1
|
Cao X, Ren X, Song Y, Sun Q, Mao F, Shen S, Chen C, Zhou Y. High Expression of Calreticulin Affected the Tumor Microenvironment and Correlated With Worse Prognosis in Patients With Triple-Negative Breast Cancer. J Immunother 2025; 48:173-182. [PMID: 40123257 PMCID: PMC12052058 DOI: 10.1097/cji.0000000000000553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
Calreticulin (CALR) preserves reticular homeostasis by maintaining correct protein folding within the endoplasmic reticulum. Immunogenic cell death (ICD) is a regulated form of cell death and could activate adaptive immune response. As one of the damage-associated molecular patterns during ICD process, surface-exposed CALR resulted in the activation of adaptive immune response. Here, we evaluated the expression patterns of CALR in a cohort of 231 untreated triple-negative breast cancer (TNBC) and determined correlations between CALR expression and clinicopathologic parameters, programmed cell death ligand 1 (PD-L1) expression in immune cells (ICs), and survival. In addition, we analyzed a TNBC data set from The Cancer Genome Atlas to explore the relationship between mRNA expression of CALR and clinicopathologic features, IC infiltration, and survival. Tissue microarray results showed that high CLAR was strongly correlated with advanced stage ( P = 0.022), shorter disease-free survival ( P = 0.008) and overall survival ( P = 0.002), and independently predicted prognosis in TNBC. Spearman analyses demonstrated that CALR negatively correlated with PD-L1 in ICs ( r = -0.198, P = 0.003). Patients with low CALR and high PD-L1 in ICs had the best disease-free survival ( P = 0.013) and overall survival ( P = 0.004) compared with other patients, especially the patients with high CALR and low PD-L1 in ICs. In the "The Cancer Genome Atlas" cohort, CALR mRNA expression in tumors was significantly higher than that in normal tissues ( P < 0.001). CALR expression was strongly and positively related to other ICD-related genes. These findings demonstrated that the expression of CALR could independently predict the prognosis in patients with TNBC, and it may play a potential synergistic role in treatments involving immunotherapy.
Collapse
Affiliation(s)
- Xi Cao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Ren
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Song
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Chen
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Huang S, Liu W, Zhao Q, Chen T, Huang R, Dong L, Nian Z, Yang L. Immunogenic Cell Death-related Signature Evaluates the Tumor Microenvironment and Predicts the Prognosis in Diffuse Large B-Cell Lymphoma. Biochem Genet 2025; 63:411-432. [PMID: 38446321 DOI: 10.1007/s10528-024-10697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 03/07/2024]
Abstract
Current literatures suggest a growing body of evidence highlighting the pivotal role of Immunogenic Cell Death (ICD) in multiple tumor types. Nevertheless, the potential and mechanisms of ICD in diffuse large B-cell lymphoma (DLBCL) remain inadequately studied. To address this gap, our current study aims to examine the impact of ICD on DLBCL and identify a corresponding gene signature in DLBC. Using the expression profiles of ICD-associated genes, the gene expression omnibus (GEO) samples were segregated into ICD-high and ICD-low subtypes utilizing non-negative matrix factorization clustering. Next, univariate and LASSO Cox regression analyses were employed to establish the ICD-related gene signature. Subsequently, the CIBERSORT tool, ssGSEA, and ESTIMATE algorithm were utilized to examine the association between the signature and tumor immune microenvironment of DLBC. Finally, the oncoPredict algorithm was implemented to evaluate the drug sensitivity prediction of DLBCL patients. These findings suggest that the immune microenvironment of the ICD-high group with a poor prognosis was significantly suppressed. An 8-gene ICD-related signature was identified and validated to prognosticate and evaluate the tumor immune microenvironment in DLBCL. Similarly, the high-risk group exhibited a worse prognosis compared to the low-risk group, and the immune function was considerably suppressed. Moreover, the results of oncoPredict algorithm indicated that patients in the high-risk group exhibited higher sensitivity to Cisplatin, Cytarabine, Epirubicin, Oxaliplatin, and Vincristine with low IC50. In conclusion, the present study provides novel insights into the role of ICD in DLBCL by identifying a new biomarker for the disease and may have implications for the development of immune-targeted therapies for the tumor.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Humans
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Prognosis
- Immunogenic Cell Death/genetics
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/genetics
- Transcriptome
- Gene Expression Profiling
- Male
Collapse
Affiliation(s)
- Shengqiang Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Fuzhou, Fujian, China
| | - Wenbin Liu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Fuzhou, Fujian, China
| | - Qiuling Zhao
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Fuzhou, Fujian, China
| | - Ting Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Fuzhou, Fujian, China
| | - Ruyi Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Fuzhou, Fujian, China
| | - Liangliang Dong
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Fuzhou, Fujian, China
| | - Zilin Nian
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Fuzhou, Fujian, China
| | - Lin Yang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Gao S, Wang X, Huang Y, You L. Calreticulin-driven autophagy enhances cell proliferation in laryngeal squamous cell carcinoma. Tissue Cell 2024; 91:102603. [PMID: 39550898 DOI: 10.1016/j.tice.2024.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Calreticulin (CALR) is a multifunctional calcium-binding protein. Recent studies have revealed that CALR contributes to tumor development and promotes cancer cell proliferation. However, how CALR affects the development of laryngeal squamous cell carcinoma (LSCC) remains mysterious. Thus, this study aimed to explore the effect of CALR on LSCC development and uncover its underlying mechanisms. METHODS CALR expression in LSCC cell lines and tissues was examined by qRT-PCR and western blot analysis and its functional role was detected via in vivo and in vitro assays. Cell proliferation was discriminated with CCK-8 and colony formation assays, while apoptosis was analyzed using flow cytometry. Autophagy levels were measured via LC3 immunofluorescence, and western blot assay was conducted to assess apoptosis- and autophagy-related proteins. Additionally, a mouse xenograft model was employed to determine the impact of CALR knockdown on tumor growth. RESULTS We found that CALR knockdown reduced LSCC cell viability and proliferation while enhancing apoptosis, whereas CALR overexpression showed opposite effects. In vivo experiments verified that CALR knockdown suppressed tumor growth. In addition, elevated CALR expression induced autophagy in LSCC cells, while autophagy inhibitor 3-MA (2.5 mM) reversed the anti-apoptosis effects of CALR overexpression. CONCLUSION Our study identifies CALR as an oncogene in LSCC, where it promotes tumor progression by inducing autophagy and inhibiting apoptosis. Targeting CALR or modulating autophagy may represent novel therapeutic strategies for LSCC.
Collapse
Affiliation(s)
- Shufeng Gao
- Department of ENT & HN Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China.
| | - Xintao Wang
- Department of ENT & HN Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Yun Huang
- Department of ENT & HN Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Longgui You
- Department of ENT & HN Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
4
|
Wang YN, Cao D, Liu J, Ren QN, Weng NQ, Zhou YF, Zhang MY, Wang SC, Chen MS, Mai SJ, Wang HY. CircATF6 inhibits hepatocellular carcinoma progression by suppressing calreticulin-mediated Wnt/β-catenin signaling pathway. Cell Signal 2024; 122:111298. [PMID: 39004325 DOI: 10.1016/j.cellsig.2024.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Circular RNAs (circRNAs) are covalently closed, single-stranded RNAs that play critical roles in various biological processes and diseases, including cancers. However, the functions and mechanisms of circRNAs in hepatocellular carcinoma (HCC) need further clarification. Here, we identified and confirmed that circATF6 is downregulated in HCC tissues and negatively associated with the overall survival of HCC patients. Ectopic overexpression of circATF6 inhibits malignant phenotypes of HCC cells in vitro and in vivo, while knockdown of circATF6 had opposite effects. Mechanistically, we found that circATF6 bound to calreticulin (CALR) protein and acted as a scaffold to enhance the interaction of CALR with calpain2 (CAPN2), which promoted the degradation of CALR by its enzymatic activity. Moreover, we found that circATF6 inhibited HCC cells by suppressing CALR-mediated wnt/β-catenin signaling pathway. Taken together, our findings suggest that circATF6 is a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yue-Ning Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Di Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; Department of Medical Image, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Ji Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Qian-Nan Ren
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Nuo-Qing Weng
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Yu-Feng Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Shuo-Cheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Min-Shan Chen
- Department of Liver surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
5
|
Cifric S, Turi M, Folino P, Clericuzio C, Barello F, Maciel T, Anderson KC, Gulla A. DAMPening Tumor Immune Escape: The Role of Endoplasmic Reticulum Chaperones in Immunogenic Chemotherapy. Antioxid Redox Signal 2024; 41:661-674. [PMID: 38366728 DOI: 10.1089/ars.2024.0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Significance: Preclinical and clinical research in the past two decades has redefined the mechanism of action of some chemotherapeutics that are able to activate the immune system against cancer when cell death is perceived by the immune cells. This immunogenic cell death (ICD) activates antigen-presenting cells (APCs) and T cells to induce immune-mediated tumor clearance. One of the key requirements to achieve this effect is the externalization of the damage-associated molecular patterns (DAMPs), molecules released or exposed by cancer cells during ICD that increase the visibility of the cancer cells by the immune system. Recent Advances: In this review, we focus on the role of calreticulin (CRT) and other endoplasmic reticulum (ER) chaperones, such as the heat-shock proteins (HSPs) and the protein disulfide isomerases (PDIs), as surface-exposed DAMPs. Once exposed on the cell membrane, these proteins shift their role from that of ER chaperone and regulator of Ca2+ and protein homeostasis to act as an immunogenic signal for APCs, driving dendritic cell (DC)-mediated phagocytosis and T-mediated antitumor response. Critical Issues: However, cancer cells exploit several mechanisms of resistance to immune attack, including subverting the exposure of ER chaperones on their surface to avoid immune recognition. Future Directions: Overcoming these mechanisms of resistance represents a potential therapeutic opportunity to improve cancer treatment effectiveness and patient outcomes.
Collapse
Affiliation(s)
- Selma Cifric
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcello Turi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Pietro Folino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Cole Clericuzio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tallya Maciel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
6
|
Zhou Z, Mai Y, Zhang G, Wang Y, Sun P, Jing Z, Li Z, Xu Y, Han B, Liu J. Emerging role of immunogenic cell death in cancer immunotherapy: Advancing next-generation CAR-T cell immunotherapy by combination. Cancer Lett 2024; 598:217079. [PMID: 38936505 DOI: 10.1016/j.canlet.2024.217079] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yumiao Mai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yingjie Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pan Sun
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohe Jing
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
7
|
Baran O, Akgun MY, Kayhan A, Evran S, Ozbek A, Akyoldas G, Samanci MY, Demirel N, Sonmez D, Serin H, Kocak A, Kemerdere R, Tanriverdi T. The association between calreticulin and glucagon-like peptide-1 expressions with prognostic factors in high-grade gliomas. J Cancer Res Ther 2024; 20:25-32. [PMID: 38554294 DOI: 10.4103/jcrt.jcrt_1519_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/26/2022] [Indexed: 04/01/2024]
Abstract
OBJECTIVE The aim of this study is to present the expressions of Calreticulin (CALR) and Glucagon-like peptide-1 (GLP-1) in high-grade gliomas and to further show the relation between the levels of these molecules and Ki-67 index, presence of Isocitrate dehydrogenase (IDH)-1 mutation, and tumor grade. PATIENTS AND METHODS A total of 43 patients who underwent surgical resection due to high-grade gliomas (HGG) (grades III and IV) were included. The control group comprised 27 people who showed no gross pathology in the brain during the autopsy procedures. Adequately sized tumor samples were removed from each patient during surgery, and cerebral tissues were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. RESULTS Patients with high-grade gliomas showed significantly higher levels of CALR and significantly lower levels of GLP-1 when compared to control subjects (P = 0.001). CALR levels were significantly higher, GLP-1 levels were significantly lower in grade IV gliomas than those in grade III gliomas (P = 0.001). Gliomas with negative IDH-1 mutations had significantly higher CALR expressions and gliomas with positive IDH-1 mutations showed significantly higher GLP-1 expressions (P = 0.01). A positive correlation between Ki-67 and CALR and a negative correlation between Ki-67 and GLP-1 expressions were observed in grade IV gliomas (P = 0.001). CONCLUSIONS Our results showed that higher CALR and lower GLP-1 expressions are found in HGGs compared to normal cerebral tissues.
Collapse
Affiliation(s)
- Oguz Baran
- Department of Neurosurgery, Koç University Hospital, Istanbul, Turkey
| | | | - Ahmet Kayhan
- Department of Neurosurgery, Haseki Research and Training Hospital, Istanbul, Turkey
| | - Sevket Evran
- Department of Neurosurgery, Haseki Research and Training Hospital, Istanbul, Turkey
| | - Arif Ozbek
- Department of Neurosurgery, Medipol Mega University Hospital, Istanbul, Turkey
| | - Goktug Akyoldas
- Department of Neurosurgery, Koç University Hospital, Istanbul, Turkey
| | | | - Nail Demirel
- Department of Neurosurgery, Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Derya Sonmez
- Clinical Biochemistry Laboratory, Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Huriye Serin
- Clinical Biochemistry Laboratory, Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Ayhan Kocak
- Department of Neurosurgery, Taksim Research and Training Hospital, Istanbul, Turkey
| | - Rahsan Kemerdere
- Department of Neurosurgery, Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Taner Tanriverdi
- Department of Neurosurgery, Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
8
|
Liu HL, Peng H, Huang CH, Zhou HY, Ge J. Mutational separation and clinical outcomes of TP53 and CDH1 in gastric cancer. World J Gastrointest Surg 2023; 15:2855-2865. [PMID: 38222005 PMCID: PMC10784822 DOI: 10.4240/wjgs.v15.i12.2855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a deadly tumor with the fifth highest occurrence and highest global mortality rates. Owing to its heterogeneity, the underlying mechanism of GC remains unclear, and chemotherapy offers little benefit to individuals. AIM To investigate the clinical outcomes of TP53 and CDH1 mutations in GC. METHODS In this study, 202 gastric adenocarcinoma tumor tissues and their corresponding normal tissues were collected. A total of 490 genes were identified using target capture. Through t-test and Wilcoxon rank-sum test, somatic mutations, microsatellite instability, and clinical statistics, including overall survival, were detected, compared, and calculated. RESULTS The mutation rates of 32 genes, including TP53, SPEN, FAT1, and CDH1 exceeded 10%. TP53 mutations had a slightly lower overall occurrence rate (33%). The TP53 mutation rate was significantly higher in advanced stages (stage III/IV) than that in early stages (stage I/II) (P < 0.05). In contrast, CDH1 mutations were significantly associated with diffuse GC. TP53 is related to poor prognosis of advanced-stage tumors; nevertheless, CDH1 corresponds to a diffuse type of cancer. TP53 is exclusively mutated in CDH1 and is primarily affected by two distinct GC mechanisms. CONCLUSION Different somatic mutation patterns in TP53 and CDH1 indicate two major mechanisms of GC.
Collapse
Affiliation(s)
- He-Li Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Huan Peng
- Clinical Nursing Teaching and Research Section, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Chang-Hao Huang
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Hai-Yan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Jie Ge
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
9
|
Chen L, Lin J, Wen Y, Chen Y, Chen CB. Development and validation of a model based on immunogenic cell death related genes to predict the prognosis and immune response to bladder urothelial carcinoma. Front Oncol 2023; 13:1291720. [PMID: 38023241 PMCID: PMC10676223 DOI: 10.3389/fonc.2023.1291720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Immunogenic cell death (ICD) has been categorized as a variant of regulated cell death that is capable of inducing an adaptive immune response. A growing body of evidence has indicated that ICD can modify the tumor immune microenvironment by releasing danger signals or damage-associated molecular patterns (DAMPs), potentially enhancing the efficacy of immunotherapy. Consequently, the identification of biomarkers associated with ICD that can classify patients based on their potential response to ICD immunotherapy would be highly advantageous. Therefore the goal of the study is to better understand and identify what patients with bladder urothelial carcinoma (BLCA) will respond to immunotherapy by analyzing ICD signatures and investigate ICD-related prognostic factors in the context of BLCA. Methods The data obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases regarding BLCA and normal samples was categorized based on ICD-related genes (IRGs). Specifically, we conducted an immunohistochemical (IHC) experiment to validate the expression levels of Calreticulin (CALR) in both tumor and adjacent tissues, and evaluated its prognostic significance using the Kaplan-Meier (KM) curve. Subsequently, the samples from TCGA were divided into two subtypes using consensus clustering. To obtain a more comprehensive comprehension of the biological functions, we utilized Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The calculation of immune landscape between two subtypes was performed through ESTIMATE and CIBERSORT. Risk models were constructed using Cox and Lasso regression and their prognosis predictive ability was evaluated using nomogram, receiver operating characteristic (ROC), and calibration curves. Finally, Tumor Immune Dysfunction and Exclusion (TIDE) algorithms was utilized to predict the response to immunotherapy. Results A total of 34 IRGs were identified, with most of them exhibiting upregulation in BLCA samples. The expression of CALR was notably higher in BLCA compared to the adjacent tissue, and this increase was associated with an unfavorable prognosis. The differentially expressed genes (DEGs) associated with ICD were linked to various immune-related pathways. The ICD-high subtypes exhibited an immune-activated tumor microenvironment (TME) compared to the ICD-low subtypes. Utilizing three IRGs including CALR, IFNB1, and IFNG, a risk model was developed to categorize BLCA patients into high- and low-risk groups. The overall survival (OS) was considerably greater in the low-risk group compared to the high-risk group, as evidenced by both the TCGA and GEO cohorts. The risk score was identified as an independent prognostic parameter (all p < 0.001). Our model demonstrated good predictive ability (The area under the ROC curve (AUC), AUC1-year= 0.632, AUC3-year= 0.637, and AUC5-year =0.653). Ultimately, the lower risk score was associated with a more responsive immunotherapy group. Conclusion The potential of the ICD-based risk signature to function as a marker for evaluating the prognosis and immune landscape in BLCA suggests its usefulness in identifying the suitable population for effective immunotherapy against BLCA.
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Jiexiang Lin
- The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yaoming Wen
- Drug Development, Fujian Institute of Microbiology, Fuzhou, Fujian, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Chuan-ben Chen
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Zhang M, Xiao J, Liu J, Bai X, Zeng X, Zhang Z, Liu F. Calreticulin as a marker and therapeutic target for cancer. Clin Exp Med 2023; 23:1393-1404. [PMID: 36335525 DOI: 10.1007/s10238-022-00937-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Calreticulin (CRT) is a multifunctional protein found within the endoplasmic reticulum (ER). In addition, CRT participates in the formation and development of tumors and promotes the proliferation and migration of tumor cells. When a malignant tumor occurs in the human body, cancer cells that die from immunogenic cell death (ICD) expose CRT on their surface, and CRT that is transferred to the cell surface represents an "eat me" signal, which promotes dendritic cells to phagocytose the tumor cells, thereby increasing the sensitivity of tumors to anticancer immunotherapy. Expression of CRT in tumor tissues is higher than in normal tissues and is associated with disease progression in many malignant tumors. Thus, the dysfunctional production of CRT can promote tumorigenesis because it disturbs not only the balance of healthy cells but also the body's immune surveillance. CRT may be a diagnostic marker and a therapeutic target for cancer, which is discussed extensively in this review.
Collapse
Affiliation(s)
- Meilan Zhang
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Juan Xiao
- Department of Otolaryngology, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jiangrong Liu
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xue Bai
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xuemei Zeng
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiwei Zhang
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Feng Liu
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Liu Z, Wan R, Bai H, Wang J. Damage-associated molecular patterns and sensing receptors based molecular subtypes in malignant pleural mesothelioma and implications for immunotherapy. Front Immunol 2023; 14:1104560. [PMID: 37033966 PMCID: PMC10079989 DOI: 10.3389/fimmu.2023.1104560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
OBJECTIVES Malignant pleural mesothelioma (MPM) is characterized as an incredibly aggressive form of cancer with a dismal diagnosis and a dearth of specific biomarkers and therapeutic options. For MPM patients, the effectiveness of immunotherapy may be influenced by damage-associated molecular pattern (DAMP)-induced immunogenic cell death (ICD).The objective of this work is to create a molecular profile associated with DAMPs to categorize MPM patients and predict their prognosis and response to immunotherapy. METHODS The RNA-seq of 397 patients (263 patients with clinical data, 57.2% male, 73.0% over 60 yrs.) were gathered from eight public datasets as a training cohort to identify the DAMPs-associated subgroups of MPMs using K-means analysis. Three validation cohorts of patients or murine were established from TCGA and GEO databases. Comparisons were made across each subtype's immune status, gene mutations, survival prognosis, and predicted response to therapy. RESULTS Based on the DAMPs gene expression, MPMs were categorized into two subtypes: the nuclear DAMPs subtype, which is classified by the upregulation of immune-suppressed pathways, and the inflammatory DAMPs subtype, which is distinguished by the enrichment of proinflammatory cytokine signaling. The inflammatory DAMPs subgroup had a better prognosis, while the nuclear DAMPs subgroup exhibited a worse outcome. In validation cohorts, the subtyping system was effectively verified. We further identified the genetic differences between the two DAMPs subtypes. It was projected that the inflammatory DAMPs subtype will respond to immunotherapy more favorably, suggesting that the developed clustering method may be implemented to predict the effectiveness of immunotherapy. CONCLUSION We constructed a subtyping model based on ICD-associated DAMPs in MPM, which might serve as a signature to gauge the outcomes of immune checkpoint blockades. Our research may aid in the development of innovative immunomodulators as well as the advancement of precision immunotherapy for MPM.
Collapse
Affiliation(s)
| | | | | | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Serrano Del Valle A, Beltrán-Visiedo M, de Poo-Rodríguez V, Jiménez-Alduán N, Azaceta G, Díez R, Martínez-Lázaro B, Izquierdo I, Palomera L, Naval J, Anel A, Marzo I. Ecto-calreticulin expression in multiple myeloma correlates with a failed anti-tumoral immune response and bad prognosis. Oncoimmunology 2022; 11:2141973. [PMID: 36338146 PMCID: PMC9629093 DOI: 10.1080/2162402x.2022.2141973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunogenic cell death (ICD) has been proposed to be a crucial process for antitumor immunosurveillance. ICD is characterized by the exposure and emission of Damage Associated Molecular Patterns (DAMP), including calreticulin (CRT). A positive correlation between CRT exposure or total expression and improved anticancer immunosurveillance has been found in certain cancers, usually accompanied by favorable patient prognosis. In the present study, we sought to evaluate CRT levels in the plasma membrane of CD38+ bone marrow mononuclear cells (BMMCs) isolated from 71 patients with varying degrees of multiple myeloma (MM) disease and examine the possible relationship between basal CRT exposure and the bone marrow immune microenvironment, as well as its connection with different clinical markers. Data show that increased levels of cell surface-CRT were associated with more aggressive clinical features and with worse clinical prognosis in MM. High CRT expression in MM cells was associated with increased infiltration of NK cells, CD8+ T lymphocytes and dendritic cells (DC), indicative of an active anti-tumoral immune response, but also with a significantly higher presence of immunosuppressive Treg cells and increased expression of PD-L1 in myeloma cells.
Collapse
Affiliation(s)
| | - Manuel Beltrán-Visiedo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Victoria de Poo-Rodríguez
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Nelia Jiménez-Alduán
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Gemma Azaceta
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Rosana Díez
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,Hematology Service, Hospital Universitario Miguel Servet, 50009Zaragoza, Spain
| | - Beatriz Martínez-Lázaro
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Isabel Izquierdo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,Hematology Service, Hospital Universitario Miguel Servet, 50009Zaragoza, Spain
| | - Luis Palomera
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,CONTACT Isabel Marzo Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| |
Collapse
|
13
|
Sun M, Qi S, Wu M, Xia W, Xiong H. Calreticulin as a prognostic biomarker and correlated with immune infiltrate in kidney renal clear cell carcinoma. Front Genet 2022; 13:909556. [PMID: 36338983 PMCID: PMC9633671 DOI: 10.3389/fgene.2022.909556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/05/2022] [Indexed: 01/29/2024] Open
Abstract
Background: Calreticulin (CALR) has been investigated in several malignant diseases and is associated with immune-cell infiltration. However, the prognostic value of CALR in kidney renal clear cell carcinoma (KIRC) is still unknown. Methods: Based on the computational analysis, data from 530 KIRC cases and 72 normal kidney samples from The Cancer Genome Atlas (TGCA-KIRC) database were analyzed in this study. The expression of CALR mRNA in pan-cancer and immune infiltrates was analyzed using the Tumor Immune Estimation Resource (TIMER) database. The CALR protein expression was obtained from the UALCAN and Human Protein Atlas (HPA) databases. Survival, functional, and statistical analyses were conducted using R software. Results: The CALR expression was higher in KIRC cases than in normal kidneys. A high CALR expression was correlated with TNM stage, pathological stage, and histological grade. Kaplan-Meier survival analysis showed that a high CALR expression was associated with poor overall survival, disease-specific survival, and progression-free interval. Gene set enrichment analysis (GSEA) indicated that CALR was enriched in IL-6 and IL-2 signaling, interferon signaling, TNF signaling, inflammatory response, apoptosis, and the p53 pathway. CALR is correlated with immune-infiltrating cells. A significant correlation was observed between CALR expression and immunomodulators. Conclusion: We identified CALR as a prognostic biomarker of KIRC. Meanwhile, the CALR expression associated with immune infiltration indicated that CALR might be a potential immunotherapy target for patients with KIRC.
Collapse
Affiliation(s)
| | | | | | | | - Hao Xiong
- Department of Hematology and Oncology, Wuhan Children’s Hospital, Tongji Medical College, HUST, Wuhan, China
| |
Collapse
|
14
|
Chang NC, Wu YJ, Wang LF, Chan LP, Chai CY, Chen Ms WT, Tsai SM, Chien CY, Ho KY. Downregulation of Calreticulin and Annexin A2 Expression in Acquired Middle Ear Cholesteatoma by 2-DE Analysis. Ann Otol Rhinol Laryngol 2022; 132:684-691. [PMID: 35833235 DOI: 10.1177/00034894221111255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Many factors are thought to be associated with the development of cholesteatoma, while the mechanisms of its formation remain unclear. This study aimed to identify the potential mechanisms of the proliferation and growth of cholesteatoma by analysis of the differential expressions of proteins in cholesteatoma and retroauricular skin tissue collected from the same patients. METHODS The present study is a retrospective study performed in an academic medical center. Comparative proteomics analyses using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), in addition to immunohistochemical analysis, were conducted to identify differentially-expressed proteins in cholesteatoma tissue as compared with retroauricular skin tissue. Western blotting was also employed to verify the expression patterns of the specific proteins identified by 2-DE and to measure the changes in potential modulators related to cholesteatoma proliferation and growth. RESULTS Calreticulin (CRT) and annexin A2 (AnxA2) were identified as being differentially-expressed in cholesteatoma by 2-DE and LC-MS/MS, the results of which were in agreement with the results of immunohistochemical analysis and western blotting. Downregulation of CRT and AnxA2 were observed in cholesteatoma. CONCLUSION Our data suggests that CRT and AnxA2 downregulation are seen in cholesteatoma compared to retroauricular skin. We speculate that the reduced expression of CRT and the persistent inflammatory response play important roles in the epithelial proliferation of cholesteatoma.
Collapse
Affiliation(s)
- Ning-Chia Chang
- Department of Otolaryngology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Jen Wu
- Department of Biological Technology, Meiho University, Pingtung, Taiwan.,Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Ling-Feng Wang
- Department of Otolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Leong-Perng Chan
- Department of Otolaryngology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Tzu Chen Ms
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shih-Meng Tsai
- Department of Public Health, School of Medicine, College of Medicine, Kaohsiung, Medical University, Kaohsiung, Taiwan
| | - Chen-Yu Chien
- Department of Otolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuen-Yao Ho
- Department of Otolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Liu YS, Chang YC, Kuo WW, Chen MC, Wang TF, Chen TS, Lin YM, Li CC, Liao PH, Huang CY. Calreticulin nuclear translocalization alleviates CaM/CaMKII/CREB signaling pathway to enhance chemosensitivity in HDAC inhibitor-resistant hepatocellular carcinoma cells. Aging (Albany NY) 2022; 14:5097-5115. [PMID: 35724265 PMCID: PMC9271289 DOI: 10.18632/aging.204131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/23/2022] [Indexed: 12/18/2022]
Abstract
Calreticulin (CRT) is located in the endoplasmic reticulum (ER), it helps proteins fold correctly inside the ER, and acts as a modulator of Ca2+ homeostasis. Aberrant expression of CRT is implicated in several cancer types, qualifying CRT as a potential therapeutic target. However, it remains unclear how CRT affects specific oncogenic pathways. In this study, we used histone deacetylase inhibitors (HDACis) to establish drug-resistant liver cancer cells and further analyzed the molecular mechanism of development of drug resistance in those cells. The 2D gel electrophoresis and RT-PCR data showed that CRT was downregulated in HDACis-resistant cells by comparing with HA22T parental cells. We previously elucidated the development of drug-resistance in HCC cells via activation of PP1-eIF2α pathway, but not via ER stress pathway. Here, we show that thapsigargin induced ER stress through mechanism other than ER stress downstream protein GRP78-PERK to regulate CRT expression in HDACis-R cells. Moreover, the expression level of CRT was not the main cause of apoptosis in HDACis-resistant cells. Mechanistic studies identified the apoptosis factors in the nucleus-the HDACis-mediated overexpression of CRT, CRT translocation to the cell nucleus, and reduced CaM/CaMKII/CREB pathway-that led to chemosensitivity in HDACis-R HCC cells.
Collapse
Affiliation(s)
- Yi-Sheng Liu
- Division of Hematology and Oncology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Chun Chang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| | - Ming-Cheng Chen
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, School of Medicine Tzu Chi University, Hualien 97004, Taiwan
| | - Tung-Sheng Chen
- School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Yueh-Min Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chi-Cheng Li
- Center of Stem Cell and Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| |
Collapse
|
16
|
Wang L, Chen J, Zuo Q, Wu C, Yu T, Zheng P, Huang H, Deng J, Fang L, Liu H, Li C, Yu P, Zou Q, Zheng J. Calreticulin enhances gastric cancer metastasis by dimethylating H3K9 in the E-cadherin promoter region mediating by G9a. Oncogenesis 2022; 11:29. [PMID: 35641480 PMCID: PMC9156786 DOI: 10.1038/s41389-022-00405-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 01/06/2023] Open
Abstract
The latest study shows that gastric cancer (GC) ranked the fifth most common cancer (5.6%) with over 1 million estimated new cases annually and the fourth most common cause of cancer death (7.7%) globally in 2020. Metastasis is the leading cause of GC treatment failure. Therefore, clarifying the regulatory mechanisms for GC metastatic process is necessary. In the current study, we discovered that calreticulin (CALR) was highly expressed in GC tissues and related to lymph node metastasis and patient’s terrible prognosis. The introduction of CALR dramatically promoted GC cell migration in vitro and in vivo, while the repression of CALR got the opposite effects. Cell migration is a functional consequence of the epithelial-mesenchymal transition (EMT) and is related to adhesion of cells. Additionally, we observed that CALR inhibition or overexpression regulated the expression of EMT markers (E-cadherin, ZO-1, Snail, N-cadherin, and ZEB1) and cellular adhesive moleculars (Fibronectin, integrin β1and MMP2). Mechanistically, our data indicated that CALR could mediate DNA methylation of E-cadherin promoter by interacting with G9a, a major euchromatin methyltransferase responsible for methylation of histone H3 on lysine 9(H3K9me2) and recruiting G9a to the E-cadherin promoter. Knockdown of G9a in CALR overexpressing models restored E-cadherin expression and blocked the stimulatory effects of CALR on GC cell migration. Taken together, these findings not only reveal critical roles of CALR medicated GC metastasis but also provide novel treatment strategies for GC.
Collapse
Affiliation(s)
- Lina Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Jun Chen
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Qianfei Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Chunmei Wu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Ting Yu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Pengfei Zheng
- Department of medicinal chemistry, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Hui Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Jun Deng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Huamin Liu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Chenghong Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Peiwu Yu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China.
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China.
| |
Collapse
|
17
|
Kure S, Chiba T, Ebina A, Toda K, Jikuzono T, Motoda N, Mitani H, Sugitani I, Takeuchi K, Ohashi R. Correlation between low expression of protein disulfide isomerase A3 and lymph node metastasis in papillary thyroid carcinoma and poor prognosis: a clinicopathological study of 1,139 cases with long-term follow-up. Endocr J 2022; 69:273-281. [PMID: 34732604 DOI: 10.1507/endocrj.ej21-0394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The incidence of papillary thyroid carcinoma (PTC) is increasing worldwide. The biomarkers to identify aggressive types of PTC are limited, illustrating the need to establish reliable novel biomarkers. Protein disulfide isomerase A3 (PDIA3) is a chaperone protein that modulates the folding of newly synthesized glycoproteins and stress-responsive proteins in the endoplasmic reticulum. Although the role of PDIA3 in various cancers such as breast, uterine cervix, head and neck, and gastrointestinal tract has been examined, its expression in thyroid cancer has not been reported. We retrospectively reviewed accumulated data with long-term follow-up of 1,139 PTC patients, and investigated the correlation between immunohistochemical expression of PDIA3 in PTC patients and clinicopathological features and prognosis. PDIA3 expression was significantly lower in PTCs compared to normal thyroid tissues (NTT; n = 80, p = 0.002). In PTCs, correlation between low PDIA3 expression and lymph node metastasis (p = 0.018) and the number of positive nodes (p = 0.004) was observed. Patients with low PDIA3 expression exhibited worse cause-specific survival compared to those with high PDIA3 expression (p = 0.013). Our findings indicate that low PDIA3 expression is related to poor clinical outcome in PTC patients, and that PDIA3 may potentially be a novel ancillary biomarker. Further clarification of the biological role of PDIA3 in PTC is warranted for the future clinical application.
Collapse
Affiliation(s)
- Shoko Kure
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Tomohiro Chiba
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Aya Ebina
- Department of Endocrine Surgery, Nippon Medical School Hospital, Tokyo 113-8603, Japan
| | - Kazuhisa Toda
- Division of Head and Neck, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Tomoo Jikuzono
- Department of Endocrine Surgery, Nippon Medical School Hospital, Tokyo 113-8603, Japan
| | - Norio Motoda
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Hiroki Mitani
- Division of Head and Neck, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Iwao Sugitani
- Department of Endocrine Surgery, Nippon Medical School Hospital, Tokyo 113-8603, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
18
|
Li Y, Liu X, Chen H, Xie P, Ma R, He J, Zhang H. Bioinformatics analysis for the role of CALR in human cancers. PLoS One 2021; 16:e0261254. [PMID: 34910788 PMCID: PMC8673678 DOI: 10.1371/journal.pone.0261254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/27/2021] [Indexed: 01/06/2023] Open
Abstract
Cancer is one of the most important public health problems in the world. The curative effect of traditional surgery, radiotherapy and chemotherapy is limited and has inevitable side effects. As a potential target for tumor therapy, few studies have comprehensively analyzed the role of CALR in cancers. Therefore, by using GeneCards, UALCAN, GEPIA, Kaplan-Meier Plotter, COSMIC, Regulome Explorer, String, GeneMANIA and TIMER databases, we collected and analyzed relevant data to conduct in-depth bioinformatics research on the CALR expression in Pan-cancer to assess the possibility of CALR as a potential therapeutic target and survival biomarker. We studied the CALR expression in normal human tissues and various tumors of different stages, and found that CALR expression was associated with relapse free survival (RFS). We verified the expression of CALR in breast cancer cell lines by vitro experiments. Mutations of CALR were widely present in tumors. CALR interacted with different genes and various proteins. In tumors, a variety of immune cells are closely related to CALR. In conclusion, CALR can be used as a biomarker for predicting prognosis and a potential target for tumor molecular and immunotherapy.
Collapse
Affiliation(s)
- Yijun Li
- Departments of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xiaoxu Liu
- Departments of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Heyan Chen
- Departments of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Peiling Xie
- Departments of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Rulan Ma
- Departments of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jianjun He
- Departments of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- * E-mail: (JH); (HZ)
| | - Huimin Zhang
- Departments of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- * E-mail: (JH); (HZ)
| |
Collapse
|
19
|
Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules 2021; 26:molecules26216708. [PMID: 34771120 PMCID: PMC8588050 DOI: 10.3390/molecules26216708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.
Collapse
|
20
|
Ali EA, Elmalik H, Omar NE, Yassin MA. Invasive ductal breast carcinoma preceded by CALR-positive essential thrombocythemia. Clin Case Rep 2021; 9:1732-1736. [PMID: 33768925 PMCID: PMC7981762 DOI: 10.1002/ccr3.3892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/01/2020] [Accepted: 01/18/2021] [Indexed: 11/07/2022] Open
Abstract
Persistent thrombocytosis in patients with cancer needs workup because it can be linked to essential thrombocytosis. The management should be individualized to start treatment for low-risk essential thrombocytosis due to the combined risk of thrombosis.
Collapse
Affiliation(s)
- Elrazi A. Ali
- Internal Medicine DepartmentHamad Medical CorporationDohaQatar
| | - Hind Elmalik
- Medical Oncology and Hematology DepartmentHamad Medical CorporationDohaQatar
| | - Nabil E. Omar
- Medical Oncology and Hematology DepartmentHamad Medical CorporationDohaQatar
- Pharmacy DepartmentNational Center for Cancer Care and ResearchHamad Medical CorporationDohaQatar
| | - Mohamed A. Yassin
- Medical Oncology and Hematology DepartmentHamad Medical CorporationDohaQatar
| |
Collapse
|
21
|
Bone Marrow-Derived Mesenchymal Stem Cells Differentially Affect Glioblastoma Cell Proliferation, Migration, and Invasion: A 2D-DIGE Proteomic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4952876. [PMID: 33628783 PMCID: PMC7892224 DOI: 10.1155/2021/4952876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) display high tumor tropism and cause indirect effects through the cytokines they secrete. However, the effects of BM-MSCs on the biological behaviors of glioblastoma multiforme remain unclear. In this study, the conditioned medium from BM-MSCs significantly inhibited the proliferation of C6 cells (P < 0.05) but promoted their migration and invasion (P < 0.05). Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) proteomic analysis revealed 17 proteins differentially expressed in C6 cells exposed to the BM-MSC-conditioned medium including five upregulated proteins and 12 downregulated proteins. Among these, six differentially expressed proteins (Calr, Set, Oat, Npm1, Ddah1, and Tardbp) were closely related to cell proliferation and differentiation, and nine proteins (Pdia6, Sphk1, Anxa4, Vim, Tuba1c, Actr1b, Actn4, Rap2c, and Tpm2) were associated with motility and the cytoskeleton, which may modulate the invasion and migration of tumor cells. Above all, by identifying the differentially expressed proteins using proteomics and bioinformatics analysis, BM-MSCs could be genetically modified to specifically express tumor-suppressive factors when BM-MSCs are to be used as tumor-selective targeting carriers in the future.
Collapse
|
22
|
Breast Cancer-Derived Microvesicles Are the Source of Functional Metabolic Enzymes as Potential Targets for Cancer Therapy. Biomedicines 2021; 9:biomedicines9020107. [PMID: 33499132 PMCID: PMC7910888 DOI: 10.3390/biomedicines9020107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Membrane-derived extracellular vesicles, referred to as microvesicles (MVs), have been proposed to participate in several cancer diseases. In this study, MV fractions were isolated by differential ultracentrifugation from a metastatic breast cancer (BC) cell line MDA-MB-231 and a non-cancerous breast cell line MCF10A, then analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. A total of 1519 MV proteins were identified from both cell lines. The data obtained were compared to previously analyzed proteins from small extracellular vesicles (sEVs), revealing 1272 proteins present in both MVs and sEVs derived from the MDA-MB-231 cell line. Among the 89 proteins unique to MDA-MB-231 MVs, three enzymes: ornithine aminotransferase (OAT), transaldolase (TALDO1) and bleomycin hydrolase (BLMH) were previously proposed as cancer therapy targets. These proteins were enzymatically validated in cells, sEVs, and MVs derived from both cell lines. The specific activity of OAT and TALDO1 was significantly higher in MDA-MB-231-derived MVs than in MCF10A MVs. BLMH was highly expressed in MDA-MB-231-derived MVs, compared to MCF10A MVs. This study shows that MVs carry functional metabolic enzymes and provides a framework for future studies of their biological role in BC and potential in therapeutic applications.
Collapse
|
23
|
Zheng Y, Li C, Xin P, Peng Q, Zhang W, Liu S, Zhu X. Calreticulin increases growth and progression of natural killer/T-cell lymphoma. Aging (Albany NY) 2020; 12:23822-23835. [PMID: 33221760 PMCID: PMC7762466 DOI: 10.18632/aging.104030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/25/2020] [Indexed: 04/11/2023]
Abstract
In this study, we investigated the role of calreticulin (CALR) in the pathogenesis of natural killer/T-cell lymphoma (NKTCL). CALR expression was significantly higher in the NKTCL tissues than normal control tissues in the GSE80632 dataset. High CALR expression correlated with poorer overall survival of NKTCL patients (P = 0.0248). CALR mRNA and protein levels were significantly higher in NKTCL cell lines (NK92, SNK6, and SNT8) than normal NK cells. CALR-silenced SNK6 cells generated significantly smaller xenograft tumors in immunodeficient NCG mice than control SNK6 cells. CALR-knockdown NKTCL cells showed significantly less in vitro proliferation and Transwell migration than the controls. CALR knockdown inhibited G1-to-S phase cell cycle progression by increasing the levels of p27 cell cycle inhibitor and reducing the levels of cyclin E2 and cyclin-dependent kinase 2 (CDK2). CALR knockdown inhibited epithelial-to-mesenchymal transition (EMT) by decreasing the levels of β-catenin and TCF/ZEB1 and upregulating E-cadherin. These data demonstrate that CALR regulates the growth and progression of NKTCL cells by modulating G1-to-S cell cycle progression and EMT.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Hematology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Chuntuan Li
- Department of Hematology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Pengliang Xin
- Department of Hematology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Qunyi Peng
- Department of Hematology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Weiyu Zhang
- Department of Pathology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Shengquan Liu
- Department of Hematology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Xiongpeng Zhu
- Department of Hematology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
24
|
Calreticulin promotes EMT in pancreatic cancer via mediating Ca 2+ dependent acute and chronic endoplasmic reticulum stress. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:209. [PMID: 33028359 PMCID: PMC7542892 DOI: 10.1186/s13046-020-01702-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Background Our previous study showed that calreticulin (CRT) promoted EGF-induced epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC) via Integrin/EGFR-ERK/MAPK signaling. We next investigated the novel signal pathway and molecular mechanism involving the oncogenic role of CRT in PC. Methods We investigated the potential role and mechanism of CRT in regulating intracellular free Ca2+ dependent acute and chronic endoplasmic reticulum stress (ERS)-induced EMT in PC in vitro and vivo. Results Thapsigargin (TG) induced acute ERS via increasing intracellular free Ca2+ in PC cells, which was reversed by CRT silencing. Additionally, CRT silencing inhibited TG-induced EMT in vitro by reversing TG-induced changes of the key proteins in EMT signaling (ZO-1, E-cadherin and Slug) and ERK/MAPK signaling (pERK). TG-promoted cell invasion and migration was also rescued by CRT silencing but enhanced by IRE1α silencing (one of the key stressors in unfolded protein response). Meanwhile, CRT was co-immunoprecipitated and co-localized with IRE1α in vitro and its silencing led to the chronic ERS via upregulating IRE1α independent of IRE1-XBP1 axis. Moreover, CRT silencing inhibited IRE1α silencing-promoted EMT, including inhibiting the activation of EMT and ERK/MAPK signaling and the promotion of cell mobility. In vivo, CRT silencing decreased subcutaneous tumor size and distant liver metastasis following with the increase of IRE1α expression. A negative relationship between CRT and IRE1α was also observed in clinical PC samples, which coordinately promoted the advanced clinical stages and poor prognosis of PC patients. Conclusions CRT promotes EMT in PC via mediating intracellular free Ca2+ dependent TG-induced acute ERS and IRE1α-mediated chronic ERS via Slug and ERK/MAPK signaling.
Collapse
|
25
|
Abstract
Calreticulin (CALR) is an endoplasmic reticulum (ER)-resident protein involved in a spectrum of cellular processes. In healthy cells, CALR operates as a chaperone and Ca2+ buffer to assist correct protein folding within the ER. Besides favoring the maintenance of cellular proteostasis, these cell-intrinsic CALR functions support Ca2+-dependent processes, such as adhesion and integrin signaling, and ensure normal antigen presentation on MHC Class I molecules. Moreover, cancer cells succumbing to immunogenic cell death (ICD) expose CALR on their surface, which promotes the uptake of cell corpses by professional phagocytes and ultimately supports the initiation of anticancer immunity. Thus, loss-of-function CALR mutations promote oncogenesis not only as they impair cellular homeostasis in healthy cells, but also as they compromise natural and therapy-driven immunosurveillance. However, the prognostic impact of total or membrane-exposed CALR levels appears to vary considerably with cancer type. For instance, while genetic CALR defects promote pre-neoplastic myeloproliferation, patients with myeloproliferative neoplasms bearing CALR mutations often experience improved overall survival as compared to patients bearing wild-type CALR. Here, we discuss the context-dependent impact of CALR on malignant transformation, tumor progression and response to cancer therapy.
Collapse
|
26
|
SUN M, YANG G, ZHAO Y, QU F. Screening of Aptamer for Breast Cancer Biomarker Calreticulin and Its Application to Detection of Serum and Recognition of Breast Cancer Cell. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60020-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Abstract
Calreticulin (CRT) is a pleiotropic and highly conserved molecule that is mainly localized in the endoplasmic reticulum. Recently, CRT has gained special interest for its functions outside the endoplasmic reticulum where it has immunomodulatory properties. CRT translocation to the cell membrane serves as an "eat me" signal and promotes efferocytosis of apoptotic cells and cancer cell removal with completely opposite outcomes. Efferocytosis results in a silenced immune response and homeostasis, while removal of dying cancer cells brought about by anthracycline treatment, ionizing-irradiation or photodynamic therapy results in immunogenic cell death with activation of the innate and adaptive immune responses. In addition, CRT impacts phagocyte activation and cytokine production. The effects of CRT on cytokine production depend on its conformation, species specificity, degree of oligomerization and/or glycosylation, as well as its cellular localization and the molecular partners involved. The controversial roles of CRT in cancer progression and the possible role of the CALR gene mutations in myeloproliferative neoplasms are also addressed. The release of CRT and its influence on the different cells involved during efferocytosis and immunogenic cell death points to additional roles of CRT besides merely acting as an "eat me" signal during apoptosis. Understanding the contribution of CRT in physiological and pathological processes could give us some insight into the potential of CRT as a therapeutic target.
Collapse
|
28
|
Serrano-Del Valle A, Naval J, Anel A, Marzo I. Novel Forms of Immunomodulation for Cancer Therapy. Trends Cancer 2020; 6:518-532. [PMID: 32460005 DOI: 10.1016/j.trecan.2020.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years immunotherapy has provided new hope for cancer patients. However, some patients eventually relapse. Immunological responses are thought to underlie the long-term effects of conventional or targeted therapies. Whether this influence emerges from direct effects on cancer cells through immunogenic cell death (ICD) or by modulating the immune environment requires further clarification. ICD-related molecular mechanisms are also shared by cell-intrinsic defense responses that combat foreign intrusions. Indeed, we could potentially mimic and harness these processes to improve cancer immunogenicity. In addition, the microbiome is materializing as a missing factor in the cancer-immune therapy axis. The emerging idea of manipulating the gut microbiota to improve responses to anticancer therapy is becoming increasingly popular, but further clinical authentication is needed.
Collapse
Affiliation(s)
- Alfonso Serrano-Del Valle
- Apoptosis, Immunity, and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, and Aragon Health Research Institute (IIS-Aragon), Zaragoza 50009, Spain.
| | - Javier Naval
- Apoptosis, Immunity, and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, and Aragon Health Research Institute (IIS-Aragon), Zaragoza 50009, Spain
| | - Alberto Anel
- Apoptosis, Immunity, and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, and Aragon Health Research Institute (IIS-Aragon), Zaragoza 50009, Spain
| | - Isabel Marzo
- Apoptosis, Immunity, and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, and Aragon Health Research Institute (IIS-Aragon), Zaragoza 50009, Spain
| |
Collapse
|
29
|
Calreticulin regulates vascular endothelial growth factor-A mRNA stability in gastric cancer cells. PLoS One 2019; 14:e0225107. [PMID: 31725767 PMCID: PMC6855450 DOI: 10.1371/journal.pone.0225107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 10/29/2019] [Indexed: 01/05/2023] Open
Abstract
Calreticulin (CRT) and vascular endothelial growth factor-A (VEGF-A) are crucial for angiogenesis, and mediate multiple malignant behaviors in gastric cancer. In this study, we report that CRT is positively correlated with VEGF-A in gastric cancer patients. Moreover, high expressions of both CRT and VEGF-A are markedly associated with the pathological stage, progression, and poor prognosis in the patients. Therefore, we sought to elucidate the mechanism by which CRT affects VEGF-A in gastric cancer. Firstly, we demonstrate the novel finding that knockdown of CRT reduced VEGF-A mRNA stability in two gastric cancer cell lines, AGS and MKN45. The AU-Rich element (ARE) is believed to play a crucial role in the maintenance of VEGF-A mRNA stability. Luciferase reporter assay shows that knockdown of CRT significantly decreased the activity of renilla luciferase with VEGF-A ARE sequence. Additionally, competition results from RNA-binding/electrophoretic mobility shift assay indicate that CRT forms an RNA-protein complex with the VEGF-A mRNA by binding to the ARE. In addition, the proliferation rate of human umbilical vein endothelial cells (HUVEC) was significantly reduced when treated with conditioned medium from CRT knockdown cells; this was rescued by exogenous VEGF-A recombinant protein. Our results demonstrate that CRT is involved in VEGF-A ARE binding protein complexes to stabilize VEGF-A mRNA, thereby promoting the angiogenesis, and progression of gastric cancer.
Collapse
|
30
|
Han Y, Liao Q, Wang H, Rao S, Yi P, Tang L, Tian Y, Oyang L, Wang H, Shi Y, Zhou Y. High expression of calreticulin indicates poor prognosis and modulates cell migration and invasion via activating Stat3 in nasopharyngeal carcinoma. J Cancer 2019; 10:5460-5468. [PMID: 31632490 PMCID: PMC6775705 DOI: 10.7150/jca.35362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: Emerging evidence suggests that calreticulin (CALR) has great impacts on the tumor formation and progression of various cancers, but the role of CALR remains controversial. We investigated the expression and clinical significance of CALR in nasopharyngeal carcinoma (NPC). Methods: Immunohistochemistry was used to detect the expression of CALR in NPC tissues, and the correlation of CALR with clinicopathological characteristics and prognosis were analyzed. The cell functions of CALR in NPC cells were also performed in vitro. Results: Compared with non-tumor nasopharyngeal epithelium (NPE) tissues, CALR expression was markedly up-regulated in NPC tissues (P < 0.001), and the high expression of CALR was positively associated with advanced clinical stage (P=0.003) and metastasis (P=0.023). Compared to the patients with low expression of CALR, patients who displayed high expression of CALR may achieve a poorer progression-free survival (PFS) and overall survival (OS) (P < 0.001). Furthermore, multivariate analysis showed that high expression of CALR was an independent predictor of poor prognosis. In addition, we found that knockdown of CALR significantly inhibited the proliferation, migration and invasion of CNE2 and HONE1 cells in vitro, and the mechanism might be associated with inactivation of Stat3 signaling pathway. Conclusion: CALR may promote NPC progression and metastasis via involving Stat3 signaling pathway, and can be regarded as an effective potential predictor for progression and prognosis of NPC.
Collapse
Affiliation(s)
- Yaqian Han
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Heran Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shan Rao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Pin Yi
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Lu Tang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yutong Tian
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Linda Oyang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yingrui Shi
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
31
|
He D, Wu L, Li X, Liu X, Ma P, Juang Y. Ecotropic virus integration-1 and calreticulin as novel prognostic markers in triple-negative breast cancer: A retrospective cohort study. Oncol Lett 2019; 18:1847-1855. [PMID: 31423253 PMCID: PMC6607142 DOI: 10.3892/ol.2019.10472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/09/2019] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer, for which no specific targete d therapy is currently available. The present study aimed to examine the associations of ecotropic virus integration site 1 (EVI-1) and calreticulin (CRT) with other clinicopathological variables and the prognosis of patients with TNBC. The present retrospective cohort study reviewed the medical records of patients with TNBC treated in the Affiliated Hospitals of Jinzhou Medical University between January 2010 and June 2015. The protein expression levels of EVI-1 and CRT in tumor samples obtained from the patients were examined by immunohistochemical analysis. Univariate and multivariate regression analyses were used to identify associations between clinical characteristics and disease-free survival (DFS) or overall survival (OS). Kaplan-Meier analysis was performed to observe the survival condition (DFS/OS) according to EVI-1 and CRT expression. A total of 88 TNBC patients were included in the present study. Tumor tissues in 52 (59.1%) patients were EVI-1 positive, and tumor tissues in 64 (72.7%) patients were CRT-positive, and these rates were significantly higher compared with those in the corresponding paracancerous tissues (P<0.05). Multivariate analysis revealed that EVI-1 and CRT expression levels were independent variables associated with OS and DFS, and high expression of both CRT and EVI-1 was significantly associated with decreased OS and DFS compared with the other subgroups (low EVI-1/low CRT expression, low EVI-1/high CRT expression and high EVI-1/low CRT expression) of patients with TNBC. EVI-1 and CRT expression in TNBC was significantly correlated with poor outcome. Evaluation of the EVI-1 and CRT status may provide insight into prognosis prediction for patients with TNBC.
Collapse
Affiliation(s)
- Dongning He
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Lei Wu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaoxi Li
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaodan Liu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ping Ma
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Youhong Juang
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
32
|
Serrano-Del Valle A, Anel A, Naval J, Marzo I. Immunogenic Cell Death and Immunotherapy of Multiple Myeloma. Front Cell Dev Biol 2019; 7:50. [PMID: 31041312 PMCID: PMC6476910 DOI: 10.3389/fcell.2019.00050] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Over the past decades, immunotherapy has demonstrated a prominent clinical efficacy in a wide variety of human tumors. For many years, apoptosis has been considered a non-immunogenic or tolerogenic process whereas necrosis or necroptosis has long been acknowledged to play a key role in inflammation and immune-related processes. However, the new concept of “immunogenic cell death” (ICD) has challenged this traditional view and has granted apoptosis with immunogenic abilities. This paradigm shift offers clear implications in designing novel anti-cancer therapeutic approaches. To date, several screening studies have been carried out to discover bona fide ICD inducers and reveal the inherent capacity of a wide variety of drugs to induce cell death-associated exposure of danger signals and to bring about in vivo anti-cancer immune responses. Recent shreds of evidence place ER stress at the core of all the scenarios where ICD occur. Furthermore, ER stress and the unfolded protein response (UPR) have emerged as important targets in different human cancers. Notably, in multiple myeloma (MM), a lethal plasma cell disorder, the elevated production of immunoglobulins leaves these cells heavily reliant on the survival arm of the UPR. For that reason, drugs that disrupt ER homeostasis and engage ER stress-associated cell death, such as proteasome inhibitors, which are currently used for the treatment of MM, as well as novel ER stressors are intended to be promising therapeutic agents in MM. This not only holds true for their capacity to induce cell death, but also to their potential ability to activate the immunogenic arm of the ER stress response, with the ensuing exposure of danger signals. We provide here an overview of the up-to-date knowledge regarding the cell death mechanisms involved in situations of ER stress with a special focus on the connections with the drug-induced ER stress pathways that evoke ICD. We will also discuss how this could assist in optimizing and developing better immunotherapeutic approaches, especially in MM treatment.
Collapse
Affiliation(s)
| | - Alberto Anel
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - Javier Naval
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - Isabel Marzo
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
33
|
Calreticulin as A Novel Potential Metastasis-Associated Protein in Myxoid Liposarcoma, as Revealed by Two-Dimensional Difference Gel Electrophoresis. Proteomes 2019; 7:proteomes7020013. [PMID: 30974841 PMCID: PMC6631384 DOI: 10.3390/proteomes7020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/07/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Myxoid liposarcoma (MLS) is a mesenchymal malignancy. To identify innovate seeds for clinical applications, we examined the proteomes of primary tumor tissues from 10 patients with MLS with different statuses of postoperative metastasis. The protein expression profiles of tumor tissues were created, and proteins with differential expression associated with postoperative metastasis were identified by two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry. The validation was performed using specific antibodies and in vitro analyses. Using 2D-DIGE, we observed 1726 protein species and identified proteins with unique expression levels in metastatic MLS. We focused on the overexpression of calreticulin in metastatic MLS. The higher expression of calreticulin was confirmed by Western blotting, and gene silencing assays demonstrated that reduced expression of calreticulin inhibited cell growth and invasion. Our findings suggested the important roles of calreticulin in MLS metastasis and supported its potential utility as a prognostic biomarker in MLS. Further investigations of the functional properties of calreticulin and other proteins identified in this study will improve our understanding of the biology of MLS and facilitate novel clinical applications.
Collapse
|
34
|
Freund E, Liedtke KR, van der Linde J, Metelmann HR, Heidecke CD, Partecke LI, Bekeschus S. Physical plasma-treated saline promotes an immunogenic phenotype in CT26 colon cancer cells in vitro and in vivo. Sci Rep 2019; 9:634. [PMID: 30679720 PMCID: PMC6345938 DOI: 10.1038/s41598-018-37169-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
Metastatic colorectal cancer is the fourth most common cause of cancer death. Current options in palliation such as hyperthermic intraperitoneal chemotherapy (HIPEC) present severe side effects. Recent research efforts suggested the therapeutic use of oxidant-enriched liquid using cold physical plasma. To investigate a clinically accepted treatment regimen, we assessed the antitumor capacity of plasma-treated saline solution. In response to such liquid, CT26 murine colon cancer cells were readily oxidized and showed cell growth with subsequent apoptosis, cell cycle arrest, and upregulation of immunogenic cell death (ICD) markers in vitro. This was accompanied by marked morphological changes with re-arrangement of actin fibers and reduced motility. Induction of an epithelial-to-mesenchymal transition phenotype was not observed. Key results were confirmed in MC38 colon and PDA6606 pancreatic cancer cells. Compared to plasma-treated saline, hydrogen peroxide was inferiorly toxic in 3D tumor spheroids but of similar efficacy in 2D models. In vivo, plasma-treated saline decreased tumor burden in Balb/C mice. This was concomitant with elevated numbers of intratumoral macrophages and increased T cell activation following incubation with CT26 cells ex vivo. Being a potential adjuvant for HIPEC therapy, our results suggest oxidizing saline solutions to inactivate colon cancer cells while potentially stimulating antitumor immune responses.
Collapse
Affiliation(s)
- Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Kim Rouven Liedtke
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Julia van der Linde
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Hans-Robert Metelmann
- Oral and Maxillofacial Surgery/Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Claus-Dieter Heidecke
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Lars-Ivo Partecke
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
35
|
Tariq A, Mateen RM, Fatima I, Akhtar MW. Calreticulin is Differentially Expressed in Invasive Ductal Carcinoma: A Comparative Study. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164615666180907154459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective: The aim of the present study was to build protein profiles of untreated breast cancer patients of invasive ductal carcinoma grade II at tissue level in Pakistani population and to compare 2-D profiles of breast tumor tissues with matched normal tissues in order to evaluate for variations of proteins among them.
Materials & Methods:
Breast tissue profiles were made after polytron tissue lysis and rehydrated proteins were further characterized by using two-dimensional gel electrophoresis. On the basis of isoelectric point (pI) and molecular weight, proteins were identified by online tool named Siena 2-D database and their identification was further confirmed by using MALDI-TOF.
Results:
Among identified spots, 10 proteins were found to be differentially expressed i.e.; COX5A, THIO, TCTP, HPT, SODC, PPIA, calreticulin (CRT), HBB, albumin and serotransferrin. For further investigation, CRT was selected. The level of CRT in tumors was found to be significantly higher than in normal group (p < 0.05). The increased expression of CRT level in tumor was statistically significant (p = 0.010) at a 95% confidence level (p < 0.05) as analyzed by Mann-Whitney. CRT was found distinctly expressed in high amount in tumor tissue as compared to their matched normal tissues.
Conclusion:
It has been concluded that CRT expression could discriminate between normal tissue and tumor tissue so it might serve as a possible candidate for future studies in cancer diagnostic markers.
Collapse
Affiliation(s)
- Asma Tariq
- Proteome Lab, School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Rana Muhammad Mateen
- Department of Life Sciences, School of Science, University of Management & Technology, Lahore, Pakistan
| | - Iram Fatima
- Proteome Lab, School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
36
|
Mishchenko T, Mitroshina E, Balalaeva I, Krysko O, Vedunova M, Krysko DV. An emerging role for nanomaterials in increasing immunogenicity of cancer cell death. Biochim Biophys Acta Rev Cancer 2018; 1871:99-108. [PMID: 30528646 DOI: 10.1016/j.bbcan.2018.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
In the last decade, it has become clear that anti-cancer therapy is more successful when it can also induce an immunogenic form of cancer cell death (ICD). ICD is an umbrella term covering several cell death modalities, including apoptosis and necroptosis. In general, ICD is characterized by the emission of damage-associated molecular patterns (DAMPs) and/or cytokines/chemokines, leading to the induction of strong anti-tumor immune responses. In experimental cancer therapy, new observations indicate that the immunogenicity of dying cancer cells can be improved by the use of biomaterials. In this review, after a brief overview of the basic principles of the concept of ICD and discussion of the potential use of DAMPs as biomarkers of therapy efficacy, we discuss an emerging role of nanomaterials as a promising strategy to modulate the immunogenicity of cancer cell death. We address how nanocarriers can be used to increase the immunogenicity of ICD and then turn our attention to their dual action. Nanocarriers can be used to increase the immunogenicity of dying cancer cells and to reduce the side effects of chemotherapy. Future studies will show whether biomaterials are truly an optimal strategy to modulate the immunogenicity of dying cancer cells and will provide the insights needed for the development of novel treatment strategies for cancer.
Collapse
Affiliation(s)
- Tatiana Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russian Federation
| | - Elena Mitroshina
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russian Federation
| | - Irina Balalaeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russian Federation
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Maria Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russian Federation
| | - Dmitri V Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russian Federation; Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
37
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
38
|
Xie WP, Zhang Y, Zhang YK, Li G, Xin J, Bi RX, Li CJ. Treatment of Saos-2 osteosarcoma cells with diallyl trisulfide is associated with an increase in calreticulin expression. Exp Ther Med 2018; 15:4737-4742. [PMID: 29844798 PMCID: PMC5958869 DOI: 10.3892/etm.2018.6037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/22/2018] [Indexed: 12/28/2022] Open
Abstract
Diallyl trisulfide (DATS) is a natural organic sulfur compound that may be isolated from garlic and has strong anticancer activity. DATS has been demonstrated to upregulate the expression of calreticulin (CRT) in various types of human cancers, which is associated with the prognosis of cancer and its response to therapy. However, whether DATS has the same effect on human osteosarcoma cells is not known. Therefore, in the present study, Saos-2 human osteosarcoma cells were cultured with different concentrations of DATS (0, 25, 50 and 100 µmol/l) for 24 h, or with 50 µmol/l DATS for different time periods (0, 12, 24 and 36 h). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and immunofluorescent staining were used to detect CRT mRNA and protein in the Saos-2 cells. Exposure to DATS changed the morphology and inhibited the growth of the Saos-2 cells, and its effects appeared to be concentration- and exposure time-dependent. The optimum concentration and exposure time of DATS were 50 µmol/l and 24 h, respectively. The levels of CRT mRNA and protein in the Saos-2 cells were significantly upregulated following exposure to DATS. The upregulation of CRT expression by DATS may be a mechanism underlying the ability of DATS to inhibit the growth of human osteosarcoma Saos-2 cells.
Collapse
Affiliation(s)
- Wen-Peng Xie
- Department of Orthopedics, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yue Zhang
- Department of Orthopedics, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yong-Kui Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Gang Li
- Department of Orthopedics, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China.,Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Jian Xin
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Rong-Xiu Bi
- Department of Orthopedics, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China.,Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Chuan-Jie Li
- Department of Orthopedics, Laiwu Central Hospital of Xinwen Mining Group, Laiwu, Shandong 271103, P.R. China
| |
Collapse
|
39
|
Xu Q, Chen C, Chen G, Chen W, Zhou D, Xie Y. Significance of calreticulin as a prognostic factor in endometrial cancer. Oncol Lett 2018; 15:8999-9008. [PMID: 29844817 PMCID: PMC5958802 DOI: 10.3892/ol.2018.8495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 01/18/2018] [Indexed: 01/05/2023] Open
Abstract
In patients with endometrial cancer, the expression and prognostic significance of calreticulin (CRT) remains to be fully elucidated. To investigate the role of CRT in endometrial cancer, the present study compared its expression status with clinicopathological characteristics and evaluated its prognostic significance. The expression of CRT, PKR-like endoplasmic reticulum kinase (PERK), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), and Ki67 were assessed by immunohistochemistry and/or western blotting in endometrial cancer patients. The association of the expression of CRT, p-eIF2α and Ki67 with patient survival rate was assessed by Kaplan-Meier and Cox regression analyses. Low levels of CRT and an overexpression of Ki67 were significantly associated with the stage, histology, and differentiation of the primary surgery without doxorubicin (DOX) neoadjuvant chemotherapy (NAC) patient group and were significantly correlated with a short progression-free survival and the overall survival. A multivariate analysis revealed that CRT and Ki67 expression were independent prognostic indicators for endometrioid endometrial cancer. Low CRT expression and an overexpression of Ki67 were significantly associated with DOX-NAC and the histology (P<0.05) pre-NAC and post-NAC in the DOX-NAC patient group. Upon treatment of DOX-NAC, CRT, PERK and p-eIF2α protein content were overexpressed in DOX-sensitive endometrial cancer (P<0.05), whereas there was no significant difference in the DOX-resistant group. Low CRT expression in endometrial cancer is significantly associated with aggressive progression and poor prognosis. CRT may therefore serve as a molecular marker for predicting the progression and prognosis in DOX-resistant endometrial cancer patients.
Collapse
Affiliation(s)
- Qin Xu
- Department of Gynecology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Chuanben Chen
- Department of Oncology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Guilin Chen
- Department of Gynecology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Wei Chen
- Department of Gynecology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Dongmei Zhou
- Department of Research Pathology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Yunqing Xie
- Department of Research Center, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
40
|
|
41
|
Fucikova J, Kasikova L, Truxova I, Laco J, Skapa P, Ryska A, Spisek R. Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett 2017; 193:25-34. [PMID: 29175313 DOI: 10.1016/j.imlet.2017.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/26/2022]
Abstract
The death of cancer cells can be categorized as either immunogenic (ICD) or nonimmunogenic, depending on the initiating stimulus. The immunogenic processes of immunogenic cell death are mainly mediated by damage-associated molecular patterns (DAMPs), which include surface exposure of calreticulin (CRT), secretion of adenosine triphosphate (ATP), release of non-histone chromatin protein high-mobility group box 1 (HMGB1) and the production of type I interferons (IFNs). DAMPs are recognized by various receptors that are expressed by antigen-presenting cells (APCs) and potentiate the presentation of tumor antigens to T lymphocytes. Accumulating evidence indicates that CRT exposure constitutes one of the major checkpoints, that determines the immunogenicity of cell death both in vitro and in vivo in mouse models. Moreover, recent studies have identified CRT expression on tumor cells not only as a marker of ICD and active anti-tumor immune reactions but also as a major predictor of a better prognosis in various cancers. Here, we discuss the recent information on the CRT capacity to activate anticancer immune response as well as its prognostic and predictive role for the clinical outcome in cancer patients.
Collapse
Affiliation(s)
- Jitka Fucikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic
| | - Lenka Kasikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic
| | - Iva Truxova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic
| | - Jan Laco
- Fingerland Department of Pathology, Charles University Medical Faculty and University Hospital, Hradec Kralove, Czech Republic
| | - Petr Skapa
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Ales Ryska
- Fingerland Department of Pathology, Charles University Medical Faculty and University Hospital, Hradec Kralove, Czech Republic
| | - Radek Spisek
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic.
| |
Collapse
|
42
|
Sheng W, Chen C, Dong M, Wang G, Zhou J, Song H, Li Y, Zhang J, Ding S. Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via Integrin/EGFR-ERK/MAPK signaling pathway. Cell Death Dis 2017; 8:e3147. [PMID: 29072694 PMCID: PMC5680916 DOI: 10.1038/cddis.2017.547] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022]
Abstract
Our previous study showed that Calreticulin (CRT) promoted the development of pancreatic cancer (PC) through ERK/MAPK pathway. We next investigate whether CRT promotes EGF-induced epithelial-mesenchymal transition (EMT) in PC via Integrin/EGFR-ERK/MAPK signaling, which has not been reported yet to our knowledge. EGF simultaneously induced EMT and activated Integrin/EGFR-ERK/MAPK signaling pathway in 3 PC cells. However, CRT silencing significantly inhibited EGF function, including inhibiting EGF-induced EMT-like cell morphology, EGF-enhanced cell invasion and migration, and EGF induced the decrease of E-cadherin, ZO-1, and β-catenin and the increase of the key proteins in Integrin/EGFR-ERK/MAPK signaling (pEGFR-tyr1173, Fibronectin, Integrinβ1, c-Myc and pERK). Conversely, CRT overexpression rescued the change of EMT-related proteins induced by EGF in CRT silencing PC cells. Additionally, CRT was co-stained with pEGFR1173 (with EGF), Fibronectin and Integrinβ1 by IF under confocal microscopy and was co-immunoprecipitated with Fibronectin, Integrinβ1 and c-Myc in both PC cells, all of which indicating a close interaction of CRT with Integrin/EGFR-ERK/MAPK signaling pathway in PC. In vivo, CRT silencing inhibited subcutaneous tumor growth and liver metastasis of pancreatic tumor. A positive relationship of CRT with Fibronectin, Integrinβ1, c-Myc and pERK and a negative association of CRT with E-cad was also observed in vivo and clinical samples. Meanwhile, overexpression of the above proteins was closely associated with multiple aggressive clinicopathological characteristics and the poor prognosis of PC patients. CRT promotes EGF-induced EMT in PC cells via Integrin/EGFR-ERK/MAPK signaling pathway, which would be a promising therapy target for PC.
Collapse
Affiliation(s)
- Weiwei Sheng
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang 110001, China
| | - Chuanping Chen
- Department of Clinical Laboratory, the Sixth Peoples' hospital of Shenyang, Shenyang 110003, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang 110001, China
| | - Guosen Wang
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang 110001, China
| | - He Song
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang 110001, China
| | - Yang Li
- Department of Cell Biology, China Medical University, Shenyang 110013, China
| | - Jian Zhang
- Department of Cell Biology, China Medical University, Shenyang 110013, China
| | - Shuangning Ding
- Department of Endocrinology and Metabolism in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
43
|
Liu F, Zhang Y, Men T, Jiang X, Yang C, Li H, Wei X, Yan D, Feng G, Yang J, Bergquist J, Wang B, Jiang W, Mi J, Tian G. Quantitative proteomic analysis of gastric cancer tissue reveals novel proteins in platelet-derived growth factor b signaling pathway. Oncotarget 2017; 8:22059-22075. [PMID: 28423550 PMCID: PMC5400646 DOI: 10.18632/oncotarget.15908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/07/2017] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is one of the most common cancers in Asian countries. Searching for reliable biomarkers involving the development of gastric cancer is important for clinical practice. Quantitative proteomics has become an important method contributed to the discovery of novel diagnostic or therapeutic targets for the management of cancer. Here, we identified differently expressed proteins in gastric cancer and normal gastric tissues by using the high resolution mass spectrometer. Among the total of 2280 identified proteins, 87 were differentially expressed between gastric cancer and normal gastric tissues. Notably, several significant proteins are in the PDGF-B signaling pathway, including peroxiredoxin5 (PRDX5), S100A6, calreticulin (CALR) and cathepsin D (CTSD), which were validated by western blot. Furthermore, upstream regulators including PDGF-B, PDGFR-β, Akt, eIF4E and p70s6K were found significantly increased in the gastric cancer tissues. In addition, silencing of PRDX5 and PDGF-B suppressed the proliferation of gastric cancer cells in vitro. The administration of exogenous PDGF-BB recovered the reduced expression of PDGF-B signaling pathway in PDGF-B knockdown cells. Taken together, our findings suggested that PDGF-B signaling pathway plays an important role in the regulation of gastric cancer proliferation and the inhibition of this pathway may be a potential approach for treatment of gastric cancer.
Collapse
Affiliation(s)
- Fang Liu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong Province, 264003 China.,Department of Radiology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, 256603 China
| | - Yuan Zhang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong Province, 264003 China
| | - Tingting Men
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong Province, 264003 China
| | - Xingyue Jiang
- Department of Radiology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, 256603 China
| | - Chunhua Yang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong Province, 264003 China
| | - He Li
- Department of Gastric and Intestine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province, 264003 China
| | - Xiaodan Wei
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong Province, 264003 China
| | - Dong Yan
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong Province, 264003 China
| | - Gangming Feng
- Yantai Institute, China Agriculture University, Yantai, Shandong Province, 264670 China
| | - Jianke Yang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong Province, 264003 China
| | - Jonas Bergquist
- Department of Chemistry - BMC, Uppsala University, Uppsala, 75124, Sweden
| | - Bin Wang
- Department of Radiology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, 256603 China
| | - Wenguo Jiang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong Province, 264003 China
| | - Jia Mi
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong Province, 264003 China.,Department of Chemistry - BMC, Uppsala University, Uppsala, 75124, Sweden
| | - Geng Tian
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong Province, 264003 China
| |
Collapse
|
44
|
VEGF expression correlates with neuronal differentiation and predicts a favorable prognosis in patients with neuroblastoma. Sci Rep 2017; 7:11212. [PMID: 28894229 PMCID: PMC5593816 DOI: 10.1038/s41598-017-11637-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/29/2017] [Indexed: 01/25/2023] Open
Abstract
Neuroblastoma (NB) is a childhood cancer with a low survival rate and great metastatic potential. Vascular endothelial growth factor (VEGF), an angiogenesis factor, has been found to be involved in CRT-related neuronal differentiation of NB cells. In this study, we further confirmed the role VEGF in NB through mouse xenograft model and clinical analysis from NB patients. In xenograft experiments, CRT overexpression effectively inhibited the tumor growth. In addition, the mRNA and protein levels of VEGF and differentiation marker GAP-43 were upregulated by induced CRT expression. However, no significant correlation between the expression level of VEGF and microvessel density was observed in human NB tumors, suggesting a novel mechanism of VEGF participating in NB tumorigenesis through an angiogenesis-independent pathway. In NB patients' samples, mRNA expression levels of CRT and VEGF were positively correlated. Furthermore, positive VEGF expression by immunostaining of NB tumors was found to correlate well with histological grade of differentiation and predicted a favorable prognosis. In conclusion, our findings suggest that VEGF is a favorable prognostic factor of NB and might affect NB tumor behavior through CRT-driven neuronal differentiation rather than angiogenesis that might shed light on a novel therapeutic strategy to improve the outcome of NB.
Collapse
|
45
|
Al-Maleki AR, Loke MF, Lui SY, Ramli NSK, Khosravi Y, Ng CG, Venkatraman G, Goh KL, Ho B, Vadivelu J. Helicobacter pylori outer inflammatory protein A (OipA) suppresses apoptosis of AGS gastric cells in vitro. Cell Microbiol 2017; 19. [PMID: 28776327 DOI: 10.1111/cmi.12771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/02/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022]
Abstract
Outer inflammatory protein A (OipA) is an important virulence factor associated with gastric cancer and ulcer development; however, the results have not been well established and turned out to be controversial. This study aims to elucidate the role of OipA in Helicobacter pylori infection using clinical strains harbouring oipA "on" and "off" motifs. Proteomics analysis was performed on AGS cell pre-infection and postinfection with H. pylori oipA "on" and "off" strains, using liquid chromatography/mass spectrometry. AGS apoptosis and cell cycle assays were performed. Moreover, expression of vacuolating cytotoxin A (VacA) was screened using Western blotting. AGS proteins that have been suggested previously to play a role or associated with gastric disease were down-regulated postinfection with oipA "off" strains comparing to oipA "on" strains. Furthermore, oipA "off" and ΔoipA cause higher level of AGS cells apoptosis and G0/G1 cell-cycle arrest than oipA "on" strains. Interestingly, deletion of oipA increased bacterial VacA production. The capability of H. pylori to induce apoptosis and suppress expression of proteins having roles in human disease in the absence of oipA suggests that strains not expressing OipA may be less virulent or may even be protective against carcinogenesis compared those expressing OipA. This potentially explains the higher incidence of gastric cancer in East Asia where oipA "on" strains predominates.
Collapse
Affiliation(s)
- Anis Rageh Al-Maleki
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sook Yin Lui
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nur Siti Khadijah Ramli
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yalda Khosravi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chow Goon Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gopinath Venkatraman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Bow Ho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Precision Medicine Centre Pte Ltd, Singapore, Singapore
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Calreticulin regulates TGF-β1-induced epithelial mesenchymal transition through modulating Smad signaling and calcium signaling. Int J Biochem Cell Biol 2017; 90:103-113. [PMID: 28778674 DOI: 10.1016/j.biocel.2017.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/22/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022]
Abstract
As a Ca2+ binding protein, calreticulin (CRT) has many functions and plays an important role in a variety of tumors. The role of CRT in TGF-β1-induced EMT is unknown. In this study, we demonstrated in vitro that TGF-β1-induced EMT elevated the expression of CRT in A549 lung cancer cells. Subsequently, we confirmed that overexpression CRT had no capacity to induce A549 cells EMT alone, but successfully enhanced TGF-β1-induced-EMT. Furthermore, knockdown of CRT in A549 cells significantly suppressed changes of EMT marks expression induced by TGF-β1. On treatment with TGF-β1, overexpression of CRT could enhance the phosphorylation of both Smad2 and Smad3. Consistently, the knockdown of CRT by siRNA-CRT could inhibit Smad signaling pathway activated by TGF-β1. These results indicated that CRT regulates EMT induced by TGF-β1 through Smad signaling pathway. Finally, TGF-β1-induced-EMT enhanced store-operated Ca2+ influx in A549 cells. CRT knockdown was able to abolish the effect of TGF-β1 on thapsigargin (TG) -induced Ca2+ release, but had failed to reduce store-operated Ca2+ influx. The alteration of intracellular Ca2+ concentration by TG or BAPTA-AM was able to regulate EMT induced by TGF-β1 through Smad signaling pathway. Together, these data identify that CRT regulates TGF-β1-induced-EMT through modulating Smad signaling. Furthermore, TGF-β1-induced-EMT is highly calcium-dependent, CRT was partly involved in it.
Collapse
|
47
|
Bekeschus S, Rödder K, Fregin B, Otto O, Lippert M, Weltmann KD, Wende K, Schmidt A, Gandhirajan RK. Toxicity and Immunogenicity in Murine Melanoma following Exposure to Physical Plasma-Derived Oxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4396467. [PMID: 28761621 PMCID: PMC5518506 DOI: 10.1155/2017/4396467] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Metastatic melanoma is an aggressive and deadly disease. Therapeutic advance has been achieved by antitumor chemo- and radiotherapy. These modalities involve the generation of reactive oxygen and nitrogen species, affecting cellular viability, migration, and immunogenicity. Such species are also created by cold physical plasma, an ionized gas capable of redox modulating cells and tissues without thermal damage. Cold plasma has been suggested for anticancer therapy. Here, melanoma cell toxicity, motility, and immunogenicity of murine metastatic melanoma cells were investigated following plasma exposure in vitro. Cells were oxidized by plasma, leading to decreased metabolic activity and cell death. Moreover, plasma decelerated melanoma cell growth, viability, and cell cycling. This was accompanied by increased cellular stiffness and upregulation of zonula occludens 1 protein in the cell membrane. Importantly, expression levels of immunogenic cell surface molecules such as major histocompatibility complex I, calreticulin, and melanocortin receptor 1 were significantly increased in response to plasma. Finally, plasma treatment significantly decreased the release of vascular endothelial growth factor, a molecule with importance in angiogenesis. Altogether, these results suggest beneficial toxicity of cold plasma in murine melanomas with a concomitant immunogenicity of potential interest in oncology.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Katrin Rödder
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Bob Fregin
- ZIK HIKE, Fleischmannstr. 42-44, 17489 Greifswald, Germany
| | - Oliver Otto
- ZIK HIKE, Fleischmannstr. 42-44, 17489 Greifswald, Germany
| | - Maxi Lippert
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Rajesh Kumar Gandhirajan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
48
|
Wang K, Li H, Chen R, Zhang Y, Sun XX, Huang W, Bian H, Chen ZN. Combination of CALR and PDIA3 is a potential prognostic biomarker for non-small cell lung cancer. Oncotarget 2017; 8:96945-96957. [PMID: 29228584 PMCID: PMC5722536 DOI: 10.18632/oncotarget.18547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/04/2017] [Indexed: 11/25/2022] Open
Abstract
Proteomic-based approaches for biomarker discovery are promising strategies used in cancer research. In this study, we performed quantitative proteomic analysis on 16 paired samples of non-small cell lung cancer (NSCLC) and adjacent non-tumor lung tissues using label-free quantitative proteomics and liquid chromatography-tandem mass spectrometry/mass spectrometry (LC-MS/MS) to identify differentially expressed proteins. A total of 91 proteins were differentially expressed in NSCLC compared with adjacent non-tumor lung tissues among 4047 identified proteins (fold change > 1.5 or < 0.67, P < 0.05). Gene ontology (GO) analysis, Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and ingenuity pathway analysis (IPA) of 91 dysregulated proteins showed that they were related to the cancer-associated biological processes. We confirmed that the candidate proteins, calreticulin (CALR) and protein disulfide isomerase family A member 3 (PDIA3) were overexpressed in NSCLC by real-time PCR using 20 paired samples and western blot using 5 paired samples. PDIA3 expression was highly associated with CALR expression (Spearman r = 0.345, P = 0.001) and they were co-localized and interacted with each other in A549 and H460 cells. Moreover, survival analysis performed in tissue microarray with 88 samples indicated that low expression of both CALR and PDIA3 in NSCLC was positively associated with poor overall survival. Combination of CALR and PDIA3 might serve as an efficient biomarker and improved the prediction of NSCLC prognosis significantly (P = 0.023). Our results collectively provide a potential biomarker dataset for NSCLC prognosis, especially the prognostic value of combined expression of CALR and PDIA3.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Hao Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Ruo Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, P.R. China
| | - Yang Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiu-Xuan Sun
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Wan Huang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
49
|
Endoplasmic reticulum stress-mediated membrane expression of CRT/ERp57 induces immunogenic apoptosis in drug-resistant endometrial cancer cells. Oncotarget 2017; 8:58754-58764. [PMID: 28938593 PMCID: PMC5601689 DOI: 10.18632/oncotarget.17678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/16/2017] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To investigate the role of endoplasmic reticulum (ER) stress-mediated CRT/ERp57 complex expression underlying the mechanism of resistance to doxorubicin (DOX) in endometrial carcinoma (EC) in vivo and in vitro. METHODS The expression of CRT, ERp57, p-PERK, eIF2α, p-eIF2α in EC patients and EC cells was detected by Western blots and by immunofluorescence assay. MTT assay was used to determine the LC50 of EC cells to DOX and cell viability. Apoptosis was assayed using flow cytometer. The protein expression of PERK, cleaved-caspase-8, p-eIF2α and CHOP were detected by Western blot, and the expression of VAMP-1, SNAP23 and PERK was knockdown by siRNA and/or shRNA. The expression of CRT/ERp57 complex was detected by flow cytometry. In addition, the expression of eIF2α and p-eIF2α was detected by Western blot analysis after drug-resistant EC cells were transfected with lentivirus overexpressing CRT, treated with GADD34 inhibitor and ES stress inducer. MTT assay was used to detect the phagocytic activity of T cells induced by maturation of dendritic cells in drug-resistant EC cells. RESULTS The expression of CRT, ERp57, p-PERK and p-eIF2α was significantly decreased in the drug-resistant patients in EC patients. The IC50 of the drug-resistant EC cells was 10 times higher than that of the wild type cells. In the drug-resistant EC cells the expression of CRT, ERp57, p-PERK, p-eIF2α, caspase-8 and CHOP was significantly lower than in the wild type cells. After treatment with DOX, CRT and ER stress-related proteins p-PERK, p-eIF2α, caspase-8 and apoptosis were significantly increased in wild-type EC cells, but not in drug-resistant EC cells. The increased expressions led to inhibition of cell growth and apoptosis. The knockdown of PERK gene and addition of DOX resulted in significant decrease of cleaved-caspase 8 and p-eIF2α in sensitive EC cells. The expression of CRT/ERp57 in sensitive EC cells was further significantly decreased by blocking VAMP and SNAP23. In addition, transfection with CRT overexpressing lentivirus and addition of GADD34 inhibitor and ER stress inducer in drug-resistant EC cells revealed a significant increase in the expression of CRT/ERp57 complex and p-eIF2α when DOX was added simultaneously, which promoted the maturation and chemotaxis of T lymphocytes to phagocytose drug-resistant EC cells. CONCLUSION DOX can induce the death of tumor cells by ER stress-mediated CRT/ERp57 expression in EC cells. Induction of ER stress in drug-resistant EC cells up-regulates the membrane expression of CRT/ERp57, enhances phagocytosis, induces immunogenic apoptosisand sensitizes the cells to DOX.
Collapse
|
50
|
Liu XX, Ye H, Wang P, Li LX, Zhang Y, Zhang JY. Proteomic-based identification of HSP70 as a tumor-associated antigen in ovarian cancer. Oncol Rep 2017; 37:2771-2778. [PMID: 28339059 DOI: 10.3892/or.2017.5525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/21/2016] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer commonly presents without prominent symptoms and is consequently diagnosed at advanced stages with unfavorable prognosis. Novel serological biomarkers for the early detection and clinical management of ovarian cancer are imminently needed. Proteomic-based methods for biomarker discovery are promising strategies implemented in cancer research. The aim of the present study was to identify new tumor antigens from the ovarian cancer cell line SKOV3 and their associated autoantibodies in sera of patients with ovarian cancer employing proteomic-based approaches. Proteins from the ovarian cancer cell line SKOV3 were extracted by two‑dimensional polyacrylamide gel electrophoresis (2-DE) followed by western blotting and antibody reaction with sera from patients with ovarian cancer and normal controls. Positive spots were excised from Coomassie blue‑stained gels and identified by liquid chromatography‑tandem mass spectrometry (LC-MS/MS). The 2-DE analysis results revealed a total of 14 protein spots on the gel, and 7 proteins were finally identified by LC-MS/MS. In the subsequent experiment, using immunoassay on ovarian cancer sera and tissue-array slides, the well-known protein HSP70 was selected in order to validate this proteomic-based approach. In conclusion, the proteomic method used in the present study is a powerful instrument for identifying novel serum markers that may exhibit clinical usefulness in cancer.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Center for Tumor Biotherapy, The First Affiliated Hospital and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hua Ye
- Center for Tumor Biotherapy, The First Affiliated Hospital and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Peng Wang
- Center for Tumor Biotherapy, The First Affiliated Hospital and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liu-Xia Li
- Center for Tumor Biotherapy, The First Affiliated Hospital and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi Zhang
- Center for Tumor Biotherapy, The First Affiliated Hospital and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jian-Ying Zhang
- Center for Tumor Biotherapy, The First Affiliated Hospital and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|