1
|
Alley EE, Warrier T, Saleem R, Scott GR. Thermal sensitivity of respiration and ROS emission of muscle mitochondria in deer mice. J Comp Physiol B 2025; 195:227-234. [PMID: 40014133 DOI: 10.1007/s00360-025-01607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/11/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
The impacts of heat exposure on mitochondrial physiology are poorly understood in most mammals. We examined the thermal effects on muscle mitochondrial function in deer mice (Peromyscus maniculatus), a species in which running endurance is impaired when heat exposure increases body temperature beyond 40 °C. Mitochondrial physiology was examined at 37, 40, and 42 °C using both permeabilized fibres and isolated mitochondria from the gastrocnemius muscle. Hot temperatures increased leak respiration, reduced the coupling efficiency of oxidative phosphorylation, and increased reactive oxygen species (ROS) emission. These results suggest that heat exposure reduces mitochondrial efficiency, which could contribute to impairments in running performance, and may also induce oxidative stress. Thermal effects on mitochondrial function may thus represent a potential vulnerability during heat exposure in mammals.
Collapse
Affiliation(s)
- Evelyn E Alley
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Tanisha Warrier
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Ranim Saleem
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
2
|
Crandell KE, Powers DR, Tobalske BW. The role of plumage and heat dissipation areas in thermoregulation in doves. J Exp Biol 2025; 228:JEB248200. [PMID: 39976466 PMCID: PMC12000677 DOI: 10.1242/jeb.248200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/20/2024] [Indexed: 04/18/2025]
Abstract
Avian plumage contributes to the regulation of body temperature. In most climates, avian heat dissipation occurs passively via radiation, conduction and convection owing to the thermal gradient between the environment and the animal. The muscles that power flight also produce significant heat that must be dissipated. How plumage and areas with sparse or no feathers (termed 'heat dissipation areas', HDAs) interact with these mechanisms is unclear. We examined the role of plumage as an insulator, or dissipator, of heat in ringed turtle-doves (Streptopelia risoria) under four thermal regimes: resting, post-flight, heating via radiative lamps, and cooling via wind. We measured internal body temperature and skin-level temperature (under the plumage) using thermal PIT tags alongside surface temperature using a thermal imaging camera. Flight increased internal temperature by 0.6°C compared with resting, but the other treatments did not have significant effects. The skin-level temperature during wind exposure was 1.6°C cooler than in other conditions. HDAs changed in surface area above 35°C but not maximum temperature among treatments. Post-flight and during radiant heating, birds increased HDA surface area - most notably at the wing. During simulated wind produced using a fan, the HDAs of the beak and wing were eliminated, and areas of other HDAs were reduced. Our results demonstrate that birds modulate active HDAs to maintain consistent core body temperatures under induced temperature challenges. They also promote caution for extrapolating from thermal images of surface temperature to infer core temperature in birds.
Collapse
Affiliation(s)
- Kristen E. Crandell
- School of Environmental and Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Donald R. Powers
- Biology Department, George Fox University, Newberg, OR 97132, USA
| | - Bret W. Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
3
|
Andreasson F, Rostedt E, Nord A. Measuring body temperature in birds - the effects of sensor type and placement on estimated temperature and metabolic rate. J Exp Biol 2023; 226:jeb246321. [PMID: 37969087 PMCID: PMC10753514 DOI: 10.1242/jeb.246321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Several methods are routinely used to measure avian body temperature, but different methods vary in invasiveness. This may cause stress-induced increases in temperature and/or metabolic rate and, hence, overestimation of both parameters. Choosing an adequate temperature measurement method is therefore key to accurately characterizing an animal's thermal and metabolic phenotype. Using great tits (Parus major) and four common methods with different levels of invasiveness (intraperitoneal, cloacal, subcutaneous, cutaneous), we evaluated the preciseness of body temperature measurements and effects on resting metabolic rate (RMR) over a 40°C range of ambient temperatures. None of the methods caused overestimation or underestimation of RMR compared with un-instrumented birds, and body or skin temperature estimates did not differ between methods in thermoneutrality. However, skin temperature was lower compared with all other methods below thermoneutrality. These results provide empirical guidance for future research that aims to measure body temperature and metabolic rate in small bird models.
Collapse
Affiliation(s)
- Fredrik Andreasson
- Department of Biology, Section for Evolutionary Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | - Elin Rostedt
- Department of Biology, Section for Evolutionary Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | - Andreas Nord
- Department of Biology, Section for Evolutionary Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| |
Collapse
|
4
|
Taff CC, Shipley JR. Inconsistent shifts in warming and temperature variability are linked to reduced avian fitness. Nat Commun 2023; 14:7400. [PMID: 37973809 PMCID: PMC10654519 DOI: 10.1038/s41467-023-43071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
As the climate has warmed, many birds have advanced their breeding timing. However, as climate change also changes temperature distributions, breeding earlier might increase nestling exposure to either extreme heat or cold. Here, we combine >300,000 breeding records from 24 North American birds with historical temperature data to understand how exposure to extreme temperatures has changed. Average spring temperature increased since 1950 but change in timing of extremes was inconsistent in direction and magnitude; thus, populations could not track both average and extreme temperatures. Relative fitness was reduced following heatwaves and cold snaps in 11 and 16 of 24 species, respectively. Latitudinal variation in sensitivity in three widespread species suggests that vulnerability to extremes at range limits may contribute to range shifts. Our results add to evidence demonstrating that understanding individual sensitivity and its links to population level processes is critical for predicting vulnerability to changing climates.
Collapse
Affiliation(s)
- Conor C Taff
- Department of Ecology & Evolutionary Biology and Lab of Ornithology, Cornell University and Biology Department, Colby College, Waterville, ME, 04901, USA.
| | - J Ryan Shipley
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| |
Collapse
|
5
|
Corregidor-Castro A, Morinay J, McKinlay SE, Ramellini S, Assandri G, Bazzi G, Glavaschi A, De Capua EL, Grapputo A, Romano A, Morganti M, Cecere JG, Pilastro A, Rubolini D. Experimental nest cooling reveals dramatic effects of heatwaves on reproduction in a Mediterranean bird of prey. GLOBAL CHANGE BIOLOGY 2023; 29:5552-5567. [PMID: 37469036 DOI: 10.1111/gcb.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Future climatic scenarios forecast increases in average temperatures as well as in the frequency, duration, and intensity of extreme events, such as heatwaves. Whereas behavioral adjustments can buffer direct physiological and fitness costs of exposure to excessive temperature in wild animals, these may prove more difficult during specific life stages when vagility is reduced (e.g., early developmental stages). By means of a nest cooling experiment, we tested the effects of extreme temperatures on different stages of reproduction in a cavity-nesting Mediterranean bird of prey, the lesser kestrel (Falco naumanni), facing a recent increase in the frequency of heatwaves during its breeding season. Nest temperature in a group of nest boxes placed on roof terraces was reduced by shading them from direct sunlight in 2 consecutive years (2021 and 2022). We then compared hatching failure, mortality, and nestling morphology between shaded and non-shaded (control) nest boxes. Nest temperature in control nest boxes was on average 3.9°C higher than in shaded ones during heatwaves, that is, spells of extreme air temperature (>37°C for ≥2 consecutive days) which hit the study area during the nestling-rearing phase in both years. Hatching failure markedly increased with increasing nest temperature, rising above 50% when maximum nest temperatures exceeded 44°C. Nestlings from control nest boxes showed higher mortality during heatwaves (55% vs. 10% in shaded nest boxes) and those that survived further showed impaired morphological growth (body mass and skeletal size). Hence, heatwaves occurring during the breeding period can have both strong lethal and sublethal impacts on different components of avian reproduction, from egg hatching to nestling growth. More broadly, these findings suggest that the projected future increases of summer temperatures and heatwave frequency in the Mediterranean basin and elsewhere in temperate areas may threaten the local persistence of even relatively warm-adapted species.
Collapse
Affiliation(s)
- Alejandro Corregidor-Castro
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca sulle Acque (CNR-IRSA), Brugherio, Italy
| | - Jennifer Morinay
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Bologna, Italy
- Centre for Biodiversity Dynamics, Institutt for Biologi, NTNU, Trondheim, Norway
| | - Susan E McKinlay
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Samuele Ramellini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Assandri
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Bologna, Italy
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Gaia Bazzi
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Bologna, Italy
| | | | | | - Alessandro Grapputo
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
- National Biodiversity Future Centre, Palermo, Italy
| | - Andrea Romano
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Michelangelo Morganti
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca sulle Acque (CNR-IRSA), Brugherio, Italy
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Bologna, Italy
| | - Andrea Pilastro
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
- National Biodiversity Future Centre, Palermo, Italy
| | - Diego Rubolini
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca sulle Acque (CNR-IRSA), Brugherio, Italy
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Eizenga MR, Flewwelling LD, Warrier T, Scott GR. Thermal performance curve of endurance running at high temperatures in deer mice. J Exp Biol 2023; 226:286951. [PMID: 36752138 DOI: 10.1242/jeb.244847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
The impacts of warming temperatures associated with climate change on performance are poorly understood in most mammals. Thermal performance curves are a valuable means of examining the effects of temperature on performance traits, but they have rarely been used in endotherms. Here, we examined the thermal performance curve of endurance running capacity at high temperatures in the deer mouse (Peromyscus maniculatus). Endurance capacity was measured using an incremental speed test on a treadmill, and subcutaneous temperature in the abdominal region was measured as a proxy for body temperature (Tb). Endurance time at 20°C was repeatable but varied appreciably across individuals, and was unaffected by sex or body mass. Endurance capacity was maintained across a broad range of ambient temperatures (Ta) but was reduced above 35°C. Tb during running varied with Ta, and reductions in endurance were associated with Tb greater than 40°C when Ta was above 35°C. At the high Ta that limited endurance running capacity (but not at lower Ta), Tb tended to rise throughout running trials with increases in running speed. Metabolic and thermoregulatory measurements at rest showed that Tb, evaporative water loss and breathing frequency increased at Ta of 36°C and above. Therefore, the upper threshold temperatures at which endurance capacity is impaired are similar to those inducing heat responses at rest in this species. These findings help discern the mechanisms by which deer mice are impacted by warming temperatures, and provide a general approach for examining thermal breadth of performance in small mammals.
Collapse
Affiliation(s)
- Matthew R Eizenga
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Luke D Flewwelling
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Tanisha Warrier
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
7
|
Garrett DR, Pelletier F, Garant D, Bélisle M. Interacting effects of cold snaps, rain, and agriculture on the fledging success of a declining aerial insectivore. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2645. [PMID: 35474622 DOI: 10.1002/eap.2645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/16/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Climate change predicts the increased frequency, duration, and intensity of inclement weather periods such as unseasonably low temperatures (i.e., cold snaps) and prolonged precipitation. Many migratory species have advanced the phenology of important life history stages and, as a result, are likely to be exposed to these periods of inclement spring weather more often, therefore risking reduced fitness and population growth. For declining avian species, including aerial insectivores, anthropogenic landscape changes such as agricultural intensification are another driver of population declines. These landscape changes may affect the foraging ability of food provisioning parents and reduce the survival of nestlings exposed to inclement weather through, for example, pesticide exposure impairing thermoregulation and punctual anorexia. Breeding in agro-intensive landscapes may therefore exacerbate the negative effects of inclement weather under climate change. We observed that a significant reduction in the availability of insect prey occurred when daily maximum temperatures fell below 18.3°C, and thereby defined any day when the maximum temperature fell below this value as a day witnessing a cold snap. We then combined daily information on the occurrence of cold snaps and measures of precipitation to assess their impact on the fledging success of Tree Swallows (Tachycineta bicolor) occupying a nest box system placed across a gradient of agricultural intensification. Estimated fledging success of this declining aerial insectivore was 36.2% lower for broods experiencing 4 cold-snap days during the 12 days post-hatching period versus broods experiencing none, and this relationship was worsened when facing more precipitation. We further found that the overall negative effects of a brood experiencing periods of inclement weather was exacerbated in more agro-intensive landscapes. Our results indicate that two of the primary hypothesized drivers of many avian population declines may interact to further increase the rate of declines in certain landscape contexts.
Collapse
Affiliation(s)
- Daniel R Garrett
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Fanie Pelletier
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dany Garant
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marc Bélisle
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
8
|
O'Connor RS, Le Pogam A, Young KG, Love OP, Cox CJ, Roy G, Robitaille F, Elliott KH, Hargreaves AL, Choy ES, Gilchrist HG, Berteaux D, Tam A, Vézina F. Warming in the land of the midnight sun: breeding birds may suffer greater heat stress at high- versus low-Arctic sites. Proc Biol Sci 2022; 289:20220300. [PMID: 36000233 PMCID: PMC9399709 DOI: 10.1098/rspb.2022.0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
Rising global temperatures are expected to increase reproductive costs for wildlife as greater thermoregulatory demands interfere with reproductive activities. However, predicting the temperatures at which reproductive performance is negatively impacted remains a significant hurdle. Using a thermoregulatory polygon approach, we derived a reproductive threshold temperature for an Arctic songbird-the snow bunting (Plectrophenax nivalis). We defined this threshold as the temperature at which individuals must reduce activity to suboptimal levels (i.e. less than four-time basal metabolic rate) to sustain nestling provisioning and avoid overheating. We then compared this threshold to operative temperatures recorded at high (82° N) and low (64° N) Arctic sites to estimate how heat constraints translate into site-specific impacts on sustained activity level. We predict buntings would become behaviourally constrained at operative temperatures above 11.7°C, whereupon they must reduce provisioning rates to avoid overheating. Low-Arctic sites had larger fluctuations in solar radiation, consistently producing daily periods when operative temperatures exceeded 11.7°C. However, high-latitude birds faced entire, consecutive days when parents would be unable to sustain required provisioning rates. These data indicate that Arctic warming is probably already disrupting the breeding performance of cold-specialist birds and suggests counterintuitive and severe negative impacts of warming at higher latitude breeding locations.
Collapse
Affiliation(s)
- Ryan S. O'Connor
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada G5 L 3A1
- Groupe de recherche sur les environnements nordiques BORÉAS, Rimouski, QC, Canada G5 L 3A1
- Centre d'études nordiques, Rimouski, QC, Canada, G5 L 3A1
- Centre de la science de la biodiversité du Québec, Rimouski, QC, Canada, G5 L 3A1
| | - Audrey Le Pogam
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada G5 L 3A1
- Groupe de recherche sur les environnements nordiques BORÉAS, Rimouski, QC, Canada G5 L 3A1
- Centre d'études nordiques, Rimouski, QC, Canada, G5 L 3A1
- Centre de la science de la biodiversité du Québec, Rimouski, QC, Canada, G5 L 3A1
| | - Kevin G. Young
- Department of Biology, Advanced Facility for Avian Research, Western University, London, ON, Canada N6A 5B7
| | - Oliver P. Love
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada N9B 3P4
| | - Christopher J. Cox
- Physical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
| | - Gabrielle Roy
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada G5 L 3A1
| | - Francis Robitaille
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada G5 L 3A1
| | - Kyle H. Elliott
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, QC, Canada H9X 3V9
| | - Anna L. Hargreaves
- Department of Biological Sciences, McGill University, Montreal, QC, Canada H3A 1B1
| | - Emily S. Choy
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, QC, Canada H9X 3V9
| | - H. Grant Gilchrist
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, Canada K1S 5B6
| | - Dominique Berteaux
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada G5 L 3A1
- Groupe de recherche sur les environnements nordiques BORÉAS, Rimouski, QC, Canada G5 L 3A1
- Centre d'études nordiques, Rimouski, QC, Canada, G5 L 3A1
- Centre de la science de la biodiversité du Québec, Rimouski, QC, Canada, G5 L 3A1
| | - Andrew Tam
- Department of National Defence, 8 Wing Trenton, Astra, ON, Canada K0K3W0
| | - François Vézina
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada G5 L 3A1
- Groupe de recherche sur les environnements nordiques BORÉAS, Rimouski, QC, Canada G5 L 3A1
- Centre d'études nordiques, Rimouski, QC, Canada, G5 L 3A1
- Centre de la science de la biodiversité du Québec, Rimouski, QC, Canada, G5 L 3A1
| |
Collapse
|
9
|
Garrett DR, Lamoureux S, Rioux Paquette S, Pelletier F, Garant D, Bélisle M. Combined effects of cold snaps and agriculture on the growth rates of Tree Swallows (Tachycineta bicolor). CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The decline of avian aerial insectivores has been greater than any other foraging guild and both climate change and agricultural intensification are leading hypotheses explaining this decline. Spring cold snaps are predicted to increase in frequency due to climate change, and factors associated with agricultural intensification (e.g., toxicological agents, simplification of agricultural landscapes, and reductions of insect prey) potentially exacerbates the negative effects of cold snaps on aerial insectivore nestling growth and body condition. We evaluated this hypothesis using repeated measures of Tree Swallow (Tachycineta bicolor (Vieillot, 1808)) nestling body mass and 9th primary length across an expansive gradient of agricultural intensification. Growth rate, asymptotic body mass, and near fledging 9th primary length were lower for nestlings in landscapes consisting of more agro-intensive monocultures. This 14-year data set of body measures occurring at 2, 6, 12 and 16 days of age showed that the negative impact of cold snaps on the growth of these two traits was stronger for nestlings reared in more agro-intensive landscapes. Our findings provide further evidence that two of the primary hypothesized drivers for the decline of many aerial insectivores may interact and aggravate their decline by reducing fledging survival.
Collapse
Affiliation(s)
- Daniel Roy Garrett
- Université de Sherbrooke, 7321, Département de biologie, Sherbrooke, Canada
| | - Stéphane Lamoureux
- Université de Sherbrooke, 7321, Département de biologie, Sherbrooke, Canada
| | | | - Fanie Pelletier
- Université de Sherbrooke, Biologie, Sherbrooke, Quebec, Canada
| | - Dany Garant
- Université de Sherbrooke, Département de Biologie, Sherbrooke, Quebec, Canada
| | - Marc Bélisle
- Université de Sherbrooke, Biologie, Sherbrooke, Quebec, Canada
| |
Collapse
|
10
|
Ortega S, Rodríguez C, Drummond H. Seasonal weather effects on offspring survival differ between reproductive stages in a long-lived neotropical seabird. Oecologia 2022; 199:611-623. [PMID: 35829792 DOI: 10.1007/s00442-022-05219-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022]
Abstract
Weather conditions can profoundly affect avian reproduction. It is known that weather conditions prior to and after the onset of reproduction can affect the breeding success of birds. However, little is known about how seasonal weather variability can affect birds' breeding performance, particularly for species with a slow pace of life. Long-term studies are key to understanding how weather variability can affect a population's dynamics, especially when extreme weather events are expected to increase with climate change. Using a 32-year population study of the Blue-footed booby (Sula nebouxii) in Mexico, we show that seasonal variation in weather conditions, predominantly during the incubation stage, affects offspring survival and body condition at independence. During most of the incubation period, warm sea surface temperatures were correlated with low hatching success, while rainfall in the middle of the incubation stage was correlated with high fledging success. In addition, chicks from nests that experienced warm sea surface temperatures from the pre-laying stage to near-fledging had lower body condition at 70 days of age. Finally, we show that variable annual SST conditions before and during the incubation stage can impair breeding performance. Our results provide insight into how seasonal and interannual weather variation during key reproductive stages can affect hatching success, fledging success, and fledgling body condition in a long-lived neotropical seabird.
Collapse
Affiliation(s)
- Santiago Ortega
- Instituto de Ecología, Universidad Nacional Autónoma de México, 04500, Mexico City, México. .,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510, Mexico City, México.
| | - Cristina Rodríguez
- Instituto de Ecología, Universidad Nacional Autónoma de México, 04500, Mexico City, México
| | - Hugh Drummond
- Instituto de Ecología, Universidad Nacional Autónoma de México, 04500, Mexico City, México
| |
Collapse
|
11
|
Zagkle E, Martinez-Vidal PA, Bauchinger U, Sadowska ET. Manipulation of Heat Dissipation Capacity Affects Avian Reproductive Performance and Output. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.866182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal life requires hard work but the ability to endure such workload appears to be limited. Heat dissipation limit (HDL) hypothesis proposes that the capacity to dissipate the excess of body heat during hard work may limit sustained energy use. Experimental facilitations of heat loss rate via feather-clipping in free-living birds seem to support HDL hypothesis but testing of HDL through laboratory experiments under controlled conditions is not reported. We employed a two-factorial experimental design to test HDL hypothesis by manipulating the capacity to dissipate heat through exposure of captive zebra finches (Taeniopygia guttata) to a cold and warm ambient temperature (14°C and 25°C), and through manipulation of the insulating layer of feathers around the brood patch in females (clipped and unclipped). To simulate foraging costs encountered in the wild we induced foraging effort by employing a feeding system that necessitated hovering to access food, which increased energetic costs of reproduction despite ad libitum conditions in captivity. We quantified the outcome of reproductive performance at the level of both parents, females, and offspring. Thermal limitations due to warm temperature appeared at the beginning of reproduction for both parents with lower egg-laying success, smaller clutch size and lower egg mass, compared to the cold. After hatching, females with an enhanced ability to dissipate heat through feather-clipping revealed higher body mass compared to unclipped females, and these clipped females also raised heavier and bigger nestlings. Higher levels for oxidative stress in plasma of females were detected prior to reproduction in warm conditions than in the cold. However, oxidative stress biomarkers of mothers were neither affected by temperature nor by feather-clipping during the reproductive activities. We document upregulation of antioxidant capacity during reproduction that seems to prevent increased levels of oxidative stress possibly due to the cost of female body condition and offspring growth. Our study on reproduction under laboratory-controlled conditions corroborates evidence in line with the HDL hypothesis. The link between temperature-constrained sustained performance and reproductive output in terms of quality and quantity is of particular interest in light of the current climate change, and illustrates the emerging risks to avian populations.
Collapse
|
12
|
Pessato A, McKechnie AE, Mariette MM. A prenatal acoustic signal of heat affects thermoregulation capacities at adulthood in an arid-adapted bird. Sci Rep 2022; 12:5842. [PMID: 35393484 PMCID: PMC8991222 DOI: 10.1038/s41598-022-09761-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding animal physiological adaptations for tolerating heat, and the causes of inter-individual variation, is key for predicting climate change impacts on biodiversity. Recently, a novel mechanism for transgenerational heat adaptation was identified in a desert-adapted bird, where parents acoustically signal hot conditions to embryos. Prenatal exposure to "heat-calls" adaptively alters zebra finch development and their thermal preferences in adulthood, suggesting a long-term shift towards a heat-adapted phenotype. However, whether such acoustic experience improves long-term thermoregulatory capacities is unknown. We measured metabolic rate (MR), evaporative water loss (EWL) and body temperature in adults exposed to a stepped profile of progressively higher air temperatures (Ta) between 27 and 44 °C. Remarkably, prenatal acoustic experience affected heat tolerance at adulthood, with heat-call exposed individuals more likely to reach the highest Ta in morning trials. This was despite MR and EWL reaching higher levels at the highest Ta in heat-call individuals, partly driven by a stronger metabolic effect of moderate activity. At lower Ta, however, heat-call exposed individuals had greater relative water economy, as expected. They also better recovered mass lost during morning trials. We therefore provide the first evidence that prenatal acoustic signals have long-term consequences for heat tolerance and physiological adaptation to heat.
Collapse
Affiliation(s)
- Anaïs Pessato
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, 3216, Australia.
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, 0001, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0001, South Africa
| | - Mylene M Mariette
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, 3216, Australia.
- Doñana Biological Station EBD-CSIC, 41092, Seville, Spain.
| |
Collapse
|
13
|
Tremblay F, Whelan S, Choy ES, Hatch SA, Elliott KH. Resting costs too: the relative importance of active and resting energy expenditure in a sub-arctic seabird. J Exp Biol 2022; 225:273977. [PMID: 35019973 PMCID: PMC8920031 DOI: 10.1242/jeb.243548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/07/2022] [Indexed: 11/20/2022]
Abstract
Breeding is costly for many animals, including birds that must deliver food to a central place (i.e. nest). Measuring energy expenditure throughout the breeding season can provide valuable insight into physiological limitations by highlighting periods of high demand, and ultimately allows improvement of conservation strategies. However, quantifying energy expenditure in wildlife can be challenging, as existing methods do not measure both active (e.g. foraging) and resting energy costs across short and long time scales. Here, we developed a novel method for comparing active and resting costs in 66 pre-breeding and breeding seabirds (black-legged kittiwakes, Rissa tridactyla) by combining accelerometry and triiodothyronine (T3) as proxies for active and resting costs, respectively. Active energy costs were higher during incubation (P=0.0004) and chick rearing (P<0.0001) than during pre-laying, because of an increase in the time spent in flight of 11% (P=0.0005) and 15% (P<0.0001), respectively. Levels of T3, reflecting resting costs, peaked marginally during incubation with a mean (±s.d.) concentration of 4.71±1.97 pg ml−1 in comparison to 2.66±1.30 pg ml−1 during pre-laying (P=0.05) and 3.16±2.85 pg ml−1 during chick rearing (P=0.11). Thus, although chick rearing is often assumed to be the costliest breeding stage by multiple studies, our results suggest that incubation could be more costly as a result of high resting costs. We highlight the importance of accounting for both active and resting costs when assessing energy expenditure. Summary: Measurements of both active and resting energy expenditure in breeding black-legged kittiwakes suggest that chick rearing may not be the costliest breeding stage, highlighting the need to measure both active and resting cost when assessing energy expenditure.
Collapse
Affiliation(s)
- Fred Tremblay
- Department of Natural Resource Sciences, McGill University, Canada
| | - Shannon Whelan
- Department of Natural Resource Sciences, McGill University, Canada
| | - Emily S Choy
- Department of Natural Resource Sciences, McGill University, Canada
| | - Scott A Hatch
- Institute for Seabird Research and Conservation, Anchorage, AK, USA
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Canada
| |
Collapse
|
14
|
Corra J, Sullivan SMP. Temperature and land use influence tree swallow individual health. CONSERVATION PHYSIOLOGY 2021; 9:coab084. [PMID: 34712488 PMCID: PMC8546433 DOI: 10.1093/conphys/coab084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/30/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Aerial insectivorous bird populations have declined precipitously in both North America and Europe. We assessed the effects of insect prey availability, climate and shifts in water quality associated with urbanization on haematocrit, haemoglobin concentration and heterophil-lymphocyte (H/L) ratios among ~13-day-old tree swallow (Tachycineta bicolor) nestlings in the Columbus, Ohio area. Higher mean temperature and increased frequency of extreme heat days during the early breeding period (May-June) were linked to reduced nestling physiological condition as evidenced by lower concentrations of haemoglobin and haematocrit, potentially due to increased heat stress, shifts in insect prey availability or altered parental provisioning efforts. Urbanization and the size and density of emergent aquatic insects were associated with elevated physiological stress, whereas higher mean temperatures and terrestrial insect size were related to lower stress as measured by H/L ratios. Overall, these findings highlight the complex environmental conditions driving nestling health, which may be indicative of post-fledging survival and, consequently, population growth. Our results underscore the need for conservation approaches that adequately address the interrelated effects of changes in climate, land use and food resources on aerial insectivorous birds.
Collapse
Affiliation(s)
- Joseph Corra
- Office of Research and Development, U.S. Environmental Protection Agency, 26 Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - S Mažeika P Sullivan
- School of Environment and Natural Resources, The Ohio State University, 125 Heffner Bldg 352 W. Dodridge St., Columbus, OH 43202, USA
| |
Collapse
|
15
|
Tapper S, Nocera JJ, Burness G. Body temperature is a repeatable trait in a free-ranging passerine bird. J Exp Biol 2021; 224:272129. [PMID: 34498672 DOI: 10.1242/jeb.243057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Body temperature (Tb) affects animal function through its influence on rates of biochemical and biophysical reactions, the molecular structures of proteins and tissues, and, ultimately, organismal performance. Despite its importance in driving physiological processes, there are few data on how much variation in Tb exists within populations of organisms, and whether this variation consistently differs among individuals over time (i.e. repeatability of a trait). Here, using thermal radio-frequency identification implants, we quantified the repeatability of Tb, both in the context of a fixed average environment (∼21°C) and across ambient temperatures (6-31°C), in a free-living population of tree swallows (Tachycineta bicolor, n=16). By experimentally trimming the ventral plumage of a subset of female swallows (n=8), we also asked whether the repeatability of Tb is influenced by the capacity to dissipate body heat. We found that both female and male tree swallow Tb was repeatable at 21°C (R=0.89-92), but female Tb was less repeatable than male Tb across ambient temperature (Rfemale=0.10, Rmale=0.58), which may be due to differences in parental investment. Trimmed birds had on average lower Tb than control birds (by ∼0.5°C), but the repeatability of female Tb did not differ as a function of heat dissipation capacity. This suggests that trimmed individuals adjusted their Tb to account for the effects of heat loss on Tb. Our study provides a first critical step toward understanding whether Tb is responsive to natural selection, and for predicting how animal populations will respond to climatic warming.
Collapse
Affiliation(s)
- Simon Tapper
- Environmental and Life Sciences Graduate Department, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada, K9L 0G2
| | - Joseph J Nocera
- Faculty of Forestry and Environmental Management, University of New Brunswick, 28 Dineen Drive, Fredericton, NB, Canada, E3B 5A3
| | - Gary Burness
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada, K9L 0G2
| |
Collapse
|
16
|
Urohidrosis as an overlooked cooling mechanism in long-legged birds. Sci Rep 2021; 11:20018. [PMID: 34625581 PMCID: PMC8501033 DOI: 10.1038/s41598-021-99296-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Behavioural thermoregulation could buffer the impacts of climate warming on vertebrates. Specifically, the wetting of body surfaces and the resulting evaporation of body fluids serves as a cooling mechanism in a number of vertebrates coping with heat. Storks (Ciconiidae) frequently excrete onto their legs to prevent overheating, a phenomenon known as urohidrosis. Despite the increasingly recognised role of bare and highly vascularised body parts in heat exchange, the ecological and evolutionary determinants of urohidrosis have been largely ignored. We combine urohidrosis data from a scientifically curated media repository with microclimate and ecological data to investigate the determinants of urohidrosis in all extant stork species. Our phylogenetic generalised linear mixed models show that high temperature, humidity and solar radiation, and low wind speed, promote the use of urohidrosis across species. Moreover, species that typically forage in open landscapes exhibit a more pronounced use of urohidrosis than those mainly foraging in waterbodies. Substantial interspecific variation in temperature thresholds for urohidrosis prevalence points to different species vulnerabilities to high temperatures. This integrated approach that uses online data sources and methods to model microclimates should provide insight into animal thermoregulation and improve our capacity to make accurate predictions of climate change's impact on biodiversity.
Collapse
|
17
|
Variation in reproductive investment increases body temperature amplitude in a temperate passerine. Oecologia 2021; 197:365-371. [PMID: 34494171 PMCID: PMC8505372 DOI: 10.1007/s00442-021-05026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 08/25/2021] [Indexed: 11/02/2022]
Abstract
Many birds and mammals show substantial circadian variation in body temperature, which has been attributed to fluctuations in ambient temperature and energy reserves. However, to fully understand the variation in body temperature over the course of the day, we also need to consider effects of variation in work rate. We made use of a dataset on body temperature during the resting and active periods in female marsh tits (Poecile palustris) that bred in a temperate area and were subjected to experimental changes in reproductive investment through brood size manipulations. Furthermore, the amplitude increased with daytime, but were unaffected by nighttime, ambient temperature. Amplitudes in females with manipulated broods were 44% above predictions based on inter-specific allometric relationships. In extreme cases, amplitudes were > 100% above predicted values. However, no individual female realised the maximum potential amplitude (8.5 °C, i.e. the difference between the highest and lowest body temperature within the population) but seemed to prioritise either a reduction in body temperature at night or an increase in body temperature in the day. This suggests that body temperature amplitude might be constrained by costs that preclude extensive use of both low nighttime and high daytime body temperatures within the same individual. Amplitudes in the range found here (0.5-6.7 °C) have previously mostly been reported from sub-tropical and/or arid habitats. We show that comparable values can also be found amongst birds in relatively cool, temperate regions, partly due to a pronounced increase in body temperature during periods with high work rate.
Collapse
|
18
|
O'Connor RS, Le Pogam A, Young KG, Robitaille F, Choy ES, Love OP, Elliott KH, Hargreaves AL, Berteaux D, Tam A, Vézina F. Limited heat tolerance in an Arctic passerine: Thermoregulatory implications for cold-specialized birds in a rapidly warming world. Ecol Evol 2021; 11:1609-1619. [PMID: 33613993 PMCID: PMC7882984 DOI: 10.1002/ece3.7141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures (T a) is unknown.Using flow-through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (Plectrophenax nivalis; ≈31 g, N = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing T a and measured body temperature (T b), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production).Buntings had an average (±SD) T b of 41.3 ± 0.2°C at thermoneutral T a and increased T b to a maximum of 43.5 ± 0.3°C. Buntings started panting at T a of 33.2 ± 1.7°C, with rapid increases in EWL starting at T a = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral T a, a markedly lower increase than seen in more heat-tolerant arid-zone species (e.g., ≥4.7× baseline rates). Heat-stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production.Our results suggest that buntings' well-developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment.
Collapse
Affiliation(s)
- Ryan S. O'Connor
- Département de Biologie, Chimie et GéographieUniversité du Québec à RimouskiRimouskiQCCanada
- Groupe de recherche sur les environnements nordiques BORÉASRimouskiCanada
- Centre d'études nordiquesRimouskiCanada
- Centre de la science de la biodiversité du QuébecRimouskiCanada
| | - Audrey Le Pogam
- Département de Biologie, Chimie et GéographieUniversité du Québec à RimouskiRimouskiQCCanada
- Groupe de recherche sur les environnements nordiques BORÉASRimouskiCanada
- Centre d'études nordiquesRimouskiCanada
- Centre de la science de la biodiversité du QuébecRimouskiCanada
| | - Kevin G. Young
- Department of BiologyAdvanced Facility for Avian ResearchWestern UniversityLondonONCanada
| | - Francis Robitaille
- Département de Biologie, Chimie et GéographieUniversité du Québec à RimouskiRimouskiQCCanada
| | - Emily S. Choy
- Department of Natural Resource SciencesMcGill UniversityQCCanada
| | - Oliver P. Love
- Department of Integrative BiologyUniversity of WindsorWindsorONCanada
| | - Kyle H. Elliott
- Department of Natural Resource SciencesMcGill UniversityQCCanada
| | | | - Dominique Berteaux
- Département de Biologie, Chimie et GéographieUniversité du Québec à RimouskiRimouskiQCCanada
- Groupe de recherche sur les environnements nordiques BORÉASRimouskiCanada
- Centre d'études nordiquesRimouskiCanada
- Centre de la science de la biodiversité du QuébecRimouskiCanada
| | - Andrew Tam
- Department of National Defence, 8 Wing EnvironmentAstraONCanada
| | - François Vézina
- Département de Biologie, Chimie et GéographieUniversité du Québec à RimouskiRimouskiQCCanada
- Groupe de recherche sur les environnements nordiques BORÉASRimouskiCanada
- Centre d'études nordiquesRimouskiCanada
- Centre de la science de la biodiversité du QuébecRimouskiCanada
| |
Collapse
|
19
|
Sauve D, Friesen VL, Charmantier A. The Effects of Weather on Avian Growth and Implications for Adaptation to Climate Change. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.569741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Climate change is forecasted to generate a range of evolutionary changes and plastic responses. One important aspect of avian responses to climate change is how weather conditions may change nestling growth and development. Early life growth is sensitive to environmental effects and can potentially have long-lasting effects on adult phenotypes and fitness. A detailed understanding of both how and when weather conditions affect the entire growth trajectory of a nestling may help predict population changes in phenotypes and demography under climate change. This review covers three main topics on the impacts of weather variation (air temperature, rainfall, wind speed, solar radiation) on nestling growth. Firstly, we highlight why understanding the effects of weather on nestling growth might be important in understanding adaptation to, and population persistence in, environments altered by climate change. Secondly, we review the documented effects of weather variation on nestling growth curves. We investigate both altricial and precocial species, but we find a limited number of studies on precocial species in the wild. Increasing temperatures and rainfall have mixed effects on nestling growth, while increasing windspeeds tend to have negative impacts on the growth rate of open cup nesting species. Thirdly, we discuss how weather variation might affect the evolution of nestling growth traits and suggest that more estimates of the inheritance of and selection acting on growth traits in natural settings are needed to make evolutionary predictions. We suggest that predictions will be improved by considering concurrently changing selection pressures like urbanization. The importance of adaptive plastic or evolutionary changes in growth may depend on where a species or population is located geographically and the species’ life-history. Detailed characterization of the effects of weather on growth patterns will help answer whether variation in avian growth frequently plays a role in adaption to climate change.
Collapse
|
20
|
Ohrnberger SA, Hambly C, Speakman JR, Valencak TG. Limits to sustained energy intake. XXXII. Hot again: dorsal shaving increases energy intake and milk output in golden hamsters ( Mesocricetus auratus). J Exp Biol 2020; 223:jeb230383. [PMID: 33188060 DOI: 10.1242/jeb.230383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
Golden hamsters have four times the body size of mice, raise very large litters and are required to produce large quantities of milk during the 18-day lactation period. We have previously proposed that they may be prone to being limited by their heat dissipation capacity. Studies where lactating females are shaved to elevate their heat dissipation capacity have yielded conflicting data so far. With their short pregnancy of ∼18 days, the large litters and the reported high skin temperatures, they may serve as an ideal model to elucidate the role of epilation for energy budgets in lactating mammals. We shaved one group of lactating females dorsally on the sixth day of lactation, and tested if the elevated heat dissipation capacity would enable them to have higher energy intakes and better food-to-milk conversion rates. Indeed, we observed that females from the shaved group had 6% higher body mass and 0.78°C lower skin temperature than control females during lactation. When focusing on the phase of peak lactation, we observed significantly higher (10%) gross energy intake of food and 23.4% more milk energy output in the shaved females, resulting in 3.3 g higher individual pup weights. We conclude that shaving off the females' fur, even though restricted to the dorsal surface, had large consequences on female energy metabolism in lactation and improved milk production and pup growth in line with our previous work on heat dissipation limitation. Our new data from golden hamsters confirm heat dissipation as a limiting factor for sustained metabolic rate in lactation in some small mammals and emphasise the large effects of a relatively small manipulation such as fur removal on energy metabolism of lactating females.
Collapse
Affiliation(s)
- S A Ohrnberger
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - C Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - J R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- Institute of Genetics and Developmental Biology, State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming 650223, China
| | - T G Valencak
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
- College of Animal Sciences, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, 310058 Hangzhou, People's Republic of China
| |
Collapse
|
21
|
|
22
|
Tapper S, Nocera JJ, Burness G. Experimental evidence that hyperthermia limits offspring provisioning in a temperate-breeding bird. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201589. [PMID: 33204485 PMCID: PMC7657879 DOI: 10.1098/rsos.201589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 05/11/2023]
Abstract
In many vertebrates, parental care can require long bouts of daily exercise that can span several weeks. Exercise, especially in the heat, raises body temperature, and can lead to hyperthermia. Typical strategies for regulating body temperature during endurance exercise include modifying performance to avoid hyperthermia (anticipatory regulation) and allowing body temperature to rise above normothermic levels for brief periods of time (facultative hyperthermia). Facultative hyperthermia is commonly employed by desert birds to economize on water, but this strategy may also be important for chick-rearing birds to avoid reducing offspring provisioning when thermoregulatory demands are high. In this study, we tested how chick-rearing birds balance their own body temperature against the need to provision dependent offspring. We experimentally increased the heat dissipation capacity of breeding female tree swallows (Tachycineta bicolor) by trimming their ventral feathers and remotely monitored provisioning rates, body temperature and the probability of hyperthermia. Birds with an experimentally increased capacity to dissipate heat (i.e. trimmed treatment) maintained higher feeding rates than controls at high ambient temperatures (greater than or equal to 25°C), while maintaining lower body temperatures. However, at the highest temperatures (greater than or equal to 25°C), trimmed individuals became hyperthermic. These results provide evidence that chick-rearing tree swallows use both anticipatory regulation and facultative hyperthermia during endurance performance. With rising global temperatures, individuals may need to increase their frequency of facultative hyperthermia to maintain nestling provisioning, and thereby maximize reproductive success.
Collapse
Affiliation(s)
- Simon Tapper
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, Ontario, Canada
| | - Joseph J. Nocera
- Faculty of Forestry and Environmental Management, University of New Brunswick, 28 Dineen Drive, Fredericton, New Brunswick, Canada
| | - Gary Burness
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, Canada
| |
Collapse
|
23
|
Knight K. Swallow mums push metabolic limits when they can keep cool. J Exp Biol 2020. [DOI: 10.1242/jeb.227082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|