1
|
Innate and Adaptive Immunity Linked to Recognition of Antigens Shared by Neural Crest-Derived Tumors. Cancers (Basel) 2020; 12:cancers12040840. [PMID: 32244473 PMCID: PMC7226441 DOI: 10.3390/cancers12040840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
In the adult, many embryologic processes can be co-opted by during cancer progression. The mechanisms of divisions, migration, and the ability to escape immunity recognition linked to specific embryo antigens are also expressed by malignant cells. In particular, cells derived from neural crests (NC) contribute to the development of multiple cell types including melanocytes, craniofacial cartilage, glia, neurons, peripheral and enteric nervous systems, and the adrenal medulla. This plastic performance is due to an accurate program of gene expression orchestrated with cellular/extracellular signals finalized to regulate long-distance migration, proliferation, differentiation, apoptosis, and survival. During neurulation, prior to initiating their migration, NC cells must undergo an epithelial–mesenchymal transition (EMT) in which they alter their actin cytoskeleton, lose their cell–cell junctions, apicobasal polarity, and acquire a motile phenotype. Similarly, during the development of the tumors derived from neural crests, comprising a heterogeneous group of neoplasms (Neural crest-derived tumors (NCDTs)), a group of genes responsible for the EMT pathway is activated. Here, retracing the molecular pathways performed by pluripotent cells at the boundary between neural and non-neural ectoderm in relation to the natural history of NCDT, points of contact or interposition are highlighted to better explain the intricate interplay between cancer cells and the innate and adaptive immune response.
Collapse
|
2
|
Goncalves J, Lussey-Lepoutre C, Favier J, Gimenez-Roqueplo AP, Castro-Vega LJ. Emerging molecular markers of metastatic pheochromocytomas and paragangliomas. ANNALES D'ENDOCRINOLOGIE 2019; 80:159-162. [PMID: 31053249 DOI: 10.1016/j.ando.2019.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastatic pheochromocytoma/paraganglioma (PPGL) represents a major clinical challenge due to limitations in accurate diagnostic tools and effective treatments. Currently, patients classified at high-risk by means of clinical, biochemical and genetic criteria, require a lifelong monitoring, while it remains difficult to determine the metastatic potential of PPGL only on the basis of histopathological features. Thus, tumor molecular markers that improve the risk stratification of these patients are needed. In the past few years, we have witnessed an unprecedented molecular characterization of PPGL, which led to the emergence of promising candidate biomarkers predictive of metastatic behavior. Here, we briefly discuss these breakthroughs and provide some insights for the prospective implementation of molecular markers of metastatic PPGL in the clinical setting in years to come.
Collapse
Affiliation(s)
- Judith Goncalves
- Inserm, UMR970, équipe labellisée Ligue Contre le Cancer, Paris-Cardiovascular Research Center, 75015 Paris, France; Faculté de médecine, PRES Sorbonne Paris-Cité, Paris-Descartes University, 75006 Paris, France
| | - Charlotte Lussey-Lepoutre
- Inserm, UMR970, équipe labellisée Ligue Contre le Cancer, Paris-Cardiovascular Research Center, 75015 Paris, France; Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France
| | - Judith Favier
- Inserm, UMR970, équipe labellisée Ligue Contre le Cancer, Paris-Cardiovascular Research Center, 75015 Paris, France; Faculté de médecine, PRES Sorbonne Paris-Cité, Paris-Descartes University, 75006 Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Inserm, UMR970, équipe labellisée Ligue Contre le Cancer, Paris-Cardiovascular Research Center, 75015 Paris, France; Faculté de médecine, PRES Sorbonne Paris-Cité, Paris-Descartes University, 75006 Paris, France; Genetics Department, hôpital européen Georges-Pompidou, AP-HP, 75015, Paris, France
| | - Luis Jaime Castro-Vega
- Inserm, UMR970, équipe labellisée Ligue Contre le Cancer, Paris-Cardiovascular Research Center, 75015 Paris, France; Faculté de médecine, PRES Sorbonne Paris-Cité, Paris-Descartes University, 75006 Paris, France.
| |
Collapse
|
3
|
Sun D, Luo F, Xing JC, Zhang F, Xu JZ, Zhang ZH. 1,25(OH) 2 D 3 inhibited Th17 cells differentiation via regulating the NF-κB activity and expression of IL-17. Cell Prolif 2018; 51:e12461. [PMID: 29687949 DOI: 10.1111/cpr.12461] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/28/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The role of vitamin D (VD) in innate and adaptive immune responses to tuberculosis is still unclear. Our research was aimed to uncover the effect of VD on Th17 cells and elucidate potential molecular mechanism. MATERIALS AND METHODS VDR-deficient and wild-type mice were used to obtain CD4 T cells. Th17 cells were induced and activated by Bacillus Calmette Guerin. Flow cytometry was used to analyse the apoptosis rate and degree of differentiation of Th17 cells in the treatment of 1,25(OH)2 D3 . The interaction between P65 and Rorc was determined by immunofluorescence assay, luciferase reporter assay, EMSA-Super-shelf assay and ChIP assay. Co-IP assay was carried out to test the interaction between VDR and NF-κB family proteins. qRT-PCR and Western blot were also performed to detect the levels of P65, RORγt and IL-17. RESULTS The Th17 cells differentiation was suppressed by 1,25(OH)2 D3 in vitro. We confirmed that Rorc was a downstream gene of the transcription factor P65. VDR interacts with P105/P50, P100/P52 and P65 NF-κB family proteins. 1,25(OH)2 D3 inhibited the expression of RORγt/IL-17 by suppressing p65 transcription factor translocating to nucleus. In vivo experiments, the expression of IL-17 and RANKL was suppressed by 1,25(OH)2 D3 by VD receptor. Moreover, 1,25(OH)2 D3 suppressed the inflammatory infiltrates and inhibited the expression of P65, RORγt and IL-17 in the spleen tissues of model mice. CONCLUSIONS Together, 1,25(OH)2 D3 suppressed the differentiation of Th17 cells via regulating the NF-κB activity.
Collapse
Affiliation(s)
- Dong Sun
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Luo
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun-Chao Xing
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Zhang
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Zhong Xu
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ze-Hua Zhang
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
4
|
The Relationship Between E-Cadherin and its Transcriptional Repressors in Spontaneously Arising Canine Invasive Micropapillary Mammary Carcinoma. J Comp Pathol 2015; 153:256-65. [PMID: 26385325 DOI: 10.1016/j.jcpa.2015.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
E-cadherin downregulation is related to metastatic behaviour and a poor prognosis in cancer. It might be induced by transcriptional repression mediated by the transcription factors SNAIL, ZEB1, ZEB2 and TWIST. Here, we investigated E-cadherin expression and its relationship to those transcriptional repressors (i.e. SNAIL, ZEB1, ZEB2 and TWIST) in the progression from carcinoma 'in situ' to invasion to lymph node metastasis in spontaneously arising canine invasive micropapillary carcinoma (IMPC). E-cadherin expression decreased from carcinoma in situ to invasive progression and was likely to increase with lymph node metastasis. Expression of SNAIL decreased from carcinoma in situ to invasive areas and from invasive areas to lymph nodes. Metastatic lymph nodes had higher expression of ZEB1 than carcinoma in situ and invasive areas. ZEB2 expression was observed in 52%, 38% and 33% of carcinoma in situ areas, invasive areas and lymph node metastases, respectively. TWIST expression was observed in 52%, 38% and 33% of carcinoma in situ areas, invasive areas and lymph node metastases, respectively. In invasive areas, E-cadherin downregulation correlated significantly with SNAIL and TWIST upregulation. Additionally, in infiltrating components of IMPCs, E-cadherin(-)SNAIL(+) neoplastic epithelial cells were observed by immunofluorescence. Taken together, canine mammary IMPCs had a loss of E-cadherin from carcinoma in situ to invasive areas, which appears to be induced by the transcription factor SNAIL. In lymph node metastasis, ZEB1 appears to not exert E-cadherin transcriptional repression activity.
Collapse
|
5
|
Papathomas TG, de Krijger RR, Tischler AS. Paragangliomas: update on differential diagnostic considerations, composite tumors, and recent genetic developments. Semin Diagn Pathol 2013; 30:207-23. [PMID: 24144290 DOI: 10.1053/j.semdp.2013.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent developments in molecular genetics have expanded the spectrum of disorders associated with pheochromocytomas (PCCs) and extra-adrenal paragangliomas (PGLs) and have increased the roles of pathologists in helping to guide patient care. At least 30% of these tumors are now known to be hereditary, and germline mutations of at least 10 genes are known to cause the tumors to develop. Genotype-phenotype correlations have been identified, including differences in tumor distribution, catecholamine production, and risk of metastasis, and types of tumors not previously associated with PCC/PGL are now considered in the spectrum of hereditary disease. Important new findings are that mutations of succinate dehydrogenase genes SDHA, SDHB, SDHC, SDHD, and SDHAF2 (collectively "SDHx") are responsible for a large percentage of hereditary PCC/PGL and that SDHB mutations are strongly correlated with extra-adrenal tumor location, metastasis, and poor prognosis. Further, gastrointestinal stromal tumors and renal tumors are now associated with SDHx mutations. A PCC or PGL caused by any of the hereditary susceptibility genes can present as a solitary, apparently sporadic, tumor, and substantial numbers of patients presenting with apparently sporadic tumors harbor occult germline mutations of susceptibility genes. Current roles of pathologists are differential diagnosis of primary tumors and metastases, identification of clues to occult hereditary disease, and triaging of patients for optimal genetic testing by immunohistochemical staining of tumor tissue for the loss of SDHB and SDHA protein. Diagnostic pitfalls are posed by morphological variants of PCC/PGL, unusual anatomic sites of occurrence, and coexisting neuroendocrine tumors of other types in some hereditary syndromes. These pitfalls can be avoided by judicious use of appropriate immunohistochemical stains. Aside from loss of staining for SDHB, criteria for predicting risk of metastasis are still controversial, and "malignancy" is diagnosed only after metastases have occurred. All PCCs/PGLs are considered to pose some risk of metastasis, and long-term follow-up is advised.
Collapse
Affiliation(s)
- Thomas G Papathomas
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC-University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
6
|
Shankavaram U, Fliedner SMJ, Elkahloun AG, Barb JJ, Munson PJ, Huynh TT, Matro JC, Turkova H, Linehan WM, Timmers HJ, Tischler AS, Powers JF, de Krijger R, Baysal BE, Takacova M, Pastorekova S, Gius D, Lehnert H, Camphausen K, Pacak K. Genotype and tumor locus determine expression profile of pseudohypoxic pheochromocytomas and paragangliomas. Neoplasia 2013; 15:435-47. [PMID: 23555188 PMCID: PMC3612915 DOI: 10.1593/neo.122132] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 01/31/2023]
Abstract
Pheochromocytomas (PHEOs) and paragangliomas (PGLs) related to mutations in the mitochondrial succinate dehydrogenase (SDH) subunits A, B, C, and D, SDH complex assembly factor 2, and the von Hippel-Lindau (VHL) genes share a pseudohypoxic expression profile. However, genotype-specific differences in expression have been emerging. Development of effective new therapies for distinctive manifestations, e.g., a high rate of malignancy in SDHB- or predisposition to multifocal PGLs in SDHD patients, mandates improved stratification. To identify mutation/location-related characteristics among pseudohypoxic PHEOs/PGLs, we used comprehensive microarray profiling (SDHB: n = 18, SDHD-abdominal/thoracic (AT): n = 6, SDHD-head/neck (HN): n = 8, VHL: n = 13). To avoid location-specific bias, typical adrenal medulla genes were derived from matched normal medullas and cortices (n = 8) for data normalization. Unsupervised analysis identified two dominant clusters, separating SDHB and SDHD-AT PHEOs/PGLs (cluster A) from VHL PHEOs and SDHD-HN PGLs (cluster B). Supervised analysis yielded 6937 highly predictive genes (misclassification error rate of 0.175). Enrichment analysis revealed that energy metabolism and inflammation/fibrosis-related genes were most pronouncedly changed in clusters A and B, respectively. A minimum subset of 40 classifiers was validated by quantitative real-time polymerase chain reaction (quantitative real-time polymerase chain reaction vs. microarray: r = 0.87). Expression of several individual classifiers was identified as characteristic for VHL and SDHD-HN PHEOs and PGLs. In the present study, we show for the first time that SDHD-HN PGLs share more features with VHL PHEOs than with SDHD-AT PGLs. The presented data suggest novel subclassification of pseudohypoxic PHEOs/PGLs and implies cluster-specific pathogenic mechanisms and treatment strategies.
Collapse
Affiliation(s)
- Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang CC, Zhu LF, Xu XH, Ning TY, Ye JH, Liu LK. Membrane Type 1 Matrix Metalloproteinase induces an epithelial to mesenchymal transition and cancer stem cell-like properties in SCC9 cells. BMC Cancer 2013; 13:171. [PMID: 23548172 PMCID: PMC3637131 DOI: 10.1186/1471-2407-13-171] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 01/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tissue invasion and metastasis are acquired abilities of cancer and related to the death in oral squamous cell carcinoma (OSCC). Emerging observations indicate that the epithelial-to-mesenchymal transition (EMT) is associated with tumor progression and the generation of cells with cancer stem cells (CSCs) properties. Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) is a cell surface proteinase, which is involved in degrading extracellular matrix components that can promote tumor invasion and cell migration. METHODS In the current study, we utilized SCC9 cells stably transfected with an empty vector (SCC9-N) or a vector encoding human MT1-MMP (SCC9-M) to study the role of MT1-MMP in EMT development. RESULTS Upon up-regulation of MT1-MMP, SCC9-M cells underwent EMT, in which they presented a fibroblast-like phenotype and had a decreased expression of epithelial markers (E-cadherin, cytokeratin18 and β-catenin) and an increased expression of mesenchymal markers (vimentin and fibronectin). We further demonstrated that MT1-MMP-induced morphologic changes increased the level of Twist and ZEB, and were dependent on repressing the transcription of E-cadherin. These activities resulted in low adhesive, high invasive abilities of the SCC9-M cells. Furthermore, MT1-MMP-induced transformed cells exhibited cancer stem cell (CSC)-like characteristics, such as low proliferation, self-renewal ability, resistance to chemotherapeutic drugs and apoptosis, and expression of CSCs surface markers. CONCLUSIONS In conclusion, our study indicates that overexpression of MT1-MMP induces EMT and results in the acquisition of CSC-like properties in SCC9 cells. Our growing understanding of the mechanism regulating EMT may provide new targets against invasion and metastasis in OSCC.
Collapse
Affiliation(s)
- Cong-Chong Yang
- Department of Basic Science of Stomatology, Institute of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Vincentz JW, Firulli BA, Lin A, Spicer DB, Howard MJ, Firulli AB. Twist1 controls a cell-specification switch governing cell fate decisions within the cardiac neural crest. PLoS Genet 2013; 9:e1003405. [PMID: 23555309 PMCID: PMC3605159 DOI: 10.1371/journal.pgen.1003405] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/07/2013] [Indexed: 01/31/2023] Open
Abstract
Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. During vertebrate development, a unique population of cells, termed neural crest cells, migrates throughout the developing embryo, generating various cell types, for example, the smooth muscle that divides the aorta and pulmonary artery where they connect to the heart, and the autonomic neurons, which coordinate organ function. The distinctions between neural crest cells that will form smooth muscle and those that will become neurons are thought to occur prior to migration. Here, we show that, in mice with mutations of the transcription factor Twist1, a subpopulation of presumptive smooth muscle cells, following migration to the heart, instead mis-specify to resemble autonomic neurons. Twist1 represses transcription of the pro-neural factor Phox2b both through antagonism of its upstream effector, Sox10, and through direct binding to its promoter. Phox2b is absolutely required for autonomic neuron development, and indeed, the aberrant neurons in Twist1 mutants disappear when Phox2b is also mutated. Ectopic Twist1 expression within all neural crest cells disrupts the specification of normal autonomic neurons. Collectively, these data reveal that neural crest cells can alter their cell fate from mesoderm to ectoderm after they have migrated and that Twist1 functions to maintain neural crest cell potency during embryonic development.
Collapse
Affiliation(s)
- Joshua W Vincentz
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatrics Cardiology, Departments of Anatomy, Indiana University Medical School, Indianapolis, Indiana, United States of America
| | | | | | | | | | | |
Collapse
|
9
|
Quan J, Elhousiny M, Johnson NW, Gao J. Transforming growth factor-β1 treatment of oral cancer induces epithelial-mesenchymal transition and promotes bone invasion via enhanced activity of osteoclasts. Clin Exp Metastasis 2013; 30:659-70. [PMID: 23378237 PMCID: PMC3663202 DOI: 10.1007/s10585-013-9570-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
This study investigates relationships between EMT and bone invasion by OSCC. Three OSCC cell lines, SCC25, HN5, and Tca8113 were artificially induced to display EMT by adding 5 ng/mL of TGF-β1 to culture media for 1–3 days. Cell morphology and phenotypic changes was examined by immunocytochemical staining of CK and VIM. EMT markers, cell-invasion factors, and osteoclast-related molecules were analysed at mRNA, gelatine and protein levels by real-time PCR, gelatine zymography and Western blotting respectively. Mature osteoclasts differentiated from Raw264.7 cells were treated by conditioned medium (CM) of OSCC cells with/without TGF-β1. Immunohistochemistry was performed to validate proteins of CK, VIM, E-cad and Snail1 in OSCC tissue samples with bone invasion. Results showed minimal staining of VIM was found in SCC25 and HN5, while Tca8113 cells stained strongly. EMT markers Twist1 and N-cad were up-regulated; Snail1 and E-cad down-regulated in all cells. Of factors associated with invasion, MMP-2 was unchanged and MMP-9 increased in SCC25 and Tca8113, while MMP-2 was increased and MMP-9 unchanged in HN5. For osteoclast-related molecules, both MT1-MMP and RANKL were up-regulated, while OPG was down-regulated in all cells. CM of OSCC cells pre-treated with TGF-β1 showed to prolong survival of osteoclasts up to 4 days. All target molecules were validated in OSCC samples of bone invasion. These findings suggest that TGF-β1 not only induces EMT to increase the capacity of OSCC for invasion, but also promotes factors which prolong osteoclast survival. TGF-β1 may enhance the ability of MMP2/9 in resorbing bone and favouring invasion of cancer cells.
Collapse
Affiliation(s)
- Jingjing Quan
- Schools of Dentistry, and Medical Science, Griffith Health Institute, Griffith University, Parklands Drive, Southport, Gold Coast, QLD, 4222, Australia
| | | | | | | |
Collapse
|
10
|
Chen Y, Wang K, Qian CN, Leach R. DNA methylation is associated with transcription of Snail and Slug genes. Biochem Biophys Res Commun 2012; 430:1083-90. [PMID: 23261445 DOI: 10.1016/j.bbrc.2012.12.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/07/2012] [Indexed: 11/27/2022]
Abstract
Snail and Slug play critical roles in the epithelial to mesenchymal transition (EMT), the mesenchymal to epithelial transition (MET) and in the maintenance of mesenchymal morphology. In this research, we investigated the correlation of DNA methylation with the transcriptional level of these two genes during the EMT/MET process. First, we used several cell lines associated with EMT/MET processes of induced pluripotent stem cell generation and differentiation, trophoblast invasion, as well as cancer progression to examine the association between DNA methylation and transcription levels of these two genes. We found an inverse correlation between DNA methylation of first intron regions and transcription levels of Snail and Slug genes in these EMT/METs. To further verify the results, we treated two trophoblast cell line BeWo and HTR8/SVneo and one induced pluripotent stem cell line with 5-aza-2'-deoxycytidine (5-aza-dC), an inhibitor of DNA methyltransferase, which caused increased expression of these two genes. Lastly, we cloned the promoters of both Snail and Slug into pGL3-Basic vector, after in vitro DNA methylation and transfection into IMR90 and HTR8/SVneo cells; we observed the significant reduction of their promoter activity due to DNA methylation. In summary, based on these results, DNA methylation is one of the molecular mechanisms regulating Snail and Slug genes during EMT/MET process.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | | | | | | |
Collapse
|
11
|
Parenti G, Zampetti B, Rapizzi E, Ercolino T, Giachè V, Mannelli M. Updated and new perspectives on diagnosis, prognosis, and therapy of malignant pheochromocytoma/paraganglioma. JOURNAL OF ONCOLOGY 2012; 2012:872713. [PMID: 22851969 PMCID: PMC3407645 DOI: 10.1155/2012/872713] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/05/2012] [Indexed: 12/31/2022]
Abstract
Malignant pheochromocytomas/paragangliomas are rare tumors with a poor prognosis. Malignancy is diagnosed by the development of metastases as evidenced by recurrences in sites normally devoid of chromaffin tissue. Histopathological, biochemical, molecular and genetic markers offer only information on potential risk of metastatic spread. Large size, extraadrenal location, dopamine secretion, SDHB mutations, a PASS score higher than 6, a high Ki-67 index are indexes for potential malignancy. Metastases can be present at first diagnosis or occur years after primary surgery. Measurement of plasma and/or urinary metanephrine, normetanephrine and metoxytyramine are recommended for biochemical diagnosis. Anatomical and functional imaging using different radionuclides are necessary for localization of tumor and metastases. Metastatic pheochromocytomas/paragangliomas is incurable. When possible, surgical debulking of primary tumor is recommended as well as surgical or radiosurgical removal of metastases. I-131-MIBG radiotherapy is the treatment of choice although results are limited. Chemotherapy is reserved to more advanced disease stages. Recent genetic studies have highlighted the main pathways involved in pheochromocytomas/paragangliomas pathogenesis thus suggesting the use of targeted therapy which, nevertheless, has still to be validated. Large cooperative studies on tissue specimens and clinical trials in large cohorts of patients are necessary to achieve better therapeutic tools and improve patient prognosis.
Collapse
Affiliation(s)
- Gabriele Parenti
- Endocrinology Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Benedetta Zampetti
- Department of Clinical Pathophysiology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Elena Rapizzi
- Department of Clinical Pathophysiology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
- Istituto Toscano Tumori, Via Taddeo Alderotti 26N, 50139 Florence, Italy
| | - Tonino Ercolino
- Endocrinology Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Valentino Giachè
- Department of Clinical Pathophysiology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Massimo Mannelli
- Department of Clinical Pathophysiology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
- Istituto Toscano Tumori, Via Taddeo Alderotti 26N, 50139 Florence, Italy
| |
Collapse
|
12
|
Loriot C, Burnichon N, Gadessaud N, Vescovo L, Amar L, Libé R, Bertherat J, Plouin PF, Jeunemaitre X, Gimenez-Roqueplo AP, Favier J. Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations. J Clin Endocrinol Metab 2012; 97:E954-62. [PMID: 22492777 DOI: 10.1210/jc.2011-3437] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Pheochromocytoma and paraganglioma are rare neural-crest-derived tumors. They are metastatic in 15% of cases, and the identification of a germline mutation in the SDHB gene is a predictive risk factor for malignancy and poor prognosis. To date, the link between SDHB mutations and malignancy is still missing. OBJECTIVE Epithelial to mesenchymal transition (EMT) is a developmental event, reactivated in cancer cells to promote cell mobility and invasiveness. The aim of this study was to address the participation of EMT in the metastatic evolution of pheochromocytoma/paraganglioma. DESIGN AND PATIENTS Transcriptomic profiling of EMT was performed on 188 tumor samples, using a set of 94 genes implicated in this pathway. Activation of EMT was further confirmed at protein level by immunohistochemistry in a second set of 93 tumors. RESULTS Hierarchical unsupervised classification showed that most SDHB-metastatic samples clustered together, indicating that EMT is differently regulated in these tumors. Major actors of EMT, metalloproteases and components of cellular junctions, were either up-regulated (LOXL2, TWIST, TCF3, MMP2, and MMP1) or down-regulated (KRT19 and CDH2) in SDHB-metastatic tumors compared with nonmetastatic ones. Interestingly, within metastatic tumors, most of these genes (LOXL2, TWIST, TCF3, MMP2, and KRT19) also allowed us to discriminate SDHB-mutated from non-SDHB-related tumors. In the second set of tumors, we studied Snail1/2 expression by immunohistochemistry and observed its specific nuclear translocation in all SDHB-metastatic tumors. CONCLUSION We have identified the first pathway that distinguishes SDHB-metastatic from all other types of pheochromocytomas/paragangliomas and suggest that activation of the EMT process might play a critical role in the particularly invasive phenotype of this group of tumors.
Collapse
Affiliation(s)
- Céline Loriot
- Centre de recherche cardiovasculaire de l'Hôpital Européen Georges Pompidou, 56 rue Leblanc 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhu LF, Hu Y, Yang CC, Xu XH, Ning TY, Wang ZL, Ye JH, Liu LK. Snail overexpression induces an epithelial to mesenchymal transition and cancer stem cell-like properties in SCC9 cells. J Transl Med 2012; 92:744-52. [PMID: 22349639 DOI: 10.1038/labinvest.2012.8] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Local invasiveness and distant metastasis are critical factors that contribute to oral squamous cell carcinoma-related deaths. Increasing evidence has shown that the epithelial to mesenchymal transition (EMT) is involved in cancer progression and is associated with the 'stemness' of cancer cells. Snail is a transcriptional factor that can induce EMT and preserve stem-cell function, which may induce resistance to radio- and chemotherapies in the cells. In the present study, SCC9 cells were transfected with an empty vector or a vector encoding human Snail (SCC9-S). Overexpression of Snail induced SCC9 cells to undergo EMT, in which the cells presented a fibroblast-like appearance, downregulated the epithelial markers E-cadherin and β-catenin, upregulated the mesenchymal marker vimentin, and associated with highly invasive and metastatic properties. Furthermore, the induction of EMT promoted cancer stem cell (CSC)-like characteristics in the SCC9-S cells, such as low proliferation, self-renewal, and CSC-like markers expression. These results indicate that overexpression of Snail induces EMT and promotes CSC-like traits in the SCC9 cells. Further understanding the role of Snail in cancer progression may reveal new targets for the prevention or therapy of oral cancers.
Collapse
Affiliation(s)
- Li-Fang Zhu
- Department of Basic Science of Stomatology, Institute of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Epithelial-mesenchymal transition is a critical step in tumorgenesis of pancreatic neuroendocrine tumors. Cancers (Basel) 2012; 4:281-94. [PMID: 24213240 PMCID: PMC3712679 DOI: 10.3390/cancers4010281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 11/17/2022] Open
Abstract
The transcription factors Snail, Slug and Twist repress E-cadherin and induce epithelial-mesenchymal transition (EMT), a process exploited by invasive cancer cells. In this study, we evaluated the role of EMT in the tumorgenesis of neuroendocrine tumors of the pancreas (PNETs) in vitro, in vivo and human tumor specimen. Expression of EMT markers was analyzed using immunohistochemistry and real-time PCR. For in vitro studies, BON-1 cells were analyzed regarding expression of EMT markers before and after transfection with siRNA against Slug or Snail, and cell aggregation assays were performed. To asses in vivo effects, Rip1Tag2 mice were treated with vehicle or the snail-inhibitor polythlylenglykol from week 5-10 of age. The resected pancreata were evaluated by weight, tumor cell proliferation and apoptosis. Snail and Twist was expressed in 61 % and 64% of PNETs. This was associated with loss of E-cadherin. RT-PCR revealed conservation of the EMT markers Slug and Snail in BON-1 cells. Transfection with siRNA against Slug was associated with upregulation of E-cadherin, enhanced cell-cell adhesion and inhibition of cell proliferation. Snail-inhibition in vivo by PEG was associated with increased apoptosis, decreased tumor cell proliferation and dramatic reduced tumor volume in Rip1Tag2 mice. The presented data show that EMT plays a key role in tumorgenesis of PNETs. The activation of Snail in a considerable subset of human PNETs and the successful effect of Snail inhibition by PEG in islet cell tumors of transgenic mice provides first evidence of Snail as a drug target in PNETs.
Collapse
|
15
|
Korevaar TIM, Grossman AB. Pheochromocytomas and paragangliomas: assessment of malignant potential. Endocrine 2011; 40:354-65. [PMID: 22038451 DOI: 10.1007/s12020-011-9545-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 09/16/2011] [Indexed: 12/23/2022]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare catecholamine-secreting tumors which arise from the adrenal glands or sympathetic neuronal tissue. Malignant transformation of these tumors occurs in a significant proportion and may therefore lower overall survival rates. In patients with PPGLs it is impossible to identify malignant disease without the presence of metastatic disease, something which can occur as long as 20 years after initial surgery. Early identification of malignant disease would necessitate a more aggressive treatment approach, something which may result in better disease outcome. We have therefore reviewed possible predictors of malignancy and current developments in order to help clinicians to swiftly assess malignant potential in patients with PPGLs. Currently, there is no absolute marker which can objectively reflect malignant potential. Tumor size is the most reliable predictor and should therefore be used as the baseline characteristic. The combination of various clinical markers (extra-adrenal disease and post-operative hypertension), biochemical markers (high dopamine, high norepinephrine and epinephrine to total catecholamine ratio) and/or histological markers (SNAIL, microRNAs and/or microarray results) can raise or lower the suspicion of malignancy. Furthermore, we discuss how clinical markers may affect biochemical results linked to malignancy, how biochemical results may distinguish hereditary syndromes, the role of imaging in determining malignant potential and tumor detection, and recent results of proposed histological markers.
Collapse
Affiliation(s)
- Tim I M Korevaar
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Headington, Oxford, OX3 7LE, UK
| | | |
Collapse
|
16
|
Malignant pheochromocytomas and paragangliomas: a diagnostic challenge. Langenbecks Arch Surg 2011; 397:155-77. [PMID: 22124609 DOI: 10.1007/s00423-011-0880-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/14/2011] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Malignant pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare disorders arising from the adrenal gland, from the glomera along parasympathetic nerves or from paraganglia along the sympathetic trunk. According to the WHO classification, malignancy of PCCs and PGLs is defined by the presence of metastases at non-chromaffin sites distant from that of the primary tumor and not by local invasion. The overall prognosis of metastasized PCCs/PGLs is poor. Surgery offers currently the only change of cure. Preferably, the discrimination between malignant and benign PCCs/PGLs should be made preoperatively. METHODS This review summarizes our current knowledge on how benign and malignant tumors can be distinguished. CONCLUSION Due to the rarity of malignant PCCs/PGLs and the obvious difficulties in distinguishing benign and malignant PCCs/PGLs, any patient with a PCC/PGL should be treated in a specialized center where a multidisciplinary setting with specialized teams consisting of radiologists, endocrinologist, oncologists, pathologists and surgeons is available. This would also facilitate future studies to address the existing diagnostic and/or therapeutic obstacles.
Collapse
|
17
|
Abstract
Paragangliomas (PGLs) are chromaffin cell tumors arising from ganglia; when arising in the adrenal gland they are called pheochromocytomas. In recent years the opinion that metastatic disease is rare in PGL had to be revised, particularly in patients presenting with extra-adrenal PGL, with PGLs exceeding 5 cm in diameter, and/or those carrying an SDHB germline mutation. Metastases are expected to be present at the time of diagnosis in more than 10% of these patients. Measurement of plasma and urinary metanephrine levels is well established in diagnosing PGL. Recently, a dopaminergic phenotype (excess dopamine or methoxytyramine) was recognized as a good indicator of metastatic disease. Vast progress in targeted positron emission tomography (PET) imaging (eg, (18)F-FDA, (18)F-FDOPA, (18)F-FDG) now allows for reliable early detection of metastatic disease. However, once metastases are present, treatment options are limited. Survival of patients with metastatic PGL is variable, and frequently short. Here we review recent advances involving findings about the genetic background, the molecular pathogenesis, new diagnostic indicators, pathologic markers, and emerging treatment options for metastatic PGL.
Collapse
Affiliation(s)
- Stephanie M J Fliedner
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892–1109, USA
| | | | | |
Collapse
|
18
|
Sánchez-Tilló E, Lázaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P, Postigo A. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 2010; 29:3490-500. [PMID: 20418909 DOI: 10.1038/onc.2010.102] [Citation(s) in RCA: 374] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Loss of E-cadherin is a key initial step in the transdifferentiation of epithelial cells to a mesenchymal phenotype, which occurs when tumor epithelial cells invade into surrounding tissues. Expression of the nuclear factor ZEB1 induces an epithelial-to-mesenchymal transition and confers a metastatic phenotype on carcinomas by repressing the E-cadherin gene at the transcriptional level. In this study, we show that ZEB1 interacts with the SWI/SNF chromatin-remodeling protein BRG1 to regulate E-cadherin independently of CtBP, its traditional co-repressor. Blocking the interaction between ZEB1 and BRG1 induces expression of E-cadherin and downregulation of the mesenchymal marker vimentin. ZEB1 and BRG1 colocalize in E-cadherin-negative cells from cancer lines and in the stroma of normal colon. Colocalization of ZEB1 and BRG1 in epithelial cells is only found in those de-differentiated cells characterized by nuclear beta-catenin staining at the invasive edge of the tumor. Our results identify ZEB1/BRG1 as a new transcriptional mechanism regulating E-cadherin expression and epithelial-to-mesenchymal transdifferentiation that may be involved during the initial stages of tumor invasion.
Collapse
Affiliation(s)
- E Sánchez-Tilló
- Group of Transcriptional Regulation, Department of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Over the past decade, the reactivation of TWIST embryonic transcription factors has been described as a frequent event and a marker of poor prognosis in an impressive array of human cancers. Growing evidence now supports the premise that these cancers hijack TWIST's embryonic functions, granting oncogenic and metastatic properties. In this review, we report on the history and recent breakthroughs in understanding TWIST protein functions and the emerging role of the associated epithelial-mesenchymal transition (EMT) in tumorigenesis. We then broaden the discussion to address the general contribution of reactivating embryonic programs in cancerogenesis.
Collapse
|