1
|
Solé M, De Vreese S, Fortuño JM, van der Schaar M. Artificial sound impact could put at risk hermit crabs and their symbiont anemones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165756. [PMID: 37499834 DOI: 10.1016/j.scitotenv.2023.165756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
The sea anemone Calliactis parasitica, which is found in the East Atlantic (Portugal to Senegal) and the Mediterranean Sea, forms a symbiotic relationship with the red hermit crab, Dardanus calidus, in which the anemone provides protection from predators such as the octopus while it gains mobility, and possibly food scraps, from the hermit crab. Acoustic pollution is recognised by the scientific community as a growing threat to ocean inhabitants. Recent findings on marine invertebrates showed that exposure to artificial sound had direct behavioural, physiological and ultrastructural consequences. In this study we assess the impact of artificial sound (received level 157 ± 5 dB re 1 μPa2 with peak levels up to 175 dB re 1 μPa2) on the red hermit crab and its symbiotic sea anemone. Scanning electron microscopy analyses revealed lesions in the statocyst of the red hermit crab and in the tentacle sensory epithelia of its anemone when exposed to low-intensity, low-frequency sounds. These ultrastructural changes under situations of acoustic stress in symbiotic partners belonging to different phyla is a new issue that may limit their survival capacity, and a new challenge in assessing the effects of acoustic disturbance in the oceanic ecosystem. Despite the lesions found in the red hermit crab, its righting reflex time was not as strongly affected showing only an increase in the range of righting times. Given that low-frequency sound levels in the ocean are increasing and that reliable bioacoustic data on invertebrates is very scarce, in light of the results of the present study, we argue that anthropogenic sound effects on invertebrates species may have direct consequences in the entire ecosystem.
Collapse
Affiliation(s)
- Marta Solé
- Laboratory of Applied Bioacoustics, Technical University of Catalonia-BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Barcelona, Spain.
| | - Steffen De Vreese
- Laboratory of Applied Bioacoustics, Technical University of Catalonia-BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Barcelona, Spain; Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy
| | - José-Manuel Fortuño
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), 08003, Barcelona, Spain
| | - Mike van der Schaar
- Laboratory of Applied Bioacoustics, Technical University of Catalonia-BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Barcelona, Spain
| |
Collapse
|
2
|
Nieder C, Rapson J, Montgomery JC, Radford CA. Comparison of auditory evoked potential thresholds in three shark species. J Exp Biol 2023; 226:jeb245973. [PMID: 37439272 DOI: 10.1242/jeb.245973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Auditory sensitivity measurements have been published for only 12 of the more than 1150 extant species of elasmobranchs (sharks, skates and rays). Thus, there is a need to further understand sound perception in more species from different ecological niches. In this study, the auditory evoked potential (AEP) technique was used to compare hearing abilities of the bottom-dwelling New Zealand carpet shark (Cephaloscyllium isabellum) and two benthopelagic houndsharks (Triakidae), the rig (Mustelus lenticulatus) and the school shark (Galeorhinus galeus). AEPs were measured in response to tone bursts (frequencies: 80, 100, 150, 200, 300, 450, 600, 800 and 1200 Hz) from an underwater speaker positioned 55 cm in front of the shark in an experimental tank. AEP detection thresholds were derived visually and statistically, with statistical measures slightly more sensitive (∼4 dB) than visual methodology. Hearing abilities differed between species, mainly with respect to bandwidth rather than sensitivity. Hearing was least developed in the benthic C. isabellum [upper limit: 300 Hz, highest sensitivity: 100 Hz (82.3±1.5 dB re. 1 µm s-2)] and had a wider range in the benthopelagic rig and school sharks [upper limit: 800 Hz; highest sensitivity: 100 Hz (79.2±1.6 dB re. 1 µm s-2) for G. galeus and 150 Hz (74.8±1.8 dB re. 1 µm s-2) for M. lenticulatus]. The data are consistent with those known for 'hearing non-specialist' teleost fishes that detect only particle motion, not pressure. Furthermore, our results provide evidence that benthopelagic sharks exploit higher frequencies (max. 800 Hz) than some of the bottom-dwelling sharks (max. 300 Hz). Further behavioural and morphological studies are needed to identify what ecological factors drive differences in upper frequency limits of hearing in elasmobranchs.
Collapse
Affiliation(s)
- Carolin Nieder
- Institute of Marine Science, University of Auckland, Leigh Marine Research Laboratory, Leigh, Auckland 0985, New Zealand
| | - Jimmy Rapson
- Institute of Marine Science, University of Auckland, Leigh Marine Research Laboratory, Leigh, Auckland 0985, New Zealand
| | - John C Montgomery
- Institute of Marine Science, University of Auckland, Leigh Marine Research Laboratory, Leigh, Auckland 0985, New Zealand
| | - Craig A Radford
- Institute of Marine Science, University of Auckland, Leigh Marine Research Laboratory, Leigh, Auckland 0985, New Zealand
| |
Collapse
|
3
|
Nieder C, Gibbs BJ, Rapson J, McLay J, Montgomery JC, Radford CA. Comparison of acoustic particle acceleration detection capabilities in three shark species. J Exp Biol 2023; 226:jeb245995. [PMID: 37665253 DOI: 10.1242/jeb.245995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Behavioural studies have shown that sharks are capable of directional orientation to sound. However, only one previous experiment addresses the physiological mechanisms of directional hearing in sharks. Here, we used a directional shaker table in combination with the auditory evoked potential (AEP) technique to understand the broadscale directional hearing capabilities in the New Zealand carpet shark (Cephaloscyllium isabellum), rig shark (Mustelus lenticulatus) and school shark (Galeorhinus galeus). The aim of this experiment was to test if sharks are more sensitive to vertical (z-axis) or head-to-tail (x-axis) accelerations, and whether there are any differences between species. Our results support previous findings, suggesting that shark ears can receive sounds from all directions. Acceleration detection bandwidth was narrowest for the carpet shark (40-200 Hz), and broader for rig and school sharks (40-800 Hz). Greatest sensitivity bands were 40-80 Hz for the carpet shark, 100-200 Hz for the rig and 80-100 Hz for the school shark. Our results indicate that there may be differences in directional hearing abilities among sharks. The bottom-dwelling carpet shark was equally sensitive to vertical and head-to-tail particle accelerations. In contrast, both benthopelagic rig and school sharks appeared to be more sensitive to vertical accelerations at frequencies up to 200 Hz. This is the first study to provide physiological evidence that sharks may differ in their directional hearing and sound localisation abilities. Further comparative physiological and behavioural studies in more species with different lifestyles, habitats and feeding strategies are needed to further explore the drivers for increased sensitivity to vertical accelerations among elasmobranchs.
Collapse
Affiliation(s)
- Carolin Nieder
- Institute of Marine Science, University of Auckland, Leigh Marine Research Laboratory, 160 Goat Island Road, Leigh, Auckland 0985, New Zealand
| | - Brendan J Gibbs
- The University of Florida, Whitney Laboratory for Marine Bioscience, 9505 N Ocean Shore Blvd, St. Augustine, FL 32080, USA
| | - Jimmy Rapson
- Institute of Marine Science, University of Auckland, Leigh Marine Research Laboratory, 160 Goat Island Road, Leigh, Auckland 0985, New Zealand
| | - Jessica McLay
- Department of Statistics, Faculty of Science, University of Auckland, 38 Princes Street, Auckland 1010, New Zealand
| | - John C Montgomery
- Institute of Marine Science, University of Auckland, Leigh Marine Research Laboratory, 160 Goat Island Road, Leigh, Auckland 0985, New Zealand
| | - Craig A Radford
- Institute of Marine Science, University of Auckland, Leigh Marine Research Laboratory, 160 Goat Island Road, Leigh, Auckland 0985, New Zealand
| |
Collapse
|
4
|
Jézéquel Y, Cones S, Mooney TA. Sound sensitivity of the giant scallop (Placopecten magelanicus) is life stage, intensity, and frequency dependent. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1130. [PMID: 36859135 DOI: 10.1121/10.0017171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
There is increasing concern that anthropogenic sounds have a significant impact on marine animals, but there remains insufficient data on sound sensitivities for most invertebrates, despite their ecological and economic importance. We quantified auditory thresholds (in particle acceleration levels) and bandwidth of the giant scallop (Placopecten magellanicus) and subsequently sought to discern sensitivity among two different life stages: juveniles (1 yr olds) and subadults (3 yr olds). We also leveraged a novel valvometry technique to quantify the amplitude of scallop valve gape reductions when exposed to different sound amplitudes and frequencies. Behavioral responses were obtained for lower frequencies below 500 Hz, with best sensitivity at 100 Hz. There were significant differences between the auditory thresholds of juveniles and subadults, with juveniles being more sensitive, suggesting ontogenetic differences in hearing sensitivity. Scallops showed intensity and frequency dependent responses to sounds, with higher valve closures to lower frequencies and higher sound levels. To our knowledge, these are the first data highlighting life stage, intensity, and frequency responses to sound in a marine benthic invertebrate. These results demonstrate clear sound sensitivity and underscore that the potential impacts of anthropogenic sound in valuable ecological resources, such as scallops, may be dependent on sound characteristics.
Collapse
Affiliation(s)
- Youenn Jézéquel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Seth Cones
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
5
|
Jézéquel Y, Aoki N, Mooney TA. Acoustic properties and shallow water propagation distances of Caribbean spiny lobster sounds (Panulirus argus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:529. [PMID: 36732263 DOI: 10.1121/10.0016898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Marine crustaceans produce broadband sounds that are useful for passive acoustic monitoring to support conservation and management efforts. However, the propagation characteristics and detection ranges of their signals are poorly known, limiting our leveraging of these sounds. Here, we used a four-hydrophone linear array to measure source levels (SLs) and sound propagation from Caribbean spiny lobsters (Panulirus argus) of a wide range of sizes within a natural, shallow water habitat (3.3 m depth). Source level in peak-peak (SLpp) varied with body size; larger individuals produced SLpp up to 166 dB re 1 μPa. However, transmission losses (TL) were similar across all sizes, with a global fitted TL of 12.1 dB. Correspondingly, calculated detection ranges varied with body size, ranging between 14 and 364 m for small and large individuals (respectively). This increased up to 1612 m for large spiny lobsters when considering lower ambient noise levels. Despite the potential ease of tank studies, our results highlight the importance of empirical in situ sound propagation studies for marine crustaceans. Given the important ecological and economic role of spiny lobsters, these data are a key step to supporting remote monitoring of this species for fisheries management and efforts to acoustically quantify coral reefs' health.
Collapse
Affiliation(s)
- Youenn Jézéquel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Nadège Aoki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
6
|
Jézéquel Y, Bonnel J, Aoki N, Mooney TA. Tank acoustics substantially distort broadband sounds produced by marine crustaceans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3747. [PMID: 36586829 DOI: 10.1121/10.0016613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Marine crustaceans produce broadband sounds that have been mostly characterized in tanks. While tank physical impacts on such signals are documented in the acoustic community, they are overlooked in the bioacoustic literature with limited empirical comparisons. Here, we compared broadband sounds produced at 1 m from spiny lobsters (Panulirus argus) in both tank and in situ conditions. We found significant differences in all sound features (temporal, power, and spectral) between tank and in situ recordings, highlighting that broadband sounds, such as those produced by marine crustaceans, cannot be accurately characterized in tanks. We then explained the three main physical impacts that distort broadband sounds in tanks, respectively known as resonant frequencies, sound reverberation, and low frequency attenuation. Tank resonant frequencies strongly distort the spectral shape of broadband sounds. In the high frequency band (above the tank minimum resonant frequency), reverberation increases sound duration. In the low frequency band (below the tank minimum resonant frequency), low frequencies are highly attenuated due to their longer wavelength compared to the tank size and tank wall boundary conditions (zero pressure) that prevent them from being accurately measured. Taken together, these results highlight the importance of understanding tank physical impacts when characterizing broadband crustacean sounds.
Collapse
Affiliation(s)
- Youenn Jézéquel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Julien Bonnel
- Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Nadège Aoki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
7
|
Jézéquel Y, Bonnel J, Eliès P, Chauvaud L. Acoustic scaling in the European spiny lobster (Palinurus elephas). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3235. [PMID: 36586865 DOI: 10.1121/10.0016363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Sound is an important cue for arthropods. In insects, sound features and sound-producing apparatus are tightly correlated to enhance signal emission in larger individuals. In contrast, acoustic scaling in marine arthropods is poorly described even if they possess similar sound-producing apparatus. Here, the acoustic scaling of the European spiny lobster is analyzed by recording sounds in situ at 1 m from a wide range of body sizes. The dimensions of associated sound-producing apparatus increased with body size, indicating sound features would also be influenced by spiny lobster size. Indeed, temporal sound features changed with body size, suggesting differences in calling songs could be used for spiny lobster acoustic communication. Source levels (peak-peak) ranged from 131 to 164 dB re 1μPa for smaller and larger lobsters, respectively, which could be explained by more efficient resonating structures in larger animals. In addition, dominant frequencies were highly constrained by ambient noise levels, masking the low-frequency content of low intensity sounds from smaller spiny lobsters. Although the ecological function of spiny lobster sounds is not clear yet, these results suggest larger body sizes benefit because louder calls increase the broadcast area and potential interactions with conspecifics, as shown in the insect bioacoustic literature.
Collapse
Affiliation(s)
- Youenn Jézéquel
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Unite Mixte de Recherche 6539, Centre National de la Recherche Scientifique, Universite de Bretagne Occidentale, Institut de Recherche pour le Developpement, Ifremer, Laboratoire International Associe BeBEST, Institut Universitaire Européen de la Mer (IUEM), rue Dumont D'Urville, 29280 Plouzané, France
| | - Julien Bonnel
- Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Phillipe Eliès
- Plateforme d'Imagerie et de Mesures en Microscopie, Université de Bretagne Occidentale, 29200 Brest, France
| | - Laurent Chauvaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Unite Mixte de Recherche 6539, Centre National de la Recherche Scientifique, Universite de Bretagne Occidentale, Institut de Recherche pour le Developpement, Ifremer, Laboratoire International Associe BeBEST, Institut Universitaire Européen de la Mer (IUEM), rue Dumont D'Urville, 29280 Plouzané, France
| |
Collapse
|
8
|
Jones IT, D Gray M, Mooney TA. Soundscapes as heard by invertebrates and fishes: Particle motion measurements on coral reefs. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:399. [PMID: 35931548 DOI: 10.1121/10.0012579] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Coral reef soundscapes are increasingly studied for their ecological uses by invertebrates and fishes, for monitoring habitat quality, and to investigate effects of anthropogenic noise pollution. Few examinations of aquatic soundscapes have reported particle motion levels and variability, despite their relevance to invertebrates and fishes. In this study, ambient particle acceleration was quantified from orthogonal hydrophone arrays over several months at four coral reef sites, which varied in benthic habitat and fish communities. Time-averaged particle acceleration magnitudes were similar across axes, within 3 dB. Temporal trends of particle acceleration corresponded with those of sound pressure, and the strength of diel trends in both metrics significantly correlated with percent coral cover. Higher magnitude particle accelerations diverged further from pressure values, potentially representing sounds recorded in the near field. Particle acceleration levels were also reported for boat and example fish sounds. Comparisons with particle acceleration derived audiograms suggest the greatest capacity of invertebrates and fishes to detect soundscape components below 100 Hz, and poorer detectability of soundscapes by invertebrates compared to fishes. Based on these results, research foci are discussed for which reporting of particle motion is essential, versus those for which sound pressure may suffice.
Collapse
Affiliation(s)
- Ian T Jones
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Massachusetts 02543, USA
| | - Michael D Gray
- Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7LD, United Kingdom
| | - T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
9
|
Radford CA, Tay K, Goeritz ML. Comparative sound detection abilities of four decapod crustaceans. J Exp Biol 2021; 225:273672. [PMID: 34882218 DOI: 10.1242/jeb.243314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
Sound perception and detection in decapod crustaceans is surprisingly poorly understood, even though there is mounting evidence for sound playing a critical role in many life history strategies. The suspected primary organ of sound perception are the paired statocysts at the base of the first antennal segment. To better understand the comparative sound detection of decapods, auditory evoked potentials were recorded from the statocyst nerve region of four species (Leptograpsus variegate, Plagusia chabrus, Ovalipes catharus, Austrohelice crassa) in response to two different auditory stimuli presentation methods, shaker table (particle acceleration) and underwater speaker (particle acceleration and pressure). The results showed that there was significant variation in the sound detection abilities between all four species. However, exposure to the speaker stimuli increased all four species sound detection abilities, both in terms of frequency bandwidth and sensitivity, compared to shaker table derived sound detection abilities. This indicates that there is another sensory mechanism in play as well as the statocyst system. Overall, the present research provides comparative evidence of sound detection in decapods and indicates underwater sound detection in this animal group was even more complex than previously thought.
Collapse
Affiliation(s)
- C A Radford
- Institute of Science, Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, PO Box 349, Warkworth, 0941, New Zealand
| | - K Tay
- Institute of Science, Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, PO Box 349, Warkworth, 0941, New Zealand
| | - M L Goeritz
- Institute of Science, Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, PO Box 349, Warkworth, 0941, New Zealand
| |
Collapse
|
10
|
Jézéquel Y, Bonnel J, Chauvaud L. Potential for acoustic masking due to shipping noise in the European lobster (Homarus gammarus). MARINE POLLUTION BULLETIN 2021; 173:112934. [PMID: 34537570 DOI: 10.1016/j.marpolbul.2021.112934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Marine traffic is the most pervasive underwater anthropogenic noise pollution which can mask acoustic communication in marine mammals and fish, but its effect in marine invertebrates remains unknown. Here, we performed an at sea experiment to study the potential of shipping noise to mask and alter lobster acoustic communication. We used hydrophones to record buzzing sounds and accelerometers to detect lobster carapace vibrations (i.e. the buzzing sounds' sources). We demonstrated that male individuals produced carapace vibrations under various ambient noise conditions, including heavy shipping noise. However, while the associated waterborne buzzing sounds could be recorded under natural ambient noise levels, they were masked by shipping noise. Additionally, lobsters significantly increased their call rates in presence of shipping noise, suggesting a vocal compensation due to the reduction of intraspecific communication. This study reports for the first time the potential acoustic masking of lobster acoustic communication by chronic anthropogenic noise pollution, which could affect ecologically important behaviors.
Collapse
Affiliation(s)
- Youenn Jézéquel
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/Ifremer, Plouzane, France; Woods Hole Oceanographic Institution, Biology Department, Woods Hole, MA 02543, USA.
| | - Julien Bonnel
- Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering Department, Woods Hole, MA 02543, USA.
| | - Laurent Chauvaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/Ifremer, Plouzane, France.
| |
Collapse
|
11
|
Song Z, Salas AK, Montie EW, Laferriere A, Zhang Y, Aran Mooney T. Sound pressure and particle motion components of the snaps produced by two snapping shrimp species (Alpheus heterochaelis and Alpheus angulosus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:3288. [PMID: 34852610 DOI: 10.1121/10.0006973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Snapping shrimps are pervasive generators of underwater sound in temperate and tropical coastal seas across oceans of the world. Shrimp snaps can act as signals to conspecifics and provide acoustic information to other species and even to humans for habitat monitoring. Despite this, there are few controlled measurements of the acoustic parameters of these abundant acoustic stimuli. Here, the characteristics of snaps produced by 35 individuals of two species, Alpheus heterochaelis and Alpheus angulosus, are examined to evaluate the variability within and between the species. Animals were collected from the wild and the sound pressure and particle acceleration were measured at 0.2, 0.5, and 1 m from individual shrimp in controlled laboratory conditions to address the snap properties at communication-relevant distances. The source and sound exposure levels (at 1 m) were not significantly different between these two species. The frequency spectra were broadband with peak frequencies consistently below 10 kHz. The particle acceleration, the sound component likely detectable by shrimp, was measured across three axes. The directional amplitude variation suggests that the particle motion of snaps could act as a localization cue. The amplitudes of the snap pressure and acceleration decreased with distance, yet the levels remained sufficient for the predicted detection range by nearby conspecifics.
Collapse
Affiliation(s)
- Zhongchang Song
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Andria K Salas
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Eric W Montie
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, South Carolina 29909, USA
| | | | - Yu Zhang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
12
|
Dinh JP, Radford C. Acoustic particle motion detection in the snapping shrimp (Alpheus richardsoni). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:641-655. [PMID: 34241712 DOI: 10.1007/s00359-021-01503-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Many crustaceans produce sounds that might be used in communication. However, little is known about sound detection in crustaceans, hindering our understanding of crustacean acoustic communication. Sound detection has been determined only for a few species, and for many species, it is unclear how sound is perceived: as particle motion or sound pressure. Snapping shrimp are amongst the loudest and most pervasive marine sound sources. They produce snaps during interactions with conspecifics, and they also interact with soniferous heterospecifics. If they can hear, then sound could facilitate key behavioral interactions. We measured the auditory sensitivity of the snapping shrimp, Alpheus richardsoni, using auditory evoked potentials in response to a shaker table that generated only particle motion and an underwater speaker that generated both particle motion and sound pressure. Auditory detection was most sensitive between 80 and 100 Hz, and auditory evoked potentials were detected up to 1500 Hz. Snapping shrimp responded to both the shaker table and the underwater speaker, demonstrating that they detect acoustic particle motion. Crushing the statocyst reduced or eliminated hearing sensitivity. We conclude that snapping shrimp detect acoustic particle motion using the statocyst, they might detect conspecifics and heterospecifics, and hearing could facilitate key behavioral interactions.
Collapse
Affiliation(s)
- Jason P Dinh
- Department of Biology, Duke University, Durham, NC, USA.
| | - Craig Radford
- Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, Leigh, New Zealand
| |
Collapse
|