megathere skin. Assuming a typical placental mammal metabolism, it was previously hypothesized that megatheres would have had little-to-no fur as they achieved giant body sizes. Here the "hairless model of integument" is tested using geochemical analyses to estimate body temperature to generate novel models of ground sloth metabolism, fur coverage, and paleoclimate with Niche Mapper software. The simulations assuming metabolic activity akin to those of modern xenarthrans suggest that sparse fur coverage would have resulted in cold stress across most latitudinal ranges inhabited by extinct ground sloths. Specifically, Eremotherium predominantly required dense 10 mm fur with implications for seasonal changes of coat depth in northernmost latitudes and sparse fur in the tropics; Megatherium required dense 30 mm fur year-round in its exclusive range of cooler, drier climates; Mylodon and Nothrotheriops required dense 10-50 mm fur to avoid thermal stress, matching the integument remains of both genera, and further implying the use of behavioral thermoregulation. Moreover, clumped isotope paleothermometry data from the preserved teeth of four genera of ground sloth yielded reconstructed body temperatures lower than those previously reported for large terrestrial mammals (23 ± 5-32 ± 3° C). This combination of low metabolisms and thick fur allowed ground sloths to inhabit various environments. Supplementary information The online version contains supplementary material available at 10.1007/s10914-024-09743-2.
Collapse
Affiliation(s)
- Michael D. Deak
- Department of Chemical and Biological Sciences, Youngstown State University, Youngstown, OH USA
| | - Warren P. Porter
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, WI USA
| | - Paul D. Mathewson
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, WI USA
| | - David M. Lovelace
- Department of Geosciences, University of Wisconsin - Madison, Madison, WI USA
| | - Randon J. Flores
- Department of Earth and Space Sciences, University of California - Los Angeles, Los Angeles, CA USA
| | - Aradhna K. Tripati
- Department of Earth and Space Sciences, University of California - Los Angeles, Los Angeles, CA USA
- Department of Atmospheric and Oceanic Sciences, Institute of the Environment and Sustainability, Center for Diverse Leadership in Science, University of California - Los Angeles, Los Angeles, CA USA
| | - Robert A. Eagle
- Department of Earth and Space Sciences, University of California - Los Angeles, Los Angeles, CA USA
| | | | - Michael T. Butcher
- Department of Chemical and Biological Sciences, Youngstown State University, Youngstown, OH USA
| |
Collapse
|
3
|
Iijima M, Mayerl CJ, Munteanu VD, Blob RW. Forelimb muscle activation patterns in American alligators: Insights into the evolution of limb posture and powered flight in archosaurs. J Anat 2024; 244:943-958. [PMID: 38242862 PMCID: PMC11095314 DOI: 10.1111/joa.14011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
The evolution of archosaurs provides an important context for understanding the mechanisms behind major functional transformations in vertebrates, such as shifts from sprawling to erect limb posture and the acquisition of powered flight. While comparative anatomy and ichnology of extinct archosaurs have offered insights into musculoskeletal and gait changes associated with locomotor transitions, reconstructing the evolution of motor control requires data from extant species. However, the scarcity of electromyography (EMG) data from the forelimb, especially of crocodylians, has hindered understanding of neuromuscular evolution in archosaurs. Here, we present EMG data for nine forelimb muscles from American alligators during terrestrial locomotion. Our aim was to investigate the modulation of motor control across different limb postures and examine variations in motor control across phylogeny and locomotor modes. Among the nine muscles examined, m. pectoralis, the largest forelimb muscle and primary shoulder adductor, exhibited significantly smaller mean EMG amplitudes for steps in which the shoulder was more adducted (i.e., upright). This suggests that using a more adducted limb posture helps to reduce forelimb muscle force and work during stance. As larger alligators use a more adducted shoulder and hip posture, the sprawling to erect postural transition that occurred in the Triassic could be either the cause or consequence of the evolution of larger body size in archosaurs. Comparisons of EMG burst phases among tetrapods revealed that a bird and turtle, which have experienced major musculoskeletal transformations, displayed distinctive burst phases in comparison to those from an alligator and lizard. These results support the notion that major shifts in body plan and locomotor modes among sauropsid lineages were associated with significant changes in muscle activation patterns.
Collapse
Affiliation(s)
- Masaya Iijima
- Structure and Motion Lab, Department of Comparative Biomedical SciencesThe Royal Veterinary CollegeHertfordshireUK
- Nagoya University MuseumNagoyaJapan
| | | | - V. David Munteanu
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Richard W. Blob
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
4
|
Morgan DM, Spainhower KB, Mossor AM, Avey‐Arroyo JA, Butcher M. Muscle architectural properties indicate a primary role in support for the pelvic limb of three-toed sloths (Bradypus variegatus). J Anat 2023; 243:448-466. [PMID: 37190673 PMCID: PMC10439369 DOI: 10.1111/joa.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Tree sloths evolved below-branch locomotion making them one of few mammalian taxa beyond primates for which suspension is nearly obligatory. Suspension requires strong limb flexor muscles that provide both propulsion and braking/support, and available locomotor kinetics data indicate that these roles differ between fore- and hindlimb pairs. Muscle structure in the pelvic limb is hypothesized to be a key anatomical correlate of function in braking/support during suspensory walking and propulsion and/or support during vertical climbing. This expectation was tested by quantifying architecture properties in the hindlimb limb musculature of brown-throated three-toed sloths (Bradypus variegatus: N = 7) to distinguish the roles of the flexor/extensor functional muscle groups at each joint. Measurements of muscle moment arm (rm ), mass, belly length, fascicle length, pennation angle, and physiological cross-sectional area (PCSA) were taken from n = 45 muscles. Overall, most muscles studied show properties for contractile excursion and fast joint rotational velocity. However, the flexor musculature is more massive (p = 0.048) and has larger PCSA (p = 0.003) than the extensors, especially at the knee joint and digits where well-developed and strong flexors are capable of applying large joint torque. Moreover, selected hip flexors/extensors and knee flexors have modified long rm that can amplify applied joint torque in muscles with otherwise long, parallel fascicles, and one muscle (m. iliopsoas) was capable of moderately high power in B. variegatus. The architectural properties observed in the hip flexors and extensors match well with roles in suspensory braking and vertical propulsion, respectively, whereas strong knee flexors and digital flexors appear to be the main muscles providing suspensory support in the pelvic limb. With aid in support by the forelimbs and the use of adaptive slow locomotion and slow muscle fiber recruitment patterns, structure-function in the tensile limb systems of sloths appears to collectively represent an additional mechanism for energy conservation.
Collapse
Affiliation(s)
- D. M. Morgan
- Department of Chemical and Biological SciencesYoungstown State UniversityOhioYoungstownUSA
| | - K. B. Spainhower
- Department of Chemical and Biological SciencesYoungstown State UniversityOhioYoungstownUSA
| | - A. M. Mossor
- Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
- School of Biomedical SciencesKent State UniversityKentOhioUSA
| | | | - M. T. Butcher
- Department of Chemical and Biological SciencesYoungstown State UniversityOhioYoungstownUSA
| |
Collapse
|
5
|
Young MW, McKamy AJ, Dickinson E, Yarbro J, Ragupathi A, Guru N, Avey-Arroyo JA, Butcher MT, Granatosky MC. Three toes and three modes: Dynamics of terrestrial, suspensory, and vertical locomotion in brown-throated three-toed sloths (Bradypodidae, Xenarthra). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:383-397. [PMID: 36747379 DOI: 10.1002/jez.2684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/08/2023]
Abstract
Living sloths exhibit numerous anatomical specializations towards inverted quadrupedalism, however, previous studies have noted a more varied locomotor repertoire than previously anticipated. In this study, we present spatiotemporal gait characteristics and triaxial kinetic data from the brown-throated three-toed sloth (Bradypus variegatus) across three locomotor modes: terrestrial quadrupedal "crawling", suspensory walking, and vertical climbing. Compared to quadrupedal crawling and suspensory walking, B. variegatus adopted longer contact times and stride durations, larger duty factors, and greater speed during vertical climbing. Net fore-aft impulses were significantly greater during vertical climbing in both limb pairs than in quadrupedal crawling and suspensory walking. Functionally, during quadrupedal crawling and vertical climbing, both limb pairs served propulsive roles, while differentiation between a propulsive forelimb and braking hindlimb was observed during suspension. Net tangential forces differentiated vertical climbing kinetics from the other modes of locomotion, with the introduction of bidirectional pulling and pushing forces in the forelimb and hindlimb, respectively. The net mediolateral impulses were similar in vertical climbing and quadrupedal crawling as both limb pairs directed forces in one direction, whereas during suspensory walking, the laterally dominant forelimb was opposed by the medially dominant hindlimb. In total, this study provides novel data on the diverse locomotor dynamics in a slow-moving arboreal tetrapod and posits new testable hypotheses about the neuroplasticity and ease of transitioning between locomotor behaviors. The strikingly similar kinetic profiles of quadrupedal crawling and suspensory walking compared to vertical climbing suggest shared neuromuscular and mechanical demands between these mirrored locomotor modes.
Collapse
Affiliation(s)
- Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Andrew J McKamy
- Department of Biological Sciences, Youngstown State University, Youngstown, Ohio, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Johnathan Yarbro
- New York Institute of Technology College of Osteopathic Medicine, Jonesboro, Arkansas, USA
| | - Ashwin Ragupathi
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Navjot Guru
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | | | - Michael T Butcher
- Department of Biological Sciences, Youngstown State University, Youngstown, Ohio, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA.,Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
6
|
Young MW, Granatosky MC, Avey‐Arroyo JA, Butcher MT, Dickinson E. Grip it good:
in vivo
grip force across substrate diameters in the brown‐throated three‐toed sloth (
Bradypus variegatus
). J Zool (1987) 2022. [DOI: 10.1111/jzo.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M. W. Young
- Department of Anatomy New York Institute of Technology College of Osteopathic Medicine Old Westbury NY USA
| | - M. C. Granatosky
- Department of Anatomy New York Institute of Technology College of Osteopathic Medicine Old Westbury NY USA
- Center for Biomedical Innovation New York Institute of Technology College of Osteopathic Medicine Old Westbury NY USA
| | | | - M. T. Butcher
- Department of Chemical and Biological Sciences Youngstown State University Youngstown OH USA
| | - E. Dickinson
- Department of Anatomy New York Institute of Technology College of Osteopathic Medicine Old Westbury NY USA
| |
Collapse
|
7
|
Dickinson E, Young MW, Granatosky MC. Testing mechanisms for weight support distribution during inverted quadrupedalism in primates. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:699-708. [PMID: 35567440 DOI: 10.1002/jez.2605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
A key characteristic of primate above-branch arboreal locomotion is hindlimb-biased weight support, subverting the typical mammalian condition in which the majority of the body weight is supported by the forelimb. This shift is thought to reflect an adaptation toward the arboreal niches exploited by early primates. However, above-branch quadrupedalism represents only one locomotor mode employed by primates in arboreal contexts. Inverted quadrupedal gaits, in which primates are suspended beneath branches by their hands and feet, have been documented in more than 50 primate taxa. This gait is characterized by a return to forelimb-biased weight distributions and a transition from peak vertical forces being greatest in the hindlimb to being greatest in the forelimb, which may occur to protect the hindlimb from high magnitudes of tensile loading when inverted. In this study, we compare kinetic and kinematic data during upright and inverted quadrupedalism in Lemur catta, Varecia variegata, Cebus capucinus, and Saimiri sciureus. These data are referenced against a classical inverted quadrupedal model: the two-toed sloth (Choloepus didactylus). Our findings show that inverted quadrupedalism in primates is differentiated from above-branch quadrupedalism by increases in forelimb weight support, forelimb contact times, and both forelimb and hindlimb joint excursions. Previously postulated biomechanical models outlining mechanisms relating to the control of weight support during upright walking do not translate well to inverted quadrupedal walking. We suggest that inverted primates may simply be adopting basal neuromuscular gait characteristics and applying them facultatively to this infrequent locomotor behavior.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
8
|
Butcher MT, Morgan DM, Spainhower KB, Thomas DR, Chadwell BA, Avey‐Arroyo JA, Kennedy SP, Cliffe RN. Myology of the pelvic limb of the brown-throated three-toed sloth (Bradypus variegatus). J Anat 2022; 240:1048-1074. [PMID: 35037260 PMCID: PMC9119613 DOI: 10.1111/joa.13626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/01/2022] Open
Abstract
Tree sloths rely on their limb flexors for bodyweight support and joint stability during suspensory locomotion and posture. This study aims to describe the myology of three-toed sloths and identify limb muscle traits that indicate modification for suspensorial habit. The pelvic limbs of the brown-throated three-toed sloth (Bradypus variegatus) were dissected, muscle belly mass was recorded, and the structural arrangements of the muscles were documented and compared with the available myological accounts for sloths. Overall, the limb musculature is simplified by containing muscles with generally long and parallel fascicles. A number of specific and informative muscle traits are additionally observed in the pelvic limb of B. variegatus: well-developed hip flexors and hip extensors each displaying several fused bellies; massive knee flexors; two heads of the m. adductor longus and m. gracilis; robust digital flexors and flexor tendons; m. tibialis cranialis muscle complex originating from the tibia and fibula and containing a modified m. extensor digitorum I longus; appreciable muscle mass devoted to ankle flexion and hindfoot supination; only m. extensor digitorum brevis acts to extend the digits. Collectively, the findings for tree sloths emphasize muscle mass and organization for suspensory support namely by the hip flexors, knee flexors, and limb adductors, for which the latter two groups may stabilize suspensory postures by exerting appreciable medially-directed force on the substrate. Specializations in the distal limb are also apparent for sustained purchase of the substrate by forceful digital flexion coupled with strong ankle flexion and supination of the hind feet, which is permitted by the reorganization of several digital extensors. Moreover, the reduction or loss of other digital flexor and ab-adductor muscles marks a dramatic simplification of the intrinsic foot musculature in B. variegatus, the extent to which varies across extant species of two- and three-toed tree sloths and likely is related to substrate preference/use.
Collapse
Affiliation(s)
- Michael T. Butcher
- Department of Chemical, Biological and Forensic SciencesYoungstown State UniversityYoungstownOhioUSA
| | - Dakota M. Morgan
- Department of Chemical, Biological and Forensic SciencesYoungstown State UniversityYoungstownOhioUSA
| | - Kyle B. Spainhower
- Department of Chemical, Biological and Forensic SciencesYoungstown State UniversityYoungstownOhioUSA
| | - Dylan R. Thomas
- Department of Chemical, Biological and Forensic SciencesYoungstown State UniversityYoungstownOhioUSA
| | - Brad A. Chadwell
- Department of AnatomyIdaho College of Osteopathic MedicineMeridianIdahoUSA
| | | | - Sarah P. Kennedy
- Sloth Conservation FoundationPuerto Viejo de TalamancaLimonCosta Rica
| | - Rebecca N. Cliffe
- Sloth Conservation FoundationPuerto Viejo de TalamancaLimonCosta Rica
| |
Collapse
|
9
|
Mossor AM, Young JW, Butcher MT. Does a suspensory lifestyle result in increased tensile strength?: Organ level material properties of sloth limb bones. J Exp Biol 2022; 225:274333. [PMID: 35142360 DOI: 10.1242/jeb.242866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/07/2022] [Indexed: 11/20/2022]
Abstract
The material composition of vertebrate connective tissue is highly conserved across taxa. Existing data suggest that the compressive and tensile strength of limb bones are very similar despite marked variation in limb posture and locomotor patterns. However, the material properties of limb bone tissue from suspensory taxa have not been formally evaluated. Sloths are nearly obligatory in their use of below-branch suspensory locomotion and posture, thus placing their limb bones and associated soft tissue structures under routine tensile loading. It is possible that sloth limb bones are modified for enhanced tensile strength, perhaps at the expense of compressive strength. Fore- and hindlimb bones of two-toed (Choloepus hoffmanni) and three-toed (Bradypus variegatus) sloths were tested in compression and bending to evaluate this hypothesis. Strength and elastic (Young's) modulus were similarly lower in sloth limb bones during both compression and bending, as compared to pronograde taxa. Ratios of peak bending strength to compressive strength additionally were elevated (sloths: 1.4-1.7; upright taxa: 0.6-1.2) for sloth limb bones. Overall, the material properties measured from the limb bones of tree sloths support our hypothesis of predicted function in a tensile limb system. Future studies should aim to directly test bones in tension to confirm indications of elevated axial tensile strength. Nevertheless, the results herein expand understanding of functional adaptation in mammalian tissue for a range of locomotor/postural behaviors that were previously unexplored.
Collapse
Affiliation(s)
- A M Mossor
- Department of Biological Sciences, Youngstown State University, Youngstown OH 44555, USA.,Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH, USA
| | - J W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH, USA
| | - M T Butcher
- Department of Biological Sciences, Youngstown State University, Youngstown OH 44555, USA
| |
Collapse
|
10
|
Integrative Approach Uncovers New Patterns of Ecomorphological Convergence in Slow Arboreal Xenarthrans. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09590-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIdentifying ecomorphological convergence examples is a central focus in evolutionary biology. In xenarthrans, slow arboreality independently arose at least three times, in the two genera of ‘tree sloths’, Bradypus and Choloepus, and the silky anteater, Cyclopes. This specialized locomotor ecology is expectedly reflected by distinctive morpho-functional convergences. Cyclopes, although sharing several ecological features with ‘tree sloths’, do not fully mirror the latter in their outstandingly similar suspensory slow arboreal locomotion. We hypothesized that the morphology of Cyclopes is closer to ‘tree sloths’ than to anteaters, but yet distinct, entailing that slow arboreal xenarthrans evolved through ‘incomplete’ convergence. In a multivariate trait space, slow arboreal xenarthrans are hence expected to depart from their sister taxa evolving toward the same area, but not showing extensive phenotypical overlap, due to the distinct position of Cyclopes. Conversely, a pattern of ‘complete’ convergence (i.e., widely overlapping morphologies) is hypothesized for ‘tree sloths’. Through phylogenetic comparative methods, we quantified humeral and femoral convergence in slow arboreal xenarthrans, including a sample of extant and extinct non-slow arboreal xenarthrans. Through 3D geometric morphometrics, cross-sectional properties (CSP) and trabecular architecture, we integratively quantified external shape, diaphyseal anatomy and internal epiphyseal structure. Several traits converged in slow arboreal xenarthrans, especially those pertaining to CSP. Phylomorphospaces and quantitative convergence analyses substantiated the expected patterns of ‘incomplete’ and ‘complete’ convergence for slow arboreal xenarthrans and ‘tree sloths’, respectively. This work, highlighting previously unidentified convergence patterns, emphasizes the value of an integrative multi-pronged quantitative approach to cope with complex mechanisms underlying ecomorphological convergence.
Collapse
|
11
|
Mossor AM, Austin BL, Avey-Arroyo JA, Butcher MT. A Horse of a Different Color?: Tensile Strength and Elasticity of Sloth Flexor Tendons. Integr Org Biol 2021; 2:obaa032. [PMID: 33796818 DOI: 10.1093/iob/obaa032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tendons must be able to withstand the tensile forces generated by muscles to provide support while avoiding failure. The properties of tendons in mammal limbs must therefore be appropriate to accommodate a range of locomotor habits and posture. Tendon collagen composition provides resistance to loading that contributes to tissue strength which could, however, be modified to not exclusively confer large strength and stiffness for elastic energy storage/recovery. For example, sloths are nearly obligate suspenders and cannot run, and due to their combined low metabolic rate, body temperature, and rate of digestion, they have an extreme need to conserve energy. It is possible that sloths have a tendon "suspensory apparatus" functionally analogous to that in upright ungulates, thus allowing for largely passive support of their body weight below-branch, while concurrently minimizing muscle contractile energy expenditure. The digital flexor tendons from the fore- and hindlimbs of two-toed (Choloepus hoffmanni) and three-toed (Bradypus variegatus) sloths were loaded in tension until failure to test this hypothesis. Overall, tensile strength and elastic (Young's) modulus of sloth tendons were low, and these material properties were remarkably similar to those of equine suspensory "ligaments." The results also help explain previous findings in sloths showing relatively low levels of muscle activation in the digital flexors during postural suspension and suspensory walking.
Collapse
Affiliation(s)
- A M Mossor
- Department of Biological Sciences, Youngstown State University, Youngstown, OH USA
| | - B L Austin
- Department of Biological Sciences, Youngstown State University, Youngstown, OH USA
| | | | - M T Butcher
- Department of Biological Sciences, Youngstown State University, Youngstown, OH USA
| |
Collapse
|
12
|
Spainhower KB, Metz AK, Yusuf ARS, Johnson LE, Avey-Arroyo JA, Butcher MT. Coming to grips with life upside down: how myosin fiber type and metabolic properties of sloth hindlimb muscles contribute to suspensory function. J Comp Physiol B 2020; 191:207-224. [PMID: 33211164 DOI: 10.1007/s00360-020-01325-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/15/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
Sloths exhibit almost obligatory suspensory locomotion and posture. These behaviors require both strength and fatigue resistance, although we previously found muscle fiber type characteristics in the forelimbs of sloths that belied these initial expectations. Based on locomotor roles of the forelimbs versus hindlimbs in propulsion and braking, respectively, sloth hindlimb musculature should be adapted for force production and energy savings by a near homogeneous expression of slow myosin heavy chain (MHC) fibers. This hypothesis was tested by determining MHC fiber type (%) distribution and energy metabolism in the hindlimbs of three-toed (B. variegatus, N = 5) and two-toed (C. hoffmanni, N = 3) sloths. A primary expression of the slow MHC-1 isoform was found in the hindlimbs of both species. Slow MHC fiber type (%) was significantly greater in the flexors of B. variegatus, whereas expression of fast MHC-2A fibers was significantly greater in the extensors of C. hoffmannni. MHC-1 fibers were largest in cross-sectional area (CSA) and comprised the greatest %CSA in each muscle sampled from both species. Enzyme assays showed elevated activity for anaerobic enzymes (CK and LDH) compared with low-to-moderate activity for aerobic enzymes (3-HAD and CS), and only CK activity was related to body size. These findings emphasize a joint stabilization role by the hindlimbs during suspension, especially in smaller three-toed sloths, and suggest that larger two-toed sloths could have muscles further modified for greater power output and/or prolonged arboreal maneuvering. Moreover, modifications to muscle metabolism rather than MHC expression may be more reflective of functional adaptation in sloth limbs.
Collapse
Affiliation(s)
- Kyle B Spainhower
- Department of Biological Sciences, Youngstown State University, 4013 Ward Beecher Science Hall, Youngstown, OH, 44555, USA
| | - Allan K Metz
- Department of Biological Sciences, Youngstown State University, 4013 Ward Beecher Science Hall, Youngstown, OH, 44555, USA
| | - Abdel-Ruhman S Yusuf
- Department of Biological Sciences, Youngstown State University, 4013 Ward Beecher Science Hall, Youngstown, OH, 44555, USA
| | - Lydia E Johnson
- Department of Biological Sciences, Youngstown State University, 4013 Ward Beecher Science Hall, Youngstown, OH, 44555, USA
| | | | - Michael T Butcher
- Department of Biological Sciences, Youngstown State University, 4013 Ward Beecher Science Hall, Youngstown, OH, 44555, USA.
| |
Collapse
|