1
|
Sun Y, Shui K, Li Q, Liu C, Jin W, Ni JQ, Lu J, Zhang L. Upstream open reading frames dynamically modulate CLOCK protein translation to regulate circadian rhythms and sleep. PLoS Biol 2025; 23:e3003173. [PMID: 40354412 DOI: 10.1371/journal.pbio.3003173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
The circadian rhythm is an evolutionarily conserved mechanism with translational regulation increasingly recognized as pivotal in its modulation. In this study, we found that upstream open reading frames (uORFs) are enriched in Drosophila circadian rhythm genes, with particularly conserved uORFs present in core circadian clock genes. We demonstrate evidence that the uORFs of the core clock gene, Clock (Clk), rhythmically and substantially attenuate CLK protein translation in Drosophila, with pronounced suppression occurring during daylight hours. Eliminating Clk uORFs leads to increased CLK protein levels during the day and results in a shortened circadian cycle, along with a broad shift in clock gene expression rhythms. Notably, Clk uORF deletion also augments morning sleep by reducing dopaminergic activity. Beyond daily circadian adjustments, Clk uORFs play a role in modulating sleep patterns in response to seasonal daylight variations. Furthermore, the Clk uORFs act as an important regulator to shape the rhythmic expression of a vast array of genes and influence multifaceted physiological outcomes. Collectively, our research sheds light on the intricate ways uORFs dynamically adjust downstream coding sequences to acclimate to environmental shifts.
Collapse
Affiliation(s)
- Yuanqiang Sun
- State Key Laboratory of Gene Function and Modulation Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Ke Shui
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Liu
- State Key Laboratory of Gene Function and Modulation Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Wanting Jin
- State Key Laboratory of Gene Function and Modulation Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Gene Function and Modulation Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
2
|
Tung GA, Fonseca DM. Internal and external drivers interact to create highly dynamic mosquito blood-feeding behaviour. Proc Biol Sci 2024; 291:20241105. [PMID: 39196275 DOI: 10.1098/rspb.2024.1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Blood-feeding, which is necessary for most female mosquitoes to reproduce, provides an opportunity for pathogen transmission. Blood-feeding is influenced by external factors such as light, temperature, humidity and intra- and inter-specific interactions. Physiologically, blood-feeding cycles are linked to nutritional conditions and governed by conserved hormonal signalling pathways that prepare mosquito sensory systems to locate and evaluate hosts. Human activities also alter mosquito blood-feeding behaviour through selection pressures such as insecticide usage, habitat and ecosystem alterations, and climate change. Notably, blood-feeding behaviour changes within a mosquito's lifespan, an underexplored phenomenon from an epidemiological standpoint. A review of the literature indicates that our understanding of mosquito biology and blood-feeding behaviour is predominantly based on studies of a handful of primarily tropical species. This focus likely skews our comprehension of the diversity of critical drivers of blood-feeding behaviour, especially under constraints imposed by harsh conditions. We found evidence of remarkable adaptability in blood-feeding and significant knowledge gaps regarding the determinants of host use. Specifically, epidemiological analyses assume host use is modified by external factors, while neglecting internal physiology. Integrating all significant factors is essential for developing effective models of mosquito-borne disease transmission in a rapidly changing world.
Collapse
Affiliation(s)
- Grayson A Tung
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Avenue , New Brunswick, NJ 08901, USA
| | - Dina M Fonseca
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Avenue , New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Gerken KN, Maluni J, Mutuku FM, Ndenga BA, Mwashee L, Ichura C, Shaita K, Mwaniki M, Orwa S, Seetah K, LaBeaud AD. Exploring potential risk pathways with high risk groups for urban Rift Valley fever virus introduction, transmission, and persistence in two urban centers of Kenya. PLoS Negl Trop Dis 2023; 17:e0010460. [PMID: 36634153 PMCID: PMC9876242 DOI: 10.1371/journal.pntd.0010460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/25/2023] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic arbovirus that has profound impact on domestic ruminants and can also be transmitted to humans via infected animal secretions. Urban areas in endemic regions across Africa have susceptible animal and human hosts, dense vector distributions, and source livestock (often from high risk locations to meet the demand for animal protein). Yet, there has never been a documented urban outbreak of RVF. To understand the likely risk of RVFV introduction to urban communities from their perspective and guide future initiatives, we conducted focus group discussions with slaughterhouse workers, slaughterhouse animal product traders, and livestock owners in Kisumu City and Ukunda Town in Kenya. For added perspective and data triangulation, in-depth interviews were conducted one-on-one with meat inspector veterinarians from selected slaughterhouses. A theoretical framework relevant to introduction, transmission, and potential persistence of RVF in urban areas is presented here. Urban livestock were primarily mentioned as business opportunities, but also had personal sentiment. In addition to slaughtering risks, perceived risk factors included consumption of fresh milk. High risk groups' knowledge and experience with RVFV and other zoonotic diseases impacted their consideration of personal risk, with consensus towards lower risk in the urban setting compared to rural areas as determination of health risk was said to primarily rely on hygiene practices rather than the slaughtering process. Groups relied heavily on veterinarians to confirm animal health and meat safety, yet veterinarians reported difficulty in accessing RVFV diagnostics. We also identified vulnerable public health regulations including corruption in meat certification outside of the slaughterhouse system, and blood collected during slaughter being used for food and medicine, which could provide a means for direct RVFV community transmission. These factors, when compounded by diverse urban vector breeding habitats and dense human and animal populations, could create suitable conditions for RVFV to arrive an urban center via a viremic imported animal, transmit to locally owned animals and humans, and potentially adapt to secondary vectors and persist in the urban setting. This explorative qualitative study proposes risk pathways and provides initial insight towards determining how urban areas could adapt control measures and plan future initiatives to better understand urban RVF potential.
Collapse
Affiliation(s)
- Keli Nicole Gerken
- Stanford University Division of Infectious Diseases Department of Pediatrics, Stanford California, United States of America
| | - Justinah Maluni
- Kenya Medical Research Institute Centre for Global Health Research, Kisumu, Kenya
| | - Francis Maluki Mutuku
- Technical University of Mombasa Department of Environment and Health Sciences, Mombasa, Kenya
| | | | - Luti Mwashee
- Technical University of Mombasa Department of Environment and Health Sciences, Mombasa, Kenya
| | - Caroline Ichura
- Stanford University Division of Infectious Diseases Department of Pediatrics, Stanford California, United States of America
| | - Karren Shaita
- Kenya Medical Research Institute Centre for Global Health Research, Kisumu, Kenya
| | - Makena Mwaniki
- Technical University of Mombasa Department of Environment and Health Sciences, Mombasa, Kenya
| | - Stella Orwa
- Kenya Medical Research Institute Centre for Global Health Research, Kisumu, Kenya
| | - Krish Seetah
- Stanford University Department of Anthropology, Stanford California, United States of America
| | - A. Desiree LaBeaud
- Stanford University Division of Infectious Diseases Department of Pediatrics, Stanford California, United States of America
| |
Collapse
|
4
|
Erguler K, Mendel J, Petrić DV, Petrić M, Kavran M, Demirok MC, Gunay F, Georgiades P, Alten B, Lelieveld J. A dynamically structured matrix population model for insect life histories observed under variable environmental conditions. Sci Rep 2022; 12:11587. [PMID: 35804074 PMCID: PMC9270365 DOI: 10.1038/s41598-022-15806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Various environmental drivers influence life processes of insect vectors that transmit human disease. Life histories observed under experimental conditions can reveal such complex links; however, designing informative experiments for insects is challenging. Furthermore, inferences obtained under controlled conditions often extrapolate poorly to field conditions. Here, we introduce a pseudo-stage-structured population dynamics model to describe insect development as a renewal process with variable rates. The model permits representing realistic life stage durations under constant and variable environmental conditions. Using the model, we demonstrate how random environmental variations result in fluctuating development rates and affect stage duration. We apply the model to infer environmental dependencies from the life history observations of two common disease vectors, the southern (Culex quinquefasciatus) and northern (Culex pipiens) house mosquito. We identify photoperiod, in addition to temperature, as pivotal in regulating larva stage duration, and find that carefully timed life history observations under semi-field conditions accurately predict insect development throughout the year. The approach we describe augments existing methods of life table design and analysis, and contributes to the development of large-scale climate- and environment-driven population dynamics models for important disease vectors.
Collapse
Affiliation(s)
- Kamil Erguler
- The Cyprus Institute, Climate and Atmosphere Research Centre (CARE-C), 20 Konstantinou Kavafi Street, 2121, Aglantzia, Nicosia, Cyprus.
| | - Jacob Mendel
- Department of Medical Sciences, University of Oxford, Oxford, UK
| | - Dušan Veljko Petrić
- Laboratory for Medical and Veterinary Entomology, Faculty of Agriculture, University of Novi Sad, 21000, Novi Sad, Serbia
| | | | - Mihaela Kavran
- Laboratory for Medical and Veterinary Entomology, Faculty of Agriculture, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Murat Can Demirok
- Biology Department, Ecology Division, VERG Laboratories, Faculty of Science, Hacettepe University, 06800, Beytepe-Ankara, Turkey
| | - Filiz Gunay
- Biology Department, Ecology Division, VERG Laboratories, Faculty of Science, Hacettepe University, 06800, Beytepe-Ankara, Turkey
| | - Pantelis Georgiades
- The Cyprus Institute, Climate and Atmosphere Research Centre (CARE-C), 20 Konstantinou Kavafi Street, 2121, Aglantzia, Nicosia, Cyprus
| | - Bulent Alten
- Biology Department, Ecology Division, VERG Laboratories, Faculty of Science, Hacettepe University, 06800, Beytepe-Ankara, Turkey
| | - Jos Lelieveld
- The Cyprus Institute, Climate and Atmosphere Research Centre (CARE-C), 20 Konstantinou Kavafi Street, 2121, Aglantzia, Nicosia, Cyprus.,Max Planck Institute for Chemistry, 55128, Mainz, Germany
| |
Collapse
|