1
|
Alexandre NM, Romero FG, English SG, Grames E, Garzón-Agudelo F, Epperly K, Barnes T, Powers DR, Smith AE, Migicovsky Z, Stein L, Akalu S, Sridhar H, Montross G, Collins E, Rico-Guevara A. Supplemental Feeding as a Driver of Population Expansion and Morphological Change in Anna's Hummingbirds. GLOBAL CHANGE BIOLOGY 2025; 31:e70237. [PMID: 40396238 DOI: 10.1111/gcb.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 05/22/2025]
Abstract
Bird beaks are highly adaptable, with the potential to undergo rapid morphological shifts in response to environmental change such as climatic variation or food availability. Anna's Hummingbirds (Calypte anna) have undergone dramatic population range expansions over the last 160 years into novel climatic regimes, where supplemental feeders and introduced plant species are frequented. We used museum specimens to measure and characterize the shape of Anna's Hummingbird bills, hypothesizing that the introduction of novel food sources and the colonization of colder climates were associated with distinct dimensions of beak morphology. We estimated feeder and Eucalyptus availability using data from archived newspaper databases and found that these two abundances are linked to population increases in Anna's Hummingbirds, while feeders were associated with changes to beak morphology. We found that bill size and shape changed with feeder use, exhibiting a more tapered and longer bill and a distinct maxillary constriction. In males, dorsal bill shape increased in pointedness, which may have provided an advantage with increased agonistic encounters at feeders. In contrast, bill size decreased in association with lower temperatures at higher latitudes. Our data document rapid morphological changes in the Anna's Hummingbird's bill induced by human-caused environmental changes over the last century.
Collapse
Affiliation(s)
- Nicolas M Alexandre
- University of California, Berkeley, California, USA
- University of California, Santa Cruz, California, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
| | - Faye G Romero
- University of California, Berkeley, California, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- University of Rochester, Rochester, New York, USA
| | - Simon G English
- Department of Conservation Science, University of British Columbia, Vancouver, Canada
| | | | | | - Kevin Epperly
- Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| | | | - Donald R Powers
- Biology Department, George Fox University, Newberg, Oregon, USA
| | - Audrey E Smith
- Biology Department, George Fox University, Newberg, Oregon, USA
| | - Zoë Migicovsky
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Laura Stein
- University of Oklahoma, Norman, Oklahoma, USA
| | - Saron Akalu
- University of California, Berkeley, California, USA
| | | | | | - Ezra Collins
- University of California, Santa Cruz, California, USA
| | - Alejandro Rico-Guevara
- Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Hawkshaw DM, Wijmenga JJ, Mathot KJ. Individual variation in diurnal body temperature and foraging activity in overwintering black-capped chickadees (Poecile atricapillus). J Therm Biol 2025; 127:104059. [PMID: 39892080 DOI: 10.1016/j.jtherbio.2025.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Small birds in winter can mitigate energetic shortfalls via increases in foraging and/or via controlled reductions in metabolic rate and body temperature (torpor). The ability to both increase foraging and use torpor during the day could have profound implications for an individual's daily energy budget and overwinter survival. Trade-offs between foraging efficiency and daytime torpor use may exist but have not been explicitly investigated. Here, we investigated the presence of within- and among-individual correlations between daytime body temperature (Tb, a proxy for torpor use) and foraging in overwintering black-capped chickadees (Poecile atricapillus). Using temperature-sensing passive integrated transponder tags, we measured daytime Tb and foraging in 20 free-living chickadees over 49 days in a single winter (January-February). Chickadees generally exhibited Tb around normothermic levels with an average Tb during visits to the feeder of 41.7 °C, though Tb ranged between 25.0 and 44.9 °C. Chickadees exhibited moderately lower daytime Tb, shorter time intervals between successive feeder visits (IVI), and increased feeder visits as ambient temperature decreased. However, within individuals there was only evidence of a weak positive correlation between visit Tb and IVI, and no correlation between daily feeder visits and daily mean visit Tb. We found that visit Tb, daily mean visit Tb, and daily feeder visits were repeatable, while IVI was not. Sex did not explain a significant amount of variation in total daily feeder visits or daytime Tb, nor was there evidence of among-individual correlations between daily mean visit Tb and daily feeder visits. Our results suggests that chickadees may independently regulate foraging and diurnal Tb. Overall, our study provides insights into how small birds in winter can use multiple strategies to overcome energetic challenges. Future studies investigating diurnal torpor and its integration with other strategies are needed to further elucidate how small birds survive harsh winter conditions.
Collapse
Affiliation(s)
- Deborah M Hawkshaw
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada.
| | - Jan J Wijmenga
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Kimberley J Mathot
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada; Integrative Ecology, Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
3
|
Halter SR, Wolf BO, Martinez del Rio C. The hummingbird's adipostat: can a simple rule explain torpor frequency and duration in hummingbirds? Proc Biol Sci 2025; 292:20242489. [PMID: 39809315 PMCID: PMC11732420 DOI: 10.1098/rspb.2024.2489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Because hummingbirds are small and have an expensive mode of locomotion, they have constrained energy budgets. Torpor is used to buffer against these energetic challenges, but its frequency and duration vary. We measured lipid content, metabolic rates and torpor use in two species of migrating hummingbirds, calliope (Selasphorus calliope) and rufous hummingbirds (Selasphorus rufus) at a stopover site. We constructed a mass-balance model to predict lipid thresholds for torpor entry, torpor duration and minimum morning lipid reserves. Hummingbirds entered torpor if their lipid contents were below a sharply defined threshold. Torpor duration increased as initial lipid content decreased, and birds that entered torpor had relatively constant morning lipid reserves. We propose a minimum morning reserve hypothesis that identifies torpor lipid thresholds and predicts frequency and duration. Several hypotheses were proposed previously to explain torpor's ultimate function, which can be derived as special cases that result from modifying our mass balance model's parameters. Torpor entails a balance between energy savings and the non-energetic risks of torpor, such as predation and physiological stress. We assessed energy equivalents of the non-energetic costs of torpor by accounting for the energetic costs and benefits of torpor, and by documenting its occurrence and length.
Collapse
Affiliation(s)
- Shayne R. Halter
- Department of Biology, University of New Mexico, Albuquerque, NM87131-0001, USA
| | - Blair O. Wolf
- Department of Biology, University of New Mexico, Albuquerque, NM87131-0001, USA
| | | |
Collapse
|
4
|
Pastres M, Maggini I, Cardinale M, Fusani L, Ferretti A. Sleep Posture Influences Metabolic Rate and Vigilance in the Common Whitethroat (Curruca Communis). Integr Comp Biol 2024; 64:1848-1858. [PMID: 38744537 DOI: 10.1093/icb/icae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Migration is an important life-history strategy that is adopted by a significant proportion of bird species from temperate areas. Birds initiate migration after accumulating considerable energy reserves, primarily in the form of fat and muscle. Sustained exercise, such as during the crossing of ecological barriers, leads to the depletion of energy reservesand increased physiological stress. Stopover sites, where birds rest and restore energy, play a fundamental role in mitigating these challenges. The duration of resting at stopover sites is influenced by environmental and physiological conditions upon arrival, and the amount of body fat reserves plays an important role. While sleep is recognized as essential for all organisms, its importance is accentuated during migration, where energy management becomes a survival constraint. Previous research indicated that individuals with larger fat reserves tend to sleep less and favor an untucked sleep posture, influencing energy recovery and anti-predatory vigilance. We explored the relationship between sleep behavior and posture, metabolic state, and energy conservation strategies during migration in the common whitethroat (Curruca communis). We were able to confirm that sleeping in a tucked position results in metabolic energy savings, at the cost of reduced vigilance. However, whitethroats did not show alterations of their sleep patterns as a response to the amount of stored reserves. This suggests that they may not be taking full advantage of the metabolic gains of sleeping in a tucked posture, at least at this stage of their migratory journey. We suggest that, to achieve optimal fuel accumulation and maximize stopover efficiency, whitethroats prioritize increased foraging over modulating their sleep patterns.
Collapse
Affiliation(s)
- Maia Pastres
- Department of chemistry, Life Sciences and Environmental Sustainability, Università degli Studi di Parma, 43124 Parma, Italy
- Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Ivan Maggini
- Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Massimiliano Cardinale
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, SE-45321 Lysekil, Sweden
| | - Leonida Fusani
- Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
| | - Andrea Ferretti
- Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- Avian Sleep Group, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| |
Collapse
|
5
|
Gladman NW, Elemans CPH. Male and female syringeal muscles exhibit superfast shortening velocities in zebra finches. J Exp Biol 2024; 227:jeb246330. [PMID: 38563308 PMCID: PMC11058336 DOI: 10.1242/jeb.246330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Vocalisations play a key role in the communication behaviour of many vertebrates. Vocal production requires extremely precise motor control, which is executed by superfast vocal muscles that can operate at cycle frequencies over 100 Hz and up to 250 Hz. The mechanical performance of these muscles has been quantified with isometric performance and the workloop technique, but owing to methodological limitations we lack a key muscle property characterising muscle performance, the force-velocity relationship. Here, we quantified the force-velocity relationship in zebra finch superfast syringeal muscles using the isovelocity technique and tested whether the maximal shortening velocity is different between males and females. We show that syringeal muscles exhibit high maximal shortening velocities of 25L0 s-1 at 30°C. Using Q10-based extrapolation, we estimate they can reach 37-42L0 s-1 on average at body temperature, exceeding other vocal and non-avian skeletal muscles. The increased speed does not adequately compensate for reduced force, which results in low power output. This further highlights the importance of high-frequency operation in these muscles. Furthermore, we show that isometric properties positively correlate with maximal shortening velocities. Although male and female muscles differ in isometric force development rates, maximal shortening velocity is not sex dependent. We also show that cyclical methods to measure force-length properties used in laryngeal studies give the same result as conventional stepwise methodologies, suggesting either approach is appropriate. We argue that vocal behaviour may be affected by the high thermal dependence of superfast vocal muscle performance.
Collapse
Affiliation(s)
- Nicholas W. Gladman
- Vocal Neuromechanics Lab, Sound Communication and Behaviour Group, Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Coen P. H. Elemans
- Vocal Neuromechanics Lab, Sound Communication and Behaviour Group, Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
6
|
McGuire LP, Leys R, Webber QMR, Clerc J. Heterothermic Migration Strategies in Flying Vertebrates. Integr Comp Biol 2023; 63:1060-1074. [PMID: 37279461 DOI: 10.1093/icb/icad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023] Open
Abstract
Migration is a widespread and highly variable trait among animals. Population-level patterns arise from individual-level decisions, including physiological and energetic constraints. Many aspects of migration are influenced by behaviors and strategies employed during periods of stopover, where migrants may encounter variable or unpredictable conditions. Thermoregulation can be a major cost for homeotherms which largely encounter ambient temperatures below the lower critical temperature during migration, especially during the rest phase of the daily cycle. In this review we describe the empirical evidence, theoretical models, and potential implications of bats and birds that use heterothermy to reduce thermoregulatory costs during migration. Torpor-assisted migration is a strategy described for migrating temperate insectivorous bats, whereby torpor can be used during periods of inactivity to drastically reduce thermoregulatory costs and increase net refueling rate, leading to shorter stopover duration, reduced fuel load requirement, and potential consequences for broad-scale movement patterns and survival. Hummingbirds can adopt a similar strategy, but most birds are not capable of torpor. However, there is an increasing recognition of the use of more shallow heterothermic strategies by diverse bird species during migration, with similarly important implications for migration energetics. A growing body of published literature and preliminary data from ongoing research indicate that heterothermic migration strategies in birds may be more common than traditionally appreciated. We further take a broad evolutionary perspective to consider heterothermy as an alternative to migration in some species, or as a conceptual link to consider alternatives to seasonal resource limitations. There is a growing body of evidence related to heterothermic migration strategies in bats and birds, but many important questions related to the broader implications of this strategy remain.
Collapse
Affiliation(s)
- Liam P McGuire
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ryan Leys
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Quinn M R Webber
- Department of Integrative Biology, University of Guelph,Guelph, ON N1G 2W1, Canada
| | - Jeff Clerc
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| |
Collapse
|
7
|
Keicher L, Shipley JR, Schaeffer PJ, Dechmann DKN. Contrasting Torpor Use by Reproductive Male Common Noctule Bats in the Laboratory and in the Field. Integr Comp Biol 2023; 63:1087-1098. [PMID: 37237444 PMCID: PMC10714913 DOI: 10.1093/icb/icad040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
Metabolic processes of animals are often studied in controlled laboratory settings. However, these laboratory settings often do not reflect the animals' natural environment. Thus, results of metabolic measurements from laboratory studies must be cautiously applied to free-ranging animals. Recent technological advances in animal tracking allow detailed eco-physiological studies that reveal when, where, and how physiological measurements from the field differ from those from the laboratory. We investigated the torpor behavior of male common noctule bats (Nyctalus noctula) across different life history stages using two approaches: in controlled laboratory experiments and in the field using calibrated heart rate telemetry. We predicted that non-reproductive males would extensively use torpor to conserve energy, whereas reproductive males would reduce torpor use to promote spermatogenesis. We did not expect differences in torpor use between captive and wild animals as we simulated natural temperature conditions in the laboratory. We found that during the non-reproductive phase, both captive and free-ranging bats used torpor extensively. During reproduction, bats in captivity unexpectedly also used torpor throughout the day, while only free-ranging bats showed the expected reduction in torpor use. Thus, depending on life history stage, torpor behavior in the laboratory was markedly different from the wild. By implementing both approaches and at different life history stages, we were able to better explore the limitations of eco-physiological laboratory studies and make recommendations for when they are an appropriate proxy for natural behavior.
Collapse
Affiliation(s)
- Lara Keicher
- Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - J Ryan Shipley
- Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Zürcherstraße 111, Birmensdorf 8903 CH, Switzerland
| | - Paul J Schaeffer
- Department of Biology, Miami University, 700 E. High St., Oxford, OH 45056, USA
| | - Dina K N Dechmann
- Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
8
|
McKechnie AE, Freeman MT, Brigham RM. Avian Heterothermy: A Review of Patterns and Processes. Integr Comp Biol 2023; 63:1028-1038. [PMID: 37156524 DOI: 10.1093/icb/icad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Many birds reduce rest-phase energy demands through heterothermy, physiological responses involving facultative, reversible reductions in metabolic rate and body temperature (Tb). Here, we review the phylogenetic distribution and ecological contexts of avian heterothermy. Heterothermy has been reported in 140 species representing 15 orders and 39 families. Recent work supports the view that deep heterothermy is most pronounced in phylogenetically older taxa whereas heterothermy in passerines and other recently diverged taxa is shallower and confined to minimum Tb > 20°C. The reasons why deep heterothermy is absent in passerines remain unclear; we speculate an evolutionary trade-off may exist between the capacity to achieve low heterothermic Tb and the tolerance of hyperthermic Tb. Inter- and intraspecific variation in heterothermy is correlated with factors including foraging ecology (e.g., territoriality and defense of food resources among hummingbirds), food availability and foraging opportunities (e.g., lunar phase predicts torpor use in caprimulgids), and predation risk. Heterothermy also plays a major role before and during migration. Emerging questions include the magnitude of energy savings associated with heterothermy among free-ranging birds, the role phylogenetic variation in the capacity for heterothermy has played in evolutionary radiations into extreme habitats, and how the capacity for heterothermy affects avian vulnerability to rapid anthropogenic climate change.
Collapse
Affiliation(s)
- Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - Marc T Freeman
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - R Mark Brigham
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
9
|
Nowack J, Stawski C, Geiser F, Levesque DL. Rare and Opportunistic Use of Torpor in Mammals-An Echo from the Past? Integr Comp Biol 2023; 63:1049-1059. [PMID: 37328423 PMCID: PMC10714912 DOI: 10.1093/icb/icad067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
Torpor was traditionally seen as a winter survival mechanism employed by animals living in cold and highly seasonal habitats. Although we now know that torpor is also used by tropical and subtropical species, and in response to a variety of triggers, torpor is still largely viewed as a highly controlled, seasonal mechanism shown by Northern hemisphere species. To scrutinize this view, we report data from a macroanalysis in which we characterized the type and seasonality of torpor use from mammal species currently known to use torpor. Our findings suggest that predictable, seasonal torpor patterns reported for Northern temperate and polar species are highly derived forms of torpor expression, whereas the more opportunistic and variable forms of torpor that we see in tropical and subtropical species are likely closer to the patterns expressed by ancestral mammals. Our data emphasize that the torpor patterns observed in the tropics and subtropics should be considered the norm and not the exception.
Collapse
Affiliation(s)
- Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Clare Stawski
- School of Science, Technology and Engineering, University of the Sunshine Coast (USC), Maroochydore DC, QLD 4558, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | | |
Collapse
|
10
|
Geiser F, Ruf T. Long-term survival, temperature, and torpor patterns. Sci Rep 2023; 13:6673. [PMID: 37095170 PMCID: PMC10126141 DOI: 10.1038/s41598-023-33646-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Mammalian and avian torpor is highly effective in reducing energy expenditure. However, the extent of energy savings achieved and thus long-term survival appear to differ between species capable of multiday hibernation and species restricted to daily heterothermy, which could, however, be due to thermal effects. We tested how long-term survival on stored body fat (i.e. time to lean body mass), crucial for overcoming adverse periods, is related to the pattern of torpor expressed under different ambient temperatures (Ta: 7 °C typical of hibernation, 15 and 22 °C typical of daily torpor) in the small marsupial hibernator the pygmy-possum (Cercartetus nanus). Possums expressed torpor at all Tas and survived without food for 310 days on average at Ta 7 °C, 195 days at Ta 15 °C, and 127 days at Ta 22 °C. At Ta 7 and 15 °C, torpor bout duration (TBD) increased from < 1-3 to ~ 5-16 days over 2 months, whereas at Ta 22 °C, TBD remained at < 1 to ~ 2 days. At all Tas daily energy use was substantially lower and TBD and survival times of possums much longer (3-12 months) than in daily heterotherms (~ 10 days). Such pronounced differences in torpor patterns and survival times even under similar thermal conditions provide strong support for the concept that torpor in hibernators and daily heterotherms are physiologically distinct and have evolved for different ecological purposes.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, 2351, Australia
| | - Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160, Vienna, Austria.
| |
Collapse
|
11
|
Revelo Hernández DC, Baldwin JW, Londoño GA. Ecological drivers and consequences of torpor in Andean hummingbirds. Proc Biol Sci 2023; 290:20222099. [PMID: 36919431 PMCID: PMC10015325 DOI: 10.1098/rspb.2022.2099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Daily torpor allows endotherms to save energy during energetically stressful (e.g. cold) conditions. Although studies on avian torpor have mostly been conducted under laboratory conditions, information on the usage of torpor in the wild is limited to few, predominantly temperate-zone species. We studied torpor under seminatural conditions from 249 individuals from 29 hummingbird species across a 1920 m elevational gradient in the western Andes of Colombia using cloacal thermistors. Small birds were more likely to use torpor than large birds, but only at low ambient temperatures, where torpor was prolonged. We also found effects of proxy variables for body condition and energy expenditure on the use of torpor, its characteristics, and impacts. Our results suggest that context-dependency and phylogenetic variation in the probability of deploying torpor can help understand clade-wide patterns of elevational distribution in Andean hummingbirds.
Collapse
Affiliation(s)
| | - Justin W. Baldwin
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Gustavo A. Londoño
- Universidad Icesi, Facultad de Ciencias Naturales, Departamento de Ciencias Biológicas, Calle 18 No. 122-135, Cali, Colombia
| |
Collapse
|
12
|
Eberts ER, Tattersall GJ, Auger PJ, Curley M, Morado MI, Strauss EG, Powers DR, Soveral NC, Tobalske BW, Shankar A. Free-living Allen's hummingbirds (Selasphorus sasin) rarely use torpor while nesting. J Therm Biol 2023; 112:103391. [PMID: 36796880 DOI: 10.1016/j.jtherbio.2022.103391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/27/2022] [Accepted: 11/22/2022] [Indexed: 12/11/2022]
Abstract
For reproducing animals, maintaining energy balance despite thermoregulatory challenges is important for surviving and successfully raising offspring. This is especially apparent in small endotherms that exhibit high mass-specific metabolic rates and live in unpredictable environments. Many of these animals use torpor, substantially reducing their metabolic rate and often body temperature to cope with high energetic demands during non-foraging periods. In birds, when the incubating parent uses torpor, the lowered temperatures that thermally sensitive offspring experience could delay development or increase mortality risk. We used thermal imaging to noninvasively explore how nesting female hummingbirds sustain their own energy balance while effectively incubating their eggs and brooding their chicks. We located 67 active Allen's hummingbird (Selasphorus sasin) nests in Los Angeles, California and recorded nightly time-lapse thermal images at 14 of these nests for 108 nights using thermal cameras. We found that nesting females usually avoided entering torpor, with one bird entering deep torpor on two nights (2% of nights), and two other birds possibly using shallow torpor on three nights (3% of nights). We also modeled nightly energetic requirements of a bird experiencing nest temperatures vs. ambient temperature and using torpor or remaining normothermic, using data from similarly-sized broad-billed hummingbirds. Overall, we suggest that the warm environment of the nest, and possibly shallow torpor, help brooding female hummingbirds reduce their own energy requirements while prioritizing the energetic demands of their offspring.
Collapse
Affiliation(s)
- Erich R Eberts
- Center for Urban Resilience (CURes), Loyola Marymount University, 1 LMU Drive Los Angeles California, 90045, USA.
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Peter J Auger
- Center for Urban Resilience (CURes), Loyola Marymount University, 1 LMU Drive Los Angeles California, 90045, USA
| | - Maria Curley
- Center for Urban Resilience (CURes), Loyola Marymount University, 1 LMU Drive Los Angeles California, 90045, USA
| | - Melissa I Morado
- Center for Urban Resilience (CURes), Loyola Marymount University, 1 LMU Drive Los Angeles California, 90045, USA; Department of Biology/1878, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Eric G Strauss
- Center for Urban Resilience (CURes), Loyola Marymount University, 1 LMU Drive Los Angeles California, 90045, USA
| | - Donald R Powers
- Biology Department, George Fox University, Newberg, OR, 97132, USA
| | - Noemi C Soveral
- Biology Department, George Fox University, Newberg, OR, 97132, USA
| | - Bret W Tobalske
- Division of Biological Sciences, University of Montana, 32 Campus Dr, Missoula, MT, 59812, USA
| | - Anusha Shankar
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
13
|
Harding CD, Yovel Y, Peirson SN, Hackett TD, Vyazovskiy VV. Re-examining extreme sleep duration in bats: implications for sleep phylogeny, ecology, and function. Sleep 2022; 45:zsac064. [PMID: 35279722 PMCID: PMC9366634 DOI: 10.1093/sleep/zsac064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Bats, quoted as sleeping for up to 20 h a day, are an often used example of extreme sleep duration amongst mammals. Given that duration has historically been one of the primary metrics featured in comparative studies of sleep, it is important that species specific sleep durations are well founded. Here, we re-examined the evidence for the characterization of bats as extreme sleepers and discuss whether it provides a useful representation of the sleep behavior of Chiroptera. Although there are a wealth of activity data to suggest that the diurnal cycle of bats is dominated by rest, estimates of sleep time generated from electrophysiological analyses suggest considerable interspecific variation, ranging from 83% to a more moderate 61% of the 24 h day spent asleep. Temperature-dependent changes in the duration and electroencephalographic profile of sleep suggest that bats represent a unique model for investigating the relationship between sleep and torpor. Further sources of intra-specific variation in sleep duration, including the impact of artificial laboratory environments and sleep intensity, remain unexplored. Future studies conducted in naturalistic environments, using larger sample sizes and relying on a pre-determined set of defining criteria will undoubtedly provide novel insights into sleep in bats and other species.
Collapse
Affiliation(s)
- Christian D Harding
- Department of Physiology Anatomy and Genetics, Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Stuart N Peirson
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | | | - Vladyslav V Vyazovskiy
- Department of Physiology Anatomy and Genetics, Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| |
Collapse
|
14
|
Knight K. Shallow torpor keeps hummingbirds on their toes when conserving energy. J Exp Biol 2022. [DOI: 10.1242/jeb.244010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|