1
|
Pareek A, Kaur R. Core histones govern echinocandin susceptibility in Candida glabrata. Microbiol Spectr 2025:e0239924. [PMID: 40304478 DOI: 10.1128/spectrum.02399-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
The dynamic chromatin structure regulates many biological processes including gene expression, DNA repair, and genome stability in eukaryotic cells. However, its role in governing antifungal drug susceptibility in medically important fungi is just beginning to be deciphered. Chromatin architecture is maintained by a complex interplay among histone protein stoichiometry sustainment, post-translational modifications of histone proteins, and the activity of chromatin remodeling complexes. Herein, we report that the reduced gene dosage of histone core proteins in the opportunistic human fungal pathogen Candida glabrata leads to increased susceptibility toward the widely used, cell wall-targeting echinocandin antifungal drugs. Our comprehensive characterization of single and double histone mutants revealed that linker histone H1 loss had no effect on cell physiology and drug susceptibility, whereas low H2A, H2B, H3, and H4 protein levels resulted in decreased reactive oxygen species production, altered biofilm production, elevated DNA damage, and echinocandin stress susceptibility. Importantly, not all core histone mutants exhibited an increased sensitivity to other cell wall stressors, thereby precluding a general cell wall defect accounting solely for the increased caspofungin susceptibility. Finally, we show that the histone H3 acetylation at lysine-56 may be pivotal to caspofungin response of C. glabrata, as H3K56Ac levels were reduced in both core histone mutants and upon caspofungin exposure, with H3K56 acetyltransferase (CgRtt109)- and nucleosome assembly factor (CgAsf1)-lacking mutants displaying increased caspofungin susceptibility. Besides demonstrating the histone requirement for the survival of C. glabrata in the mouse systemic candidiasis model, our findings unveil histone dosage-regulated cellular processes that impact echinocandin susceptibility. IMPORTANCE Echinocandin antifungals, which impede cell wall synthesis, are often used to treat Candida bloodstream infections. The human opportunistic fungal pathogen Candida (Nakaseomyces) glabrata is increasingly being reported to exhibit co-resistance to echinocandins and ergosterol biosynthesis-inhibitory azole drugs in hospitals worldwide. However, the role of histones, protein-building blocks of the nucleosome, in governing echinocandin resistance in C. glabrata is not understood. Herein, we show that the reduced gene dosage of core histone proteins, but not of the linker histone, leads to echinocandin susceptibility, which is partly due to increased ROS levels. Additionally, our data implicate histone H3 acetylation at lysine-56 in the caspofungin response of C. glabrata. Since the emerging echinocandin resistance is an impediment to successful antifungal therapy, our findings open up a new research avenue of pharmacological targeting of histone proteins that could potentially block echinocandin resistance and attenuate C. glabrata survival in the host.
Collapse
Affiliation(s)
- Aditi Pareek
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
2
|
Stillman JH, Amri AB, Holdreith JM, Hooper A, Leon RV, Pruett LR, Bukaty BM. Ecophysiological responses to heat waves in the marine intertidal zone. J Exp Biol 2025; 228:JEB246503. [PMID: 39817480 PMCID: PMC11832128 DOI: 10.1242/jeb.246503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs. In this Review, we outline the range of responses that intertidal zone organisms exhibit in response to heat waves. We begin by examining the drivers of thermal maxima in intertidal zone ecosystems. We develop a simple model of intertidal zone daily maximum temperatures based on publicly available tide and solar radiation models, and compare it with logged, under-rock temperature data at an intertidal site. We then summarize experimental and ecological studies of how intertidal zone ecosystems and organisms respond to heat waves across dimensions of biotic response. Additional attention is paid to the impacts of extreme heat on cellular physiology, including oxidative stress responses to thermally induced mitochondrial overdrive and dysfunction. We examine the energetic consequences of these mechanisms and how they shift organismal traits, including growth, reproduction and immune function. We conclude by considering important future directions for improving studies of the impacts of heat waves on intertidal zone organisms.
Collapse
Affiliation(s)
- Jonathon H. Stillman
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94709, USA
| | - Adrienne B. Amri
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Joe M. Holdreith
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Alexis Hooper
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Rafael V. Leon
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Liliana R. Pruett
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Buck M. Bukaty
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
3
|
Vazquez-Uribe R, Hedin KA, Licht TR, Nieuwdorp M, Sommer MOA. Advanced microbiome therapeutics as a novel modality for oral delivery of peptides to manage metabolic diseases. Trends Endocrinol Metab 2025; 36:29-41. [PMID: 38782649 DOI: 10.1016/j.tem.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The rising prevalence of metabolic diseases calls for innovative treatments. Peptide-based drugs have transformed the management of conditions such as obesity and type 2 diabetes. Yet, challenges persist in oral delivery of these peptides. This review explores the potential of 'advanced microbiome therapeutics' (AMTs), which involve engineered microbes for delivery of peptides in situ, thereby enhancing their bioavailability. Preclinical work on AMTs has shown promise in treating animal models of metabolic diseases, including obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease. Outstanding challenges toward realizing the potential of AMTs involve improving peptide expression, ensuring predictable colonization control, enhancing stability, and managing safety and biocontainment concerns. Still, AMTs have potential for revolutionizing the treatment of metabolic diseases, potentially offering dynamic and personalized novel therapeutic approaches.
Collapse
Affiliation(s)
- Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Karl Alex Hedin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Gunn JC, Christensen BM, Bueno EM, Cohen ZP, Kissonergis AS, Chen YH. Agricultural insect pests as models for studying stress-induced evolutionary processes. INSECT MOLECULAR BIOLOGY 2024; 33:432-443. [PMID: 38655882 DOI: 10.1111/imb.12915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Agricultural insect pests (AIPs) are widely successful in adapting to natural and anthropogenic stressors, repeatedly overcoming population bottlenecks and acquiring resistance to intensive management practices. Although they have been largely overlooked in evolutionary studies, AIPs are ideal systems for understanding rapid adaptation under novel environmental conditions. Researchers have identified several genomic mechanisms that likely contribute to adaptive stress responses, including positive selection on de novo mutations, polygenic selection on standing allelic variation and phenotypic plasticity (e.g., hormesis). However, new theory suggests that stress itself may induce epigenetic modifications, which may confer heritable physiological changes (i.e., stress-resistant phenotypes). In this perspective, we discuss how environmental stress from agricultural management generates the epigenetic and genetic modifications that are associated with rapid adaptation in AIPs. We summarise existing evidence for stress-induced evolutionary processes in the context of insecticide resistance. Ultimately, we propose that studying AIPs offers new opportunities and resources for advancing our knowledge of stress-induced evolution.
Collapse
Affiliation(s)
- Joe C Gunn
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
| | - Blair M Christensen
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
| | - Erika M Bueno
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
| | - Zachary P Cohen
- Insect Control and Cotton Disease Research, USDA ARS, College Station, Texas, USA
| | | | - Yolanda H Chen
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
5
|
Mojica EA, Petcu KA, Kültz D. Environmental conditions elicit a slow but enduring response of histone post-translational modifications in Mozambique tilapia. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae013. [PMID: 39372708 PMCID: PMC11452309 DOI: 10.1093/eep/dvae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024]
Abstract
This study sheds new light on the timescale through which histone post-translational modifications (PTMs) respond to environmental stimuli, demonstrating that the histone PTM response does not necessarily precede the proteomic response or acclimation. After a variety of salinity treatments were administered to Mozambique tilapia (Oreochromis mossambicus) throughout their lifetimes, we quantified 343 histone PTMs in the gills of each fish. We show here that histone PTMs differ dramatically between fish exposed to distinct environmental conditions for 18 months, and that the majority of these histone PTM alterations persist for at least 4 weeks, irrespective of further salinity changes. However, histone PTMs respond minimally to 4-week-long periods of salinity acclimation during adulthood. The results of this study altogether signify that patterns of histone PTMs in individuals reflect their prolonged exposure to environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Kathleen A Petcu
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Dietmar Kültz
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| |
Collapse
|
6
|
Kasperski A, Heng HH. The Spiral Model of Evolution: Stable Life Forms of Organisms and Unstable Life Forms of Cancers. Int J Mol Sci 2024; 25:9163. [PMID: 39273111 PMCID: PMC11395208 DOI: 10.3390/ijms25179163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
If one must prioritize among the vast array of contributing factors to cancer evolution, environmental-stress-mediated chromosome instability (CIN) should easily surpass individual gene mutations. CIN leads to the emergence of genomically unstable life forms, enabling them to grow dominantly within the stable life form of the host. In contrast, stochastic gene mutations play a role in aiding the growth of the cancer population, with their importance depending on the initial emergence of the new system. Furthermore, many specific gene mutations among the many available can perform this function, decreasing the clinical value of any specific gene mutation. Since these unstable life forms can respond to treatment differently than stable ones, cancer often escapes from drug treatment by forming new systems, which leads to problems during the treatment for patients. To understand how diverse factors impact CIN-mediated macroevolution and genome integrity-ensured microevolution, the concept of two-phased cancer evolution is used to reconcile some major characteristics of cancer, such as bioenergetic, unicellular, and multicellular evolution. Specifically, the spiral of life function model is proposed, which integrates major historical evolutionary innovations and conservation with information management. Unlike normal organismal evolution in the microevolutionary phase, where a given species occupies a specific location within the spiral, cancer populations are highly heterogenous at multiple levels, including epigenetic levels. Individual cells occupy different levels and positions within the spiral, leading to supersystems of mixed cellular populations that exhibit both macro and microevolution. This analysis, utilizing karyotype to define the genetic networks of the cellular system and CIN to determine the instability of the system, as well as considering gene mutation and epigenetics as modifiers of the system for information amplification and usage, explores the high evolutionary potential of cancer. It provides a new, unified understanding of cancer as a supersystem, encouraging efforts to leverage the dynamics of CIN to develop improved treatment options. Moreover, it offers a historically contingent model for organismal evolution that reconciles the roles of both evolutionary innovation and conservation through macroevolution and microevolution, respectively.
Collapse
Affiliation(s)
- Andrzej Kasperski
- Department of Biotechnology, Laboratory of Bioinformatics and Control of Bioprocesses, Institute of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Mojica E, Kültz D. A Strategy to Characterize the Global Landscape of Histone Post-Translational Modifications Within Tissues of Nonmodel Organisms. J Proteome Res 2024; 23:2780-2794. [PMID: 37624673 PMCID: PMC11301685 DOI: 10.1021/acs.jproteome.3c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 08/27/2023]
Abstract
Histone post-translational modifications (PTMs) are epigenetic marks that play a critical role in the expression and maintenance of DNA, but they remain largely uninvestigated in nonmodel organisms due to technical challenges. To begin alleviating this issue, we developed a workflow for histone PTM analysis in Mozambique tilapia (Oreochromis mossambicus), being a widespread and environmentally hardy fish, using mass spectrometry methods. By incorporating multiple protein digestion methods into the preparation of each sample, we reliably quantified 214 biologically relevant histone PTMs. All of these histone PTMs, collectively referred to as the global histone PTM landscape, were characterized in the gills, kidney, and testes of this fish. By comparing the global histone PTM landscape between the three tissues, we found that 91.59% of histone PTMs were tissue-dependent. The workflow and tools for histone PTM analysis described in this study are now publicly available and enable comprehensive investigation into the influence of environmental stress on histone PTMs in nonmodel organisms. Given the functionality and flexibility of histone PTMs, we anticipate that the study of histone PTMs in ecologically relevant contexts will provide ground-breaking insights into comparative physiology and evolution.
Collapse
Affiliation(s)
- Elizabeth
A. Mojica
- Department of Animal Sciences, University of California - Davis, One Shields Avenue, Meyer Hall, Davis, California 95616, United States
| | - Dietmar Kültz
- Department of Animal Sciences, University of California - Davis, One Shields Avenue, Meyer Hall, Davis, California 95616, United States
| |
Collapse
|
8
|
Kültz D, Gardell AM, DeTomaso A, Stoney G, Rinkevich B, Rinkevich Y, Qarri A, Dong W, Luu B, Lin M. Deep quantitative proteomics of North American Pacific coast star tunicate (Botryllus schlosseri). Proteomics 2024; 24:e2300628. [PMID: 38400697 DOI: 10.1002/pmic.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Botryllus schlosseri, is a model marine invertebrate for studying immunity, regeneration, and stress-induced evolution. Conditions for validating its predicted proteome were optimized using nanoElute® 2 deep-coverage LCMS, revealing up to 4930 protein groups and 20,984 unique peptides per sample. Spectral libraries were generated and filtered to remove interferences, low-quality transitions, and only retain proteins with >3 unique peptides. The resulting DIA assay library enabled label-free quantitation of 3426 protein groups represented by 22,593 unique peptides. Quantitative comparisons of single systems from a laboratory-raised with two field-collected populations revealed (1) a more unique proteome in the laboratory-raised population, and (2) proteins with high/low individual variabilities in each population. DNA repair/replication, ion transport, and intracellular signaling processes were distinct in laboratory-cultured colonies. Spliceosome and Wnt signaling proteins were the least variable (highly functionally constrained) in all populations. In conclusion, we present the first colonial tunicate's deep quantitative proteome analysis, identifying functional protein clusters associated with laboratory conditions, different habitats, and strong versus relaxed abundance constraints. These results empower research on B. schlosseri with proteomics resources and enable quantitative molecular phenotyping of changes associated with transfer from in situ to ex situ and from in vivo to in vitro culture conditions.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, Davis, California, USA
| | - Alison M Gardell
- School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington, USA
| | - Anthony DeTomaso
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Goleta, California, USA
| | - Greg Stoney
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Goleta, California, USA
| | - Baruch Rinkevich
- Israel Oceanography & Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Yuval Rinkevich
- Helmholtz Zentrum München, Regenerative Biology and Medicine Institute, Munich, Germany
| | - Andy Qarri
- Israel Oceanography & Limnological Research, National Institute of Oceanography, Haifa, Israel
- Helmholtz Zentrum München, Regenerative Biology and Medicine Institute, Munich, Germany
| | - Weizhen Dong
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, Davis, California, USA
| | - Brenda Luu
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, Davis, California, USA
| | - Mandy Lin
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, Davis, California, USA
| |
Collapse
|
9
|
Fan J, Mei J, Yang Y, Lu J, Wang Q, Yang X, Chen G, Wang R, Han Y, Sheng R, Wang W, Ding F. Sleep-phasic heart rate variability predicts stress severity: Building a machine learning-based stress prediction model. Stress Health 2024; 40:e3386. [PMID: 38411360 DOI: 10.1002/smi.3386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/20/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
We propose a novel approach for predicting stress severity by measuring sleep phasic heart rate variability (HRV) using a smart device. This device can potentially be applied for stress self-screening in large populations. Using a Holter electrocardiogram (ECG) and a Huawei smart device, we conducted 24-h dual recordings of 159 medical workers working regular shifts. Based on photoplethysmography (PPG) and accelerometer signals acquired by the Huawei smart device, we sorted episodes of cyclic alternating pattern (CAP; unstable sleep), non-cyclic alternating pattern (NCAP; stable sleep), wakefulness, and rapid eye movement (REM) sleep based on cardiopulmonary coupling (CPC) algorithms. We further calculated the HRV indices during NCAP, CAP and REM sleep episodes using both the Holter ECG and smart-device PPG signals. We later developed a machine learning model to predict stress severity based only on the smart device data obtained from the participants along with a clinical evaluation of emotion and stress conditions. Sleep phasic HRV indices predict individual stress severity with better performance in CAP or REM sleep than in NCAP. Using the smart device data only, the optimal machine learning-based stress prediction model exhibited accuracy of 80.3 %, sensitivity 87.2 %, and 63.9 % for specificity. Sleep phasic heart rate variability can be accurately evaluated using a smart device and subsequently can be used for stress predication.
Collapse
Affiliation(s)
- Jingjing Fan
- Department of Cardiology and Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Mei
- Department of Cardiology and Department of Neurology, The First Hospital of Wuhan City, Wuhan, China
| | - Yuan Yang
- Department of Cardiology and Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Lu
- Department of Cardiology and Department of Neurology, The First Hospital of Wuhan City, Wuhan, China
| | - Quan Wang
- Department of Cardiology and Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Yang
- Department of Cardiology and Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohua Chen
- Department of Cardiology and Department of Neurology, The First Hospital of Wuhan City, Wuhan, China
| | - Runsen Wang
- Huawei Technologies Co., Ltd., Shenzhen, China
| | - Yujia Han
- Huawei Technologies Co., Ltd., Shenzhen, China
| | - Rong Sheng
- Huawei Technologies Co., Ltd., Shenzhen, China
| | - Wei Wang
- Department of Cardiology and Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengfei Ding
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Fomina M, Gromozova O, Gadd GM. Morphological responses of filamentous fungi to stressful environmental conditions. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:115-169. [PMID: 39389704 DOI: 10.1016/bs.aambs.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The filamentous growth mode of fungi, with its modular design, facilitates fungal adaptation to stresses they encounter in diverse terrestrial and anthropogenic environments. Surface growth conditions elicit diverse morphological responses in filamentous fungi, particularly demonstrating the remarkable adaptability of mycelial systems to metal- and mineral-rich environments. These responses are coupled with fungal biogeochemical activity and can ameliorate hostile conditions. A tessellated agar tile system, mimicking natural environmental heterogeneity, revealed negative chemotropism to toxic metals, distinct extreme growth strategies, such as phalanx and guerrilla movements and transitions between them, and the formation of aggregated re-allocation structures (strands, cords, synnemata). Other systems showed intrahyphal growth, intense biomineralization, and extracellular hair-like structures. Studies on submerged mycelial growth, using the thermophilic fungus Thielavia terrestris as an example, provided mechanistic insights into the morphogenesis of two extreme forms of fungal submerged culture-pelleted and dispersed growth. It was found that the development of fungal pellets was related to fungal adaptation to unfavorable stressful conditions. The two key elements affecting morphogenesis leading to the formation of either pelleted or dispersed growth were found to be (1) a lag phase (or conidia swelling stage) as a specific period of fungal morphogenesis when a certain growth form is programmed in response to morphogenic stressors, and (2) cAMP as a secondary messenger of cell signaling, defining the implementation of the particular growth strategy. These findings can contribute to knowledge of fungal-based biotechnologies, providing a means for controllable industrial processes at both morphological and physiological levels.
Collapse
Affiliation(s)
- Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Olena Gromozova
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, P.R. China
| |
Collapse
|
11
|
Mojica EA, Fu Y, Kültz D. Salinity-responsive histone PTMs identified in the gills and gonads of Mozambique tilapia (Oreochromis mossambicus). BMC Genomics 2024; 25:586. [PMID: 38862901 PMCID: PMC11167857 DOI: 10.1186/s12864-024-10471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Histone post-translational modifications (PTMs) are epigenetic marks that can be induced by environmental stress and elicit heritable patterns of gene expression. To investigate this process in an ecological context, we characterized the influence of salinity stress on histone PTMs within the gills, kidney, and testes of Mozambique tilapia (Oreochromis mossambicus). A total of 221 histone PTMs were quantified in each tissue sample and compared between freshwater-adapted fish exposed to salinity treatments that varied in intensity and duration. RESULTS Four salinity-responsive histone PTMs were identified in this study. When freshwater-adapted fish were exposed to seawater for two hours, the relative abundance of H1K16ub significantly increased in the gills. Long-term salinity stress elicited changes in both the gills and testes. When freshwater-adapted fish were exposed to a pulse of severe salinity stress, where salinity gradually increased from freshwater to a maximum of 82.5 g/kg, the relative abundance of H1S1ac significantly decreased in the gills. Under the same conditions, the relative abundance of both H3K14ac and H3K18ub decreased significantly in the testes of Mozambique tilapia. CONCLUSIONS This study demonstrates that salinity stress can alter histone PTMs in the gills and gonads of Mozambique tilapia, which, respectively, signify a potential for histone PTMs to be involved in salinity acclimation and adaptation in euryhaline fishes. These results thereby add to a growing body of evidence that epigenetic mechanisms may be involved in such processes.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA
| | - Yuhan Fu
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA
| | - Dietmar Kültz
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Zhou T, Meng Q, Sun R, Xu D, Zhu F, Jia C, Zhou S, Chen S, Yang Y. Structure and gene expression changes of the gill and liver in juvenile black porgy (Acanthopagrus schlegelii) under different salinities. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101228. [PMID: 38547756 DOI: 10.1016/j.cbd.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 05/27/2024]
Abstract
Black porgy (Acanthopagrus schlegelii) is an important marine aquaculture species in China. It is an ideal object for the cultivation of low-salinity aquaculture strains in marine fish and the study of salinity tolerance mechanisms in fish because of its strong low-salinity tolerance ability. Gill is the main osmoregulatory organ in fish, and the liver plays an important role in the adaptation of the organism to stressful environments. In order to understand the coping mechanisms of the gills and livers of black porgy in different salinity environments, this study explored these organs after 30 days of culture in hypoosmotic (0.5 ppt), isosmotic (12 ppt), and normal seawater (28 ppt) at histologic, physiologic, and transcriptomic levels. The findings indicated that gill exhibited a higher number of differentially expressed genes than the liver, emphasizing the gill's heightened sensitivity to salinity changes. Protein interaction networks and enrichment analyses highlighted energy metabolism as a key regulatory focus at both 0.5 ppt and 12 ppt salinity in gills. Additionally, gills showed enrichment in ions, substance transport, and other metabolic pathways, suggesting a more direct regulatory response to salinity stress. The liver's regulatory patterns at different salinities exhibited significant distinctions, with pathways and genes related to metabolism, immunity, and antioxidants predominantly activated at 0.5 ppt, and molecular processes linked to cell proliferation taking precedence at 12 ppt salinity. Furthermore, the study revealed a reduction in the volume of the interlamellar cell mass (ILCM) of the gills, enhancing the contact area of the gill lamellae with water. At 0.5 ppt salinity, hepatic antioxidant enzyme activity increased, accompanied by oxidative stress damage. Conversely, at 12 ppt salinity, gill NKA activity significantly decreased without notable changes in liver structure. These results underscore the profound impact of salinity on gill structure and function, highlighting the crucial role of the liver in adapting to salinity environments.
Collapse
Affiliation(s)
- Tangjian Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Meng
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Ruijian Sun
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Dafeng Xu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Fei Zhu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Chaofeng Jia
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Shimiao Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shuyin Chen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Yunxia Yang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
13
|
Schubert I. Macromutations Yielding Karyotype Alterations (and the Process(es) behind Them) Are the Favored Route of Carcinogenesis and Speciation. Cancers (Basel) 2024; 16:554. [PMID: 38339305 PMCID: PMC10854648 DOI: 10.3390/cancers16030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
It is argued that carcinogenesis and speciation are evolutionary events which are based on changes in the 'karyotypic code' through a phase of 'genome instability', followed by a bottleneck of selection for the viability and adaptability of the initial cells. Genomic (i.e., chromosomal) instability is caused by (massive) DNA breakage and the subsequent mis-repair of DNA double-strand breaks (DSBs) resulting in various chromosome rearrangements. Potential tumor cells are selected for rapid somatic proliferation. Cells eventually yielding a novel species need not only to be viable and proliferation proficient, but also to have a balanced genome which, after passing meiosis as another bottleneck and fusing with an identical gamete, can result in a well-adapted organism. Such new organisms should be genetically or geographically isolated from the ancestral population and possess or develop an at least partial sexual barrier.
Collapse
Affiliation(s)
- Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 04644 Gatersleben, Germany
| |
Collapse
|
14
|
Heng E, Thanedar S, Heng HH. The Importance of Monitoring Non-clonal Chromosome Aberrations (NCCAs) in Cancer Research. Methods Mol Biol 2024; 2825:79-111. [PMID: 38913304 DOI: 10.1007/978-1-0716-3946-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cytogenetic analysis has traditionally focused on the clonal chromosome aberrations, or CCAs, and considered the large number of diverse non-clonal chromosome aberrations, or NCCAs, as insignificant noise. Our decade-long karyotype evolutionary studies have unexpectedly demonstrated otherwise. Not only the baseline of NCCAs is associated with fuzzy inheritance, but the frequencies of NCCAs can also be used to reliably measure genome or chromosome instability (CIN). According to the Genome Architecture Theory, CIN is the common driver of cancer evolution that can unify diverse molecular mechanisms, and genome chaos, including chromothripsis, chromoanagenesis, and polypoidal giant nuclear and micronuclear clusters, and various sizes of chromosome fragmentations, including extrachromosomal DNA, represent some extreme forms of NCCAs that play a key role in the macroevolutionary transition. In this chapter, the rationale, definition, brief history, and current status of NCCA research in cancer are discussed in the context of two-phased cancer evolution and karyotype-coded system information. Finally, after briefly describing various types of NCCAs, we call for more research on NCCAs in future cytogenetics.
Collapse
Affiliation(s)
- Eric Heng
- Stanford University, Stanford, CA, USA
| | - Sanjana Thanedar
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Henry H Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
15
|
Ye JC, Heng HH. Tracking Karyotype Changes in Treatment-Induced Drug-Resistant Evolution. Methods Mol Biol 2024; 2825:263-280. [PMID: 38913315 DOI: 10.1007/978-1-0716-3946-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Karyotype coding, which encompasses the complete chromosome sets and their topological genomic relationships within a given species, encodes system-level information that organizes and preserves genes' function, and determines the macroevolution of cancer. This new recognition emphasizes the crucial role of karyotype characterization in cancer research. To advance this cancer cytogenetic/cytogenomic concept and its platforms, this study outlines protocols for monitoring the karyotype landscape during treatment-induced rapid drug resistance in cancer. It emphasizes four key perspectives: combinational analyses of phenotype and karyotype, a focus on the entire evolutionary process through longitudinal analysis, a comparison of whole landscape dynamics by including various types of NCCAs (including genome chaos), and the use of the same process to prioritize different genomic scales. This protocol holds promise for studying numerous evolutionary aspects of cancers, and it further enhances the power of karyotype analysis in cancer research.
Collapse
Affiliation(s)
- Jing Christine Ye
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry H Heng
- Department of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
16
|
Macionis V. Fetal head-down posture may explain the rapid brain evolution in humans and other primates: An interpretative review. Brain Res 2023; 1820:148558. [PMID: 37634686 DOI: 10.1016/j.brainres.2023.148558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Evolutionary cerebrovascular consequences of upside-down postural verticality of the anthropoid fetus have been largely overlooked in the literature. This working hypothesis-based report provides a literature interpretation from an aspect that the rapid evolution of the human brain has been promoted by fetal head-down position due to maternal upright and semi-upright posture. Habitual vertical torso posture is a feature not only of humans, but also of monkeys and non-human apes that spend considerable time in a sitting position. Consequently, the head-down position of the fetus may have caused physiological craniovascular hypertension that stimulated expansion of the intracranial vessels and acted as an epigenetic physiological stress, which enhanced neurogenesis and eventually, along with other selective pressures, led to the progressive growth of the anthropoid brain and its organization. This article collaterally opens a new insight into the conundrum of high cephalopelvic proportions (i.e., the tight fit between the pelvic birth canal and fetal head) in phylogenetically distant lineages of monkeys, lesser apes, and humans. Low cephalopelvic proportions in non-human great apes could be accounted for by their energetically efficient horizontal nest-sleeping and consequently by their larger body mass compared to monkeys and lesser apes that sleep upright. One can further hypothesize that brain size varies in anthropoids according to the degree of exposure of the fetus to postural verticality. The supporting evidence for this postulation includes a finding that in fossil hominins cerebral blood flow rate increased faster than brain volume. This testable hypothesis opens a perspective for research on fetal postural cerebral hemodynamics.
Collapse
|
17
|
Heng E, Thanedar S, Heng HH. Challenges and Opportunities for Clinical Cytogenetics in the 21st Century. Genes (Basel) 2023; 14:493. [PMID: 36833419 PMCID: PMC9956237 DOI: 10.3390/genes14020493] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The powerful utilities of current DNA sequencing technology question the value of developing clinical cytogenetics any further. By briefly reviewing the historical and current challenges of cytogenetics, the new conceptual and technological platform of the 21st century clinical cytogenetics is presented. Particularly, the genome architecture theory (GAT) has been used as a new framework to emphasize the importance of clinical cytogenetics in the genomic era, as karyotype dynamics play a central role in information-based genomics and genome-based macroevolution. Furthermore, many diseases can be linked to elevated levels of genomic variations within a given environment. With karyotype coding in mind, new opportunities for clinical cytogenetics are discussed to integrate genomics back into cytogenetics, as karyotypic context represents a new type of genomic information that organizes gene interactions. The proposed research frontiers include: 1. focusing on karyotypic heterogeneity (e.g., classifying non-clonal chromosome aberrations (NCCAs), studying mosaicism, heteromorphism, and nuclear architecture alteration-mediated diseases), 2. monitoring the process of somatic evolution by characterizing genome instability and illustrating the relationship between stress, karyotype dynamics, and diseases, and 3. developing methods to integrate genomic data and cytogenomics. We hope that these perspectives can trigger further discussion beyond traditional chromosomal analyses. Future clinical cytogenetics should profile chromosome instability-mediated somatic evolution, as well as the degree of non-clonal chromosomal aberrations that monitor the genomic system's stress response. Using this platform, many common and complex disease conditions, including the aging process, can be effectively and tangibly monitored for health benefits.
Collapse
Affiliation(s)
- Eric Heng
- Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Sanjana Thanedar
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Henry H. Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
18
|
Chen YH, Cohen ZP, Bueno EM, Christensen BM, Schoville SD. Rapid evolution of insecticide resistance in the Colorado potato beetle, Leptinotarsa decemlineata. CURRENT OPINION IN INSECT SCIENCE 2023; 55:101000. [PMID: 36521782 DOI: 10.1016/j.cois.2022.101000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Despite considerable research, efforts to manage insecticide resistance continue to fail. The Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), epitomizes this problem, as it has repeatedly and rapidly evolved resistance to>50 insecticides. The patterns of resistance evolution are intriguing, as they defy models where resistance evolves from rare mutations. Here, we synthesize recent research on insecticide resistance in CPB showing that polygenic resistance drawn from standing genetic diversity explains genomic patterns of insecticide resistance evolution. However, rapid gene regulatory evolution suggests that other mechanisms might also facilitate adaptive change. We explore the hypothesis that sublethal stress from insecticide exposure could alter heritable epigenetic modifications, and discuss the range of experimental approaches needed to fully understand insecticide resistance evolution in this super pest.
Collapse
Affiliation(s)
- Yolanda H Chen
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA.
| | - Zachary P Cohen
- USDA ARS, Insect Control and Cotton Disease Research, College Station, TX, USA
| | - Erika M Bueno
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| | - Blair M Christensen
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
19
|
Chmilar SL, Laird RA. Effects of parental age on salt stress tolerance in an aquatic plant. OIKOS 2023. [DOI: 10.1111/oik.09218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Robert A. Laird
- Dept of Biological Sciences, Univ. of Lethbridge Lethbridge AB Canada
| |
Collapse
|
20
|
Batabyal A, Lukowiak K. Tracking the path of predator recognition in a predator-naive population of the pond snail. Behav Ecol 2022. [DOI: 10.1093/beheco/arac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Organisms evolve adaptive strategies to adjust to rapidly changing environmental stressors. Predation pressure is one of the strongest selective forces and organisms respond to predatory threats via innate and learned responses. We utilized a natural, experimental set-up, where two lakes Stoney and Margo in Canada containing natural populations of the prey Lymnaea stagnalis differed in the presence and absence of an invasive, predatory Northern crayfish, Faxonius virilis. We exploited the contrast in the predation backgrounds of the snail populations from the two lakes to test, 1) predator recognition in predator-experienced snails is innate, (2) predator-naive snails learn to detect a novel invasive predator, and 3) learning about a novel predator gets transmitted to the successive generations. We quantified predator fear memory formation using a higher-order learning paradigm called configural learning. We found that 1) predator recognition in predator-experienced snails is innate, 2) predator-naive snails learned to recognize the novel predator even after a brief exposure to predator cues highlighting the role of learning in combating invasive predators and the critical time-window during development that accounts for predator recognition, and 3) the learning and predator detection mechanism in predator-naive snails are not transmitted to successive generations. The population variation observed in the predator-detection mechanism may be due to the past and current experience of predators in one population over the other. We find an interesting study system to address how fear learning occurs and prospective future directions to understand the mechanism of innate fear recognition from a learned fear recognition.
Collapse
Affiliation(s)
- Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , 3330, Hospital Drive, NW, Calgary, Alberta T2N 4N1 , Canada
- Department of Physical and Natural Sciences, FLAME University , Lavale, Off. Pune Bangalore Highway, Pune, Maharashtra 412115 , India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , 3330, Hospital Drive, NW, Calgary, Alberta T2N 4N1 , Canada
| |
Collapse
|
21
|
Abstract
NEW FINDINGS What is the topic of this review? Revisiting the 2013 article 'Physiology is rocking the foundations of evolutionary biology'. What advances does it highlight? The discovery that the genome is not isolated from the soma and the environment, and that there is no barrier preventing somatic characteristics being transmitted to the germline, means that Darwin's pangenetic ideas become relevant again. ABSTRACT Charles Darwin spent the last decade of his life collaborating with physiologists in search of the biological processes of evolution. He viewed physiology as the way forward in answering fundamental questions about inheritance, acquired characteristics, and the mechanisms by which organisms could achieve their ends and survival. He collaborated with 19th century physiologists, notably John Burdon-Sanderson and George Romanes, in his search for the mechanisms of transgenerational inheritance. The discovery that the genome is not isolated from the soma and the environment, and that there is no barrier preventing somatic characteristics being transmitted to the germline, means that Darwin's pangenetic ideas become relevant again. It is time for 21st century physiology to come to the rescue of evolutionary biology. This article outlines research lines by which this could be achieved.
Collapse
Affiliation(s)
- Denis Noble
- Department of PhysiologyAnatomy & GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|