1
|
Yunda-Guarin G, Atchison S, Baker KD, Cyr F, Parrish CC, Walkusz W, Fisher JAD, Eddy TD. Trophic ecology and nutritional status of northern shrimp in Canada's sub-Arctic. PLoS One 2025; 20:e0322745. [PMID: 40392842 PMCID: PMC12091755 DOI: 10.1371/journal.pone.0322745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/26/2025] [Indexed: 05/22/2025] Open
Abstract
In the Northwest Atlantic Ocean, northern shrimp (Pandalus borealis) play key ecological roles as mid-trophic level consumers and as prey to higher-trophic level predators, including commercial fish species. However, the effects of changing environmental conditions and biological processes on trophic interactions in sub-Arctic ecosystems, particularly on lipid storage and nutrient transfer from intermediate to high trophic levels, remain unclear. Biochemical tracer methods (i.e., fatty acids and stable isotopes) were employed to study the trophic ecology and stage-specific nutritional condition of P. borealis across different spatial and seasonal scales. Trophic markers indicated significant contributions from both diatoms and zooplankton to the diet of P. borealis and highlighted the adaptability of this species to opportunistic feeding strategies based on sinking phytodetritus. Our results revealed a strong seasonality in the lipid composition of P. borealis, with lipid dynamics being highly influenced by environmental conditions and resource availability. The primary lipid classes in P. borealis were storage triacylglycerols, accounting for over 50% of lipids observed, followed by membrane phospholipids. Eggs from ovigerous females exhibited the highest concentrations of total lipids and essential fatty acids, such as omega-3 fatty acids, underscoring the important ecological role of eggs in sub-Arctic food webs by providing high-quality lipid sources. Additionally, our findings indicated an increase in the total lipid content of shrimp eggs from spring to summer, suggesting that the early stages of P. borealis are vulnerable to changes in the timing of seasonal primary production, when females store large reserves of energy-rich lipids. This study highlights the large seasonal and temporal variability in the nutritional status of P. borealis and underlines the importance of understanding lipid dynamics in assessing the resilience of populations to environmental changes.
Collapse
Affiliation(s)
- Gustavo Yunda-Guarin
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University, St. John’s, Newfoundland, Canada
| | - Sheila Atchison
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Krista D. Baker
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, Newfoundland, Canada
| | - Frédéric Cyr
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, Newfoundland, Canada
| | | | - Wojciech Walkusz
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Jonathan A. D. Fisher
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University, St. John’s, Newfoundland, Canada
| | - Tyler D. Eddy
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University, St. John’s, Newfoundland, Canada
| |
Collapse
|
2
|
Venkatraman K, Lipp NF, Budin I. Origin and evolution of mitochondrial inner membrane composition. J Cell Sci 2025; 138:jcs263780. [PMID: 40265338 DOI: 10.1242/jcs.263780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Unique membrane architectures and lipid building blocks underlie the metabolic and non-metabolic functions of mitochondria. During eukaryogenesis, mitochondria likely arose from an alphaproteobacterial symbiont of an Asgard archaea-related host cell. Subsequently, mitochondria evolved inner membrane folds known as cristae alongside a specialized lipid composition supported by metabolic and transport machinery. Advancements in phylogenetic methods and genomic and metagenomic data have suggested potential origins for cristae-shaping protein complexes, such as the mitochondrial contact site and cristae-organizing system (MICOS). MICOS protein homologs function in the formation of cristae-like intracytoplasmic membranes (ICMs) in diverse extant alphaproteobacteria. The machinery responsible for synthesizing key mitochondrial phospholipids - which cooperate with cristae-shaping proteins to establish inner membrane architecture - could have also evolved from a bacterial ancestor, but its origins have been less explored. In this Review, we examine the current understanding of mitochondrial membrane evolution, highlighting distinctions between prokaryotic and eukaryotic mitochondrial-specific proteins and lipids and their differing roles in shaping cristae and ICM architecture, and propose a model explaining the concurrent specialization of the mitochondrial lipidome and inner membrane structure in eukaryogenesis. We discuss how advancements across a range of disciplines are shedding light on how multiple membrane components co-evolved to support the central functions of eukaryotic mitochondria.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicolas-Frédéric Lipp
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Zawistowski RK, Crane BR. Differential Responses in the Core, Active Site and Peripheral Regions of Cytochrome c Peroxidase to Extreme Pressure and Temperature. J Mol Biol 2024; 436:168799. [PMID: 39332669 PMCID: PMC11563881 DOI: 10.1016/j.jmb.2024.168799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
In consideration of life in extreme environments, the effects of hydrostatic pressure on proteins at the atomic level have drawn substantial interest. Large deviations of temperature and pressure from ambient conditions can shift the free energy landscape of proteins to reveal otherwise lowly populated structural states and even promote unfolding. We report the crystal structure of the heme-containing peroxidase, cytochrome c peroxidase (CcP) at 1.5 and 3.0 kbar and make comparisons to structures determined at 1.0 bar and cryo-temperatures (100 K). Pressure produces anisotropic changes in CcP, but compressibility plateaus after 1.5 kbar. CcP responds to pressure with volume declines at the periphery of the protein where B-factors are relatively high but maintains nearly intransient core structure, hydrogen bonding interactions and active site channels. Changes in active-site solvation and heme ligation reveal pressure sensitivity to protein-ligand interactions and a potential docking site for the substrate peroxide. Compression at the surface affects neither alternate side-chain conformers nor B-factors. Thus, packing in the core, which resembles a crystalline solid, limits motion and protects the active site, whereas looser packing at the surface preserves side-chain dynamics. These data demonstrate that conformational dynamics and packing densities are not fully correlated in proteins and that encapsulation of cofactors by the polypeptide can provide a precisely structured environment resistant to change across a wide range of physical conditions.
Collapse
Affiliation(s)
- Rebecca K Zawistowski
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA.
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Wong AM, Budin I. Organelle-Targeted Laurdans Measure Heterogeneity in Subcellular Membranes and Their Responses to Saturated Lipid Stress. ACS Chem Biol 2024; 19:1773-1785. [PMID: 39069657 PMCID: PMC11670155 DOI: 10.1021/acschembio.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Organelles feature characteristic lipid compositions that lead to differences in membrane properties. In cells, membrane ordering and fluidity are commonly measured using the solvatochromic dye Laurdan, whose fluorescence is sensitive to lipid packing. As a general lipophilic dye, Laurdan stains all hydrophobic environments in cells; therefore, it is challenging to characterize membrane properties in specific organelles or assess their responses to pharmacological treatments in intact cells. Here, we describe the synthesis and application of Laurdan-derived probes that read out the membrane packing of individual cellular organelles. The set of organelle-targeted Laurdans (OTL) localizes to the ER, mitochondria, lysosomes, and Golgi compartments with high specificity while retaining the spectral resolution needed to detect biological changes in membrane ordering. We show that ratiometric imaging with OTLs can resolve membrane heterogeneity within organelles as well as changes in lipid packing resulting from inhibition of trafficking or bioenergetic processes. We apply these probes to characterize organelle-specific responses to saturated lipid stress. While the ER and lysosomal membrane fluidity is sensitive to exogenous saturated fatty acids, that of mitochondrial membranes is protected. We then use differences in ER membrane fluidity to sort populations of cells based on their fatty acid diet, highlighting the ability of organelle-localized solvatochromic probes to distinguish between cells based on their metabolic state. These results expand the repertoire of targeted membrane probes and demonstrate their application in interrogating lipid dysregulation.
Collapse
Affiliation(s)
- Adrian M. Wong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Winnikoff JR, Milshteyn D, Vargas-Urbano SJ, Pedraza MA, Armando AM, Quehenberger O, Sodt A, Gillilan RE, Dennis EA, Lyman E, Haddock SHD, Budin I. Homeocurvature adaptation of phospholipids to pressure in deep-sea invertebrates. Science 2024; 384:1482-1488. [PMID: 38935710 PMCID: PMC11593575 DOI: 10.1126/science.adm7607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Hydrostatic pressure increases with depth in the ocean, but little is known about the molecular bases of biological pressure tolerance. We describe a mode of pressure adaptation in comb jellies (ctenophores) that also constrains these animals' depth range. Structural analysis of deep-sea ctenophore lipids shows that they form a nonbilayer phase at pressures under which the phase is not typically stable. Lipidomics and all-atom simulations identified phospholipids with strong negative spontaneous curvature, including plasmalogens, as a hallmark of deep-adapted membranes that causes this phase behavior. Synthesis of plasmalogens enhanced pressure tolerance in Escherichia coli, whereas low-curvature lipids had the opposite effect. Imaging of ctenophore tissues indicated that the disintegration of deep-sea animals when decompressed could be driven by a phase transition in their phospholipid membranes.
Collapse
Affiliation(s)
- Jacob R. Winnikoff
- Department of Chemistry and Biochemistry, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Organismic and Evolutionary Biology, Harvard University; 16 Divinity Ave., Cambridge, MA 02138, USA
- Monterey Bay Aquarium Research Institute; 7700 Sandholdt Rd., Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; 1156 High St., Santa Cruz, CA 95064, USA
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Sasiri J. Vargas-Urbano
- Department of Physics and Astronomy, University of Delaware; 210 South College Ave., Newark, DE 19716, USA
| | - Miguel A. Pedraza
- Department of Physics and Astronomy, University of Delaware; 210 South College Ave., Newark, DE 19716, USA
| | - Aaron M. Armando
- Department of Pharmacology, University of California San Diego Health Sciences; 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Oswald Quehenberger
- Department of Pharmacology, University of California San Diego Health Sciences; 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Alexander Sodt
- Unit on Membrane Chemical Physics, National Institute of Child Health and Human Development; 29 Lincoln Drive, Bethesda, MD 20892
| | | | - Edward A. Dennis
- Department of Chemistry and Biochemistry, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego Health Sciences; 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware; 210 South College Ave., Newark, DE 19716, USA
| | - Steven H. D. Haddock
- Monterey Bay Aquarium Research Institute; 7700 Sandholdt Rd., Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; 1156 High St., Santa Cruz, CA 95064, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Herrero‐Alfonso P, Pejenaute A, Millet O, Ortega‐Quintanilla G. Electrostatics introduce a trade-off between mesophilic stability and adaptation in halophilic proteins. Protein Sci 2024; 33:e5003. [PMID: 38747380 PMCID: PMC11094771 DOI: 10.1002/pro.5003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Extremophile organisms have adapted to extreme physicochemical conditions. Halophilic organisms, in particular, survive at very high salt concentrations. To achieve this, they have engineered the surface of their proteins to increase the number of short, polar and acidic amino acids, while decreasing large, hydrophobic and basic residues. While these adaptations initially decrease protein stability in the absence of salt, they grant halophilic proteins remarkable stability in environments with extremely high salt concentrations, where non-adapted proteins unfold and aggregate. The molecular mechanisms by which halophilic proteins achieve this, however, are not yet clear. Here, we test the hypothesis that the halophilic amino acid composition destabilizes the surface of the protein, but in exchange improves the stability in the presence of salts. To do that, we have measured the folding thermodynamics of various protein variants with different degrees of halophilicity in the absence and presence of different salts, and at different pH values to tune the ionization state of the acidic amino acids. Our results show that halophilic amino acids decrease the stability of halophilic proteins under mesophilic conditions, but in exchange improve salt-induced stabilization and solubility. We also find that, in contrast to traditional assumptions, contributions arising from hydrophobic effect and preferential ion exclusion are more relevant for haloadaptation than electrostatics. Overall, our findings suggest a trade-off between folding thermodynamics and halophilic adaptation to optimize proteins for hypersaline environments.
Collapse
Affiliation(s)
- Pablo Herrero‐Alfonso
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences CIC bioGUNEBizkaia Science and Technology ParkDerioSpain
| | - Alba Pejenaute
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences CIC bioGUNEBizkaia Science and Technology ParkDerioSpain
- Tekniker, Basque Research and Technology Alliance (BRTA)EibarSpain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences CIC bioGUNEBizkaia Science and Technology ParkDerioSpain
| | - Gabriel Ortega‐Quintanilla
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences CIC bioGUNEBizkaia Science and Technology ParkDerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
7
|
Wong AM, Budin I. Organelle-targeted Laurdans measure heterogeneity in subcellular membranes and their responses to saturated lipid stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589828. [PMID: 38659784 PMCID: PMC11042318 DOI: 10.1101/2024.04.16.589828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cell organelles feature characteristic lipid compositions that lead to differences in membrane properties. In living cells, membrane ordering and fluidity are commonly measured using the solvatochromic dye Laurdan, whose fluorescence is sensitive to membrane packing. As a general lipophilic dye, Laurdan stains all hydrophobic environments in cells, so it is challenging to characterize membrane properties in specific organelles or assess their responses to pharmacological treatments in intact cells. Here, we describe the synthesis and application of Laurdan-derived probes that read out membrane packing of individual cellular organelles. The set of Organelle-targeted Laurdans (OTL) localizes to the ER, mitochondria, lysosomes and Golgi compartments with high specificity, while retaining the spectral resolution needed to detect biological changes in membrane packing. We show that ratiometric imaging with OTL can resolve membrane heterogeneity within organelles, as well as changes in membrane packing resulting from inhibition of lipid trafficking or bioenergetic processes. We apply these probes to characterize organelle-specific responses to saturated lipid stress. While ER and lysosomal membrane fluidity is sensitive to exogenous saturated fatty acids, that of mitochondrial membranes is protected. We then use differences in ER membrane fluidity to sort populations of cells based on their fatty acid diet, highlighting the ability of organelle-localized solvatochromic probes to distinguish between cells based on their metabolic state. These results expand the repertoire of targeted membrane probes and demonstrate their application to interrogating lipid dysregulation.
Collapse
Affiliation(s)
- Adrian M. Wong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Haddock SHD, Choy CA. Life in the Midwater: The Ecology of Deep Pelagic Animals. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:383-416. [PMID: 38231738 DOI: 10.1146/annurev-marine-031623-095435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The water column of the deep ocean is dark, cold, low in food, and under crushing pressures, yet it is full of diverse life. Due to its enormous volume, this mesopelagic zone is home to some of the most abundant animals on the planet. Rather than struggling to survive, they thrive-owing to a broad set of adaptations for feeding, behavior, and physiology. Our understanding of these adaptations is constrained by the tools available for exploring the deep sea, but this tool kit is expanding along with technological advances. Each time we apply a new method to the depths, we gain surprising insights about genetics, ecology, behavior, physiology, diversity, and the dynamics of change. These discoveries show structure within the seemingly uniform habitat, limits to the seemingly inexhaustible resources, and vulnerability in the seemingly impervious environment. To understand midwater ecology, we need to reimagine the rules that govern terrestrial ecosystems. By spending more time at depth-with whatever tools are available-we can fill the knowledge gaps and better link ecology to the environment throughout the water column.
Collapse
Affiliation(s)
- Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, California, USA;
| | - C Anela Choy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
9
|
Peters J, Oliva R, Caliò A, Oger P, Winter R. Effects of Crowding and Cosolutes on Biomolecular Function at Extreme Environmental Conditions. Chem Rev 2023; 123:13441-13488. [PMID: 37943516 DOI: 10.1021/acs.chemrev.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The extent of the effect of cellular crowding and cosolutes on the functioning of proteins and cells is manifold and includes the stabilization of the biomolecular systems, the excluded volume effect, and the modulation of molecular dynamics. Simultaneously, it is becoming increasingly clear how important it is to take the environment into account if we are to shed light on biological function under various external conditions. Many biosystems thrive under extreme conditions, including the deep sea and subseafloor crust, and can take advantage of some of the effects of crowding. These relationships have been studied in recent years using various biophysical techniques, including neutron and X-ray scattering, calorimetry, FTIR, UV-vis and fluorescence spectroscopies. Combining knowledge of the structure and conformational dynamics of biomolecules under extreme conditions, such as temperature, high hydrostatic pressure, and high salinity, we highlight the importance of considering all results in the context of the environment. Here we discuss crowding and cosolute effects on proteins, nucleic acids, membranes, and live cells and explain how it is possible to experimentally separate crowding-induced effects from other influences. Such findings will contribute to a better understanding of the homeoviscous adaptation of organisms and the limits of life in general.
Collapse
Affiliation(s)
- Judith Peters
- Univ. Grenoble Alpes, CNRS, LiPhy, 140 rue de la physique, 38400 St Martin d'Hères, France
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Antonino Caliò
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Philippe Oger
- INSA Lyon, Universite Claude Bernard Lyon1, CNRS, UMR5240, 69621 Villeurbanne, France
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Dortmund, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| |
Collapse
|
10
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim K, Pasolli HA, Phan S, Lippincott‐Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. EMBO J 2023; 42:e114054. [PMID: 37933600 PMCID: PMC10711667 DOI: 10.15252/embj.2023114054] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Christopher T Lee
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Guadalupe C Garcia
- Computational Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
- Present address:
Applied Physical SciencesUniversity of North Carolina Chapel HillChapel HillNCUSA
| | - Daniel Milshteyn
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Keun‐Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - H Amalia Pasolli
- Howard Hughes Medical InstituteAshburnVAUSA
- Present address:
Electron Microscopy Resource CenterThe Rockefeller UniversityNew YorkNYUSA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Itay Budin
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
11
|
Honerkamp-Smith AR. Forces and Flows at Cell Surfaces. J Membr Biol 2023; 256:331-340. [PMID: 37773346 PMCID: PMC10947748 DOI: 10.1007/s00232-023-00293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
|
12
|
Dupre C, Engert F. Cold Acclimation Provides a Robust Overwintering Strategy in Hydra vulgaris. THE BIOLOGICAL BULLETIN 2023; 245:161-177. [PMID: 39316738 DOI: 10.1086/732033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
AbstractCold acclimation is a biological process that allows animals to survive at low temperatures. The freshwater invertebrate Hydra is subject to broad changes in environmental temperature and does not have the required motility in order to move to warmer environments during the winter. For this reason, Hydra had to develop robust mechanisms to achieve cold acclimation at the onset of winter. How Hydra detects the onset of winter and activates its acclimation mechanism is unknown. Here, we used thermocyclers to induce cold acclimation in Hydra and study its properties. We found that Hydra cultured at room temperature does not survive an abrupt transition from 22 to 4 °C. However, it can be treated to become cold acclimated and survive at 4 °C by exposure to intermediate temperatures such as 12 °C if the treatment duration exceeds more than a week. Once cold acclimated, Hydra is considerably more robust to thermal changes. It survives repeated abrupt transitions from 4 to 22 °C and from 22 to 4 °C. However, acclimation is reversible, and if a cold-acclimated Hydra stays at room temperature for more than a week, it will gradually lose its cold acclimation. We developed a mathematical model representing the dynamics of this process and used it to predict survival according to temperature data recorded in one of their natural habitats. The results of these simulations provide an explanation for how Hydra survives winter under natural conditions. Accordingly, daily fluctuations are too short to cause injury, and seasonal fluctuations, which are long enough to be lethal, allow acclimation to incrementally build up and protect the animal. Cold acclimation in Hydra is therefore an example of a strategy that has adapted during evolution to match the animal's needs for survival.
Collapse
|
13
|
Pilon M, Ruiz M. PAQR proteins and the evolution of a superpower: Eating all kinds of fats: Animals rely on evolutionarily conserved membrane homeostasis proteins to compensate for dietary variation. Bioessays 2023; 45:e2300079. [PMID: 37345585 DOI: 10.1002/bies.202300079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Recently published work showed that members of the PAQR protein family are activated by cell membrane rigidity and contribute to our ability to eat a wide variety of diets. Cell membranes are primarily composed of phospholipids containing dietarily obtained fatty acids, which poses a challenge to membrane properties because diets can vary greatly in their fatty acid composition and could impart opposite properties to the cellular membranes. In particular, saturated fatty acids (SFAs) can pack tightly and form rigid membranes (like butter at room temperature) while unsaturated fatty acids (UFAs) form more fluid membranes (like vegetable oils). Proteins of the PAQR protein family, characterized by the presence of seven transmembrane domains and a cytosolic N-terminus, contribute to membrane homeostasis in bacteria, yeasts, and animals. These proteins respond to membrane rigidity by stimulating fatty acid desaturation and incorporation of UFAs into phospholipids and explain the ability of animals to thrive on diets with widely varied fat composition. Also see the video abstract here: https://youtu.be/6ckcvaDdbQg.
Collapse
Affiliation(s)
- Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Hardison EA, Schwieterman GD, Eliason EJ. Diet changes thermal acclimation capacity, but not acclimation rate, in a marine ectotherm ( Girella nigricans) during warming. Proc Biol Sci 2023; 290:20222505. [PMID: 36987639 PMCID: PMC10050929 DOI: 10.1098/rspb.2022.2505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Global climate change is increasing thermal variability in coastal marine environments and the frequency, intensity and duration of marine heatwaves. At the same time, food availability and quality are being altered by anthropogenic environmental changes. Marine ectotherms often cope with changes in temperature through physiological acclimation, which can take several weeks and is a nutritionally demanding process. Here, we tested the hypothesis that different ecologically relevant diets (omnivorous, herbivorous, carnivorous) impact thermal acclimation rate and capacity, using a temperate omnivorous fish as a model (opaleye, Girella nigricans). We measured acute thermal performance curves for maximum heart rate because cardiac function has been observed to set upper thermal limits in ectotherms. Opaleye acclimated rapidly after raising water temperatures, but their thermal limits and acclimation rate were not affected by their diet. However, the fish's acclimation capacity for maximum heart rate was sensitive to diet, with fish in the herbivorous treatment displaying the smallest change in heart rate throughout acclimation. Mechanistically, ventricle fatty acid composition differed with diet treatment and was related to cardiac performance in ways consistent with homoviscous adaptation. Our results suggest that diet is an important, but often overlooked, determinant of thermal performance in ectotherms on environmentally relevant time scales.
Collapse
Affiliation(s)
| | - Gail D. Schwieterman
- University of California, Santa Barbara, CA 93106, USA
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | | |
Collapse
|
15
|
Fitzgerald JE, Venable RM, Pastor RW, Lyman ER. Surface viscosities of lipid bilayers determined from equilibrium molecular dynamics simulations. Biophys J 2023; 122:1094-1104. [PMID: 36739477 PMCID: PMC10111272 DOI: 10.1016/j.bpj.2023.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Lipid membrane viscosity is critical to biological function. Bacterial cells grown in different environments alter their lipid composition in order to maintain a specific viscosity, and membrane viscosity has been linked to the rate of cellular respiration. To understand the factors that determine the viscosity of a membrane, we ran equilibrium all-atom simulations of single component lipid bilayers and calculated their viscosities. The viscosity was calculated via a Green-Kubo relation, with the stress-tensor autocorrelation function modeled by a stretched exponential function. By simulating a series of lipids at different temperatures, we establish the dependence of viscosity on several aspects of lipid chemistry, including hydrocarbon chain length, unsaturation, and backbone structure. Sphingomyelin is found to have a remarkably high viscosity, roughly 20 times that of DPPC. Furthermore, we find that inclusion of the entire range of the dispersion interaction increases viscosity by up to 140%. The simulated viscosities are similar to experimental values obtained from the rotational dynamics of small chromophores and from the diffusion of integral membrane proteins but significantly lower than recent measurements based on the deformation of giant vesicles.
Collapse
Affiliation(s)
- James E Fitzgerald
- Department of Physics & Astronomy, University of Delaware, Newark, Delaware
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Edward R Lyman
- Department of Physics & Astronomy, University of Delaware, Newark, Delaware; Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware.
| |
Collapse
|
16
|
Fatty Acid Spectra in Mesopelagic Fishes of the Myctophidae and Stomiidae Families Collected in the North East Atlantic. DIVERSITY 2023. [DOI: 10.3390/d15020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
New data on the fatty acid compositions of the muscle tissues of the two most widespread families of the mesopelagic zone—the Myctophidae (Notoscopelus kroyeri and Symbolophorus veranyi) and Stomiidae (Chauliodus sloani, Stomias boa, Borostomias antarcticus, and Malacosteus niger) families—were obtained from the Irminger Sea (North East Atlantic). The fatty acids (FAs) in the total lipids (TLs), phospholipids (PLs), triacylglycerols (TAGs), and cholesterol esters and waxes were analyzed using gas–liquid chromatography with a mass-selective detector and flame-ionized detector (GC-MS and GC-FID, respectively). Species-specific differences in the FA/alcohol profiles of the studied fishes were revealed. A directed deep-vise trend in the changes in the content and performance of certain FAs for the studied species was found. Along with this, a general character of dominance for monounsaturated fatty acids (MUFAs), which were discussed as food tracers, was revealed. MUFAs in the muscle tissues included dietary markers of zooplankton (copepods)—20:1(n-9) and 22:1(n-11), the content of which varied in association with the species—such that the biomarker Calanus glacialis predominated in muscles of B. antarcticus and C. hyperboreus prevailed in other studied species. Different strategies of compensatory adaptation to depth gradient in lipid metabolism among the studied species were discussed.
Collapse
|
17
|
Wang C, Li A, Cong R, Qi H, Wang W, Zhang G, Li L. Cis- and Trans-variations of Stearoyl-CoA Desaturase Provide New Insights into the Mechanisms of Diverged Pattern of Phenotypic Plasticity for Temperature Adaptation in Two Congeneric Oyster Species. Mol Biol Evol 2023; 40:6994358. [PMID: 36661848 PMCID: PMC9949715 DOI: 10.1093/molbev/msad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The evolution of phenotypic plasticity plays an essential role in adaptive responses to climate change; however, its regulatory mechanisms in marine organisms which exhibit high phenotypic plasticity still remain poorly understood. The temperature-responsive trait oleic acid content and its major gene stearoyl-CoA desaturase (Scd) expression have diverged in two allopatric congeneric oyster species, cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. In this study, genetic and molecular methods were used to characterize fatty acid desaturation and membrane fluidity regulated by oyster Scd. Sixteen causative single-nucleotide polymorphisms (SNPs) were identified in the promoter/cis-region of the Scd between wild C. gigas and C. angulata. Further functional experiments showed that an SNP (g.-333C [C. gigas allele] >T [C. angulata allele]) may influence Scd transcription by creating/disrupting the binding motif of the positive trans-factor Y-box factor in C. gigas/C. angulata, which mediates the higher/lower constitutive expression of Scd in C. gigas/C. angulata. Additionally, the positive trans-factor sterol-regulatory element-binding proteins (Srebp) were identified to specifically bind to the promoter of Scd in both species, and were downregulated during cold stress in C. gigas compared to upregulated in C. angulata. This partly explains the relatively lower environmental sensitivity (plasticity) of Scd in C. gigas. This study serves as an experimental case to reveal that both cis- and trans-variations shape the diverged pattern of phenotypic plasticity, which provides new insights into the formation of adaptive traits and the prediction of the adaptive potential of marine organisms to future climate change.
Collapse
Affiliation(s)
- Chaogang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,University of Chinese Academy of Sciences, Beijing, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Haigang Qi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Corresponding author: E-mail:
| |
Collapse
|
18
|
Ugwuodo CJ, Colosimo F, Adhikari J, Shen Y, Badireddy AR, Mouser PJ. Salinity and hydraulic retention time induce membrane phospholipid acyl chain remodeling in Halanaerobium congolense WG10 and mixed cultures from hydraulically fractured shale wells. Front Microbiol 2022; 13:1023575. [PMID: 36439785 PMCID: PMC9687094 DOI: 10.3389/fmicb.2022.1023575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2023] Open
Abstract
Bacteria remodel their plasma membrane lipidome to maintain key biophysical attributes in response to ecological disturbances. For Halanaerobium and other anaerobic halotolerant taxa that persist in hydraulically fractured deep subsurface shale reservoirs, salinity, and hydraulic retention time (HRT) are important perturbants of cell membrane structure, yet their effects remain poorly understood. Membrane-linked activities underlie in situ microbial growth kinetics and physiologies which drive biogeochemical reactions in engineered subsurface systems. Hence, we used gas chromatography-mass spectrometry (GC-MS) to investigate the effects of salinity and HRT on the phospholipid fatty acid composition of H. congolense WG10 and mixed enrichment cultures from hydraulically fractured shale wells. We also coupled acyl chain remodeling to membrane mechanics by measuring bilayer elasticity using atomic force microscopy (AFM). For these experiments, cultures were grown in a chemostat vessel operated in continuous flow mode under strict anoxia and constant stirring. Our findings show that salinity and HRT induce significant changes in membrane fatty acid chemistry of H. congolense WG10 in distinct and complementary ways. Notably, under nonoptimal salt concentrations (7% and 20% NaCl), H. congolense WG10 elevates the portion of polyunsaturated fatty acids (PUFAs) in its membrane, and this results in an apparent increase in fluidity (homeoviscous adaptation principle) and thickness. Double bond index (DBI) and mean chain length (MCL) were used as proxies for membrane fluidity and thickness, respectively. These results provide new insight into our understanding of how environmental and engineered factors might disrupt the physical and biogeochemical equilibria of fractured shale by inducing physiologically relevant changes in the membrane fatty acid chemistry of persistent microbial taxa. GRAPHICAL ABSTRACTSalinity significantly alters membrane bilayer fluidity and thickness in Halanaerobium congolense WG10.
Collapse
Affiliation(s)
- Chika Jude Ugwuodo
- Natural Resources and Earth Systems Science, University of New Hampshire, Durham, NH, United States
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| | | | - Jishnu Adhikari
- Sanborn, Head and Associates, Inc., Concord, NH, United States
| | - Yuxiang Shen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Appala Raju Badireddy
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Paula J. Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
19
|
Somero GN. Solutions: how adaptive changes in cellular fluids enable marine life to cope with abiotic stressors. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:389-413. [PMID: 37073170 PMCID: PMC10077225 DOI: 10.1007/s42995-022-00140-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/15/2022] [Indexed: 05/03/2023]
Abstract
The seas confront organisms with a suite of abiotic stressors that pose challenges for physiological activity. Variations in temperature, hydrostatic pressure, and salinity have potential to disrupt structures, and functions of all molecular systems on which life depends. During evolution, sequences of nucleic acids and proteins are adaptively modified to "fit" these macromolecules for function under the particular abiotic conditions of the habitat. Complementing these macromolecular adaptations are alterations in compositions of solutions that bathe macromolecules and affect stabilities of their higher order structures. A primary result of these "micromolecular" adaptations is preservation of optimal balances between conformational rigidity and flexibility of macromolecules. Micromolecular adaptations involve several families of organic osmolytes, with varying effects on macromolecular stability. A given type of osmolyte generally has similar effects on DNA, RNA, proteins and membranes; thus, adaptive regulation of cellular osmolyte pools has a global effect on macromolecules. These effects are mediated largely through influences of osmolytes and macromolecules on water structure and activity. Acclimatory micromolecular responses are often critical in enabling organisms to cope with environmental changes during their lifetimes, for example, during vertical migration in the water column. A species' breadth of environmental tolerance may depend on how effectively it can vary the osmolyte composition of its cellular fluids in the face of stress. Micromolecular adaptations remain an under-appreciated aspect of evolution and acclimatization. Further study can lead to a better understanding of determinants of environmental tolerance ranges and to biotechnological advances in designing improved stabilizers for biological materials.
Collapse
Affiliation(s)
- George N. Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950 USA
| |
Collapse
|
20
|
Multigenerational laboratory culture of pelagic ctenophores and CRISPR-Cas9 genome editing in the lobate Mnemiopsis leidyi. Nat Protoc 2022; 17:1868-1900. [PMID: 35697825 DOI: 10.1038/s41596-022-00702-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
Despite long-standing experimental interest in ctenophores due to their unique biology, ecological influence and evolutionary status, previous work has largely been constrained by the periodic seasonal availability of wild-caught animals and difficulty in reliably closing the life cycle. To address this problem, we have developed straightforward protocols that can be easily implemented to establish long-term multigenerational cultures for biological experimentation in the laboratory. In this protocol, we describe the continuous culture of the Atlantic lobate ctenophore Mnemiopsis leidyi. A rapid 3-week egg-to-egg generation time makes Mnemiopsis suitable for a wide range of experimental genetic, cellular, embryological, physiological, developmental, ecological and evolutionary studies. We provide recommendations for general husbandry to close the life cycle of Mnemiopsis in the laboratory, including feeding requirements, light-induced spawning, collection of embryos and rearing of juveniles to adults. These protocols have been successfully applied to maintain long-term multigenerational cultures of several species of pelagic ctenophores, and can be utilized by laboratories lacking easy access to the ocean. We also provide protocols for targeted genome editing via microinjection with CRISPR-Cas9 that can be completed within ~2 weeks, including single-guide RNA synthesis, early embryo microinjection, phenotype assessment and sequence validation of genome edits. These protocols provide a foundation for using Mnemiopsis as a model organism for functional genomic analyses in ctenophores.
Collapse
|