1
|
Mozooni Z, Golestani N, Bahadorizadeh L, Yarmohammadi R, Jabalameli M, Amiri BS. The role of interferon-gamma and its receptors in gastrointestinal cancers. Pathol Res Pract 2023; 248:154636. [PMID: 37390758 DOI: 10.1016/j.prp.2023.154636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Gastrointestinal malignancies are the most prevalent type of cancer around the world. Even though numerous studies have evaluated gastrointestinal malignancies, the actual underlying mechanism is still unknown. These tumors have a poor prognosis and are frequently discovered at an advanced stage. Globally, there is an increase in the incidence and mortality of gastrointestinal malignancies, including those of the stomach, esophagus, colon, liver, and pancreas. Growth factors and cytokines are signaling molecules that are part of the tumor microenvironment and play a significant role in the development and spread of malignancies. IFN-γ induce its effects by activation of intracellular molecular networks. The main pathway involved in IFN-γ signaling is the JAK/STAT pathway, which regulates the transcription of hundreds of genes and mediates various biological responses. IFN-γ receptor is composed of two IFN-γR1 chains and two IFN-γR2 chains. Binding to IFN-γ, causes the intracellular domains of IFN-γR2 to oligomerize and transphosphorylate with IFN-γR1 which activates downstream signaling components: JAK1 and JAK2. These activated JAKs phosphorylate the receptor, creating binding sites for STAT1. STAT1 is then phosphorylated by JAK, resulting in the formation of STAT1 homodimers (gamma activated factors or GAFs) that translocate to the nucleus and regulate gene expression. The balance between positive and negative regulation of this pathway is crucial for immune responses and tumorigenesis. In this paper, we evaluate the dynamic roles of IFN- γ and its receptors in gastrointestinal cancers and present evidence that inhibiting IFN- γ signaling may be an effective treatment strategy.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Golestani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leyla Bahadorizadeh
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Reyhaneh Yarmohammadi
- Doctoral Student Carolina University Winston, Salem, NC, USA; Skin and Stem Cell Research Center Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bahareh Shateri Amiri
- Department of Internal Medicine, School of Medicine Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yuan C, Liao Y, Liao S, Huang M, Li D, Wu W, Quan Y, Li L, Yu X, Si W. Triptolide inhibits the progression of Glioblastoma U251 cells via targeting PROX1. Front Oncol 2023; 13:1077640. [PMID: 36969058 PMCID: PMC10038275 DOI: 10.3389/fonc.2023.1077640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundGlioblastoma multiforme (GBM) is the most lethal brain cancer in adults, characterized by rapid growth, extensive invasiveness, and poor prognosis, and there is still a lack of effective treatments. Here, we aimed to explore the role of triptolide (TPL), purified from Tripterygium wilfordii Hook F, on glioblastoma cell growth, apoptosis, proliferation, migration and invasion, as well as potential underlying mechanisms.MethodsThe publicly available clinical data of Brain Lower Grade Glioma (LGG) from The Cancer Genome Atlas (TCGA) had been screened to observe PROX1 expression. The Kaplan-Meier analysis was used to analyze the relationship between PROX1 expression and GBM prognosis. CCK8, cell cycle, EDU, apoptosis, wound healing, and transwell assays were performed to detect the effects of TPL on glioblastoma U251 cell viability, cell cycle, proliferation, apoptosis, migration and invasion, respectively. Further, a soft agar colony assay was used to calculate the growth of glioblastoma cells. The qRT-PCR and western blot were conducted to quantify PROX1 mRNA and protein levels. The transcriptional regulation of TPL was detected by Dual luciferase reporter assay.ResultsWe found that TPL inhibited glioblastoma cell viability, proliferation, cell cycle, migration and invasion, but enhanced apoptosis in a dose-dependent manner. The expression of cell cycle inhibitor, P21, and pro-apoptosis factor, Bax was increased, while invasion-related factors MMP2 and MMP9 were silenced after TPL treatments. Mechanistically, TPL showed transcriptional inhibition of PROX1 appearance. Moreover, ectopic expression of PROX1 partially rescued the effects of TPL on glioblastoma cell viability, proliferation, apoptosis, migration and invasion, and on the expression of cell function-related genes.ConclusionThis study verified that TPL inhibited the progression of glioblastoma cells by transcriptionally depressing the expression of PROX1.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Yanli Liao
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Shengjie Liao
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Mi Huang
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Duanzhuo Li
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Weibin Wu
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Yi Quan
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Liqiang Li
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Xin Yu
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
- *Correspondence: Wenxia Si, ; ; Xin Yu, ;
| | - Wenxia Si
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
- *Correspondence: Wenxia Si, ; ; Xin Yu, ;
| |
Collapse
|
3
|
Jia Z, Wang Y, Gao J, Zu G. Lack of relationship between PROX1 expression and clinicopathological parameters and prognosis in gastric cancer patients: a meta-analysis and TCGA analysis. BMC Gastroenterol 2022; 22:142. [PMID: 35346069 PMCID: PMC8958786 DOI: 10.1186/s12876-022-02229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background The relationship between PROX1 expression and clinicopathological characteristics and prognosis in patients with gastric cancer (GC) remain controversial. The aim of this study is to determine the clinicopathological and prognostic significance of PROX1 expression in patients with GC. Methods A systematic literature search and meta-analysis were performed. Odds ratio (OR) and confidence interval (CI) were used to evaluated the relationship between PROX1 expression and clinicopathological characteristics and overall survival (OS) of GC patients. Additionally, the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) datasets were utilized to examine the relationship between PROX1 expression and clinicopathological significance and OS in GC patients. Results A total of 8 studies pooling 1289 GC patients were included in the assessment. In GC patients, PROX1 expression was not related to gender (OR: 1.234, 95% CI 0.958–1.590, P = 0.104), depth of tumor invasion (OR: 0.742, 95% CI 0.428–1.287, P = 0.289), lymph node metastasis (OR: 2.161, 95% CI 0.808–5.779, P = 0.125), TNM stage (OR: 1.324, 95% CI 0.572–3.066, P = 0.513), tumor size (OR: 0.889, 95% CI 0.502–1.576, P = 0.687), distant metastasis (OR: 1.096, 95% CI 0.470–2.555, P = 0.763). In addition, we also found that PROX1 expression was not associated with 1-year OS (OR: 0.908, 95% CI 0.631–1.306, P = 0.602), 3-year OS (OR: 1.234, 95% CI 0.482–3.160, P = 0.661) and 5-year OS (OR: 0.853, 95% CI 0.266–2.736, P = 0.790). According to TCGA, in comparison with high and low PROX1 expression in GC patients, the OS did not differ statistically (p = 0.119). Conclusion The expression of PROX1 was shown to lack a significant relationship to gender, TNM stage, depth of invasion, tumor size, stage, distant metastasis, or lymph node metastasis in statistically. The expression of PROX1 was not related to OS and it failed to be a meaningful biomarker to prevent and diagnose GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02229-6.
Collapse
|
4
|
Eurola A, Ristimäki A, Mustonen H, Nurmi AM, Hagström J, Kallio P, Alitalo K, Haglund C, Seppänen H. β-catenin plus PROX1 immunostaining stratifies disease progression and patient survival in neoadjuvant-treated pancreatic cancer. Tumour Biol 2022; 44:69-84. [PMID: 35786664 DOI: 10.3233/tub-211581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Wnt/β-catenin signaling is a highly conserved signaling pathway that regulates the transcription factor PROX1. The role of β-catenin and PROX1 in pancreatic cancer is ambiguous, as some studies have associated their expression with tumor regression and some with tumor progression. OBJECTIVE We have investigated their expression in surgically treated pancreatic cancer patients receiving neoadjuvant therapy (NAT), and patients treated upfront with surgery (US). We furthermore compared the expression of β-catenin and PROX1 between patients who had a good or poor response to NAT. METHODS We evaluated β-catenin and PROX1 expression through immunohistochemistry in 88 neoadjuvant and 144 upfront surgery patients by scoring the intensity of the immunopositivity as 0-3, corresponding to negative, weak, moderate, or strong. We developed a six-tier grading scheme for the neoadjuvant responses by analyzing the remaining tumor cells in surgical specimen histological sections. RESULTS Strong β-catenin immunopositivity associated with improved survival in the patients with good NAT-response (≤10% residual tumor cells) (Hazard ratio [HR] 0.26 95%, confidence interval [CI] 0.07-0.88 p = 0.030). Additionally, the combined moderate β-catenin and PROX1 expression associated with improved survival (HR 0.20 95% CI 0.05-0-76 p = 0.018) among the good responders. Among the patients with a poor NAT-response (> 10% residual tumor cells), both strong β-catenin immunopositivity and strong combined β-catenin and PROX1 associated with shorter survival (HR 2.03 95% CI 1.16-3.55 p = 0.013, and HR 3.1 95% CI 1.08-8.94 p = 0.03, respectively). PROX1 alone was not associated with survival. CONCLUSIONS Strong β-catenin immunopositivity and combined strong or moderate β-catenin and PROX1 immunopositivity associated with improved survival among the good NAT-responders and worse survival among the poor NAT-responders.
Collapse
Affiliation(s)
- Annika Eurola
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics (ATG), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna-Maria Nurmi
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Oral Pathology and Radiology, University of Turku, Turku, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Pauliina Kallio
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Kari Alitalo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
5
|
The Impact of Transcription Factor Prospero Homeobox 1 on the Regulation of Thyroid Cancer Malignancy. Int J Mol Sci 2020; 21:ijms21093220. [PMID: 32370142 PMCID: PMC7247360 DOI: 10.3390/ijms21093220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription factor Prospero homeobox 1 (PROX1) is continuously expressed in the lymphatic endothelial cells, playing an essential role in their differentiation. Many reports have shown that PROX1 is implicated in cancer development and acts as an oncoprotein or suppressor in a tissue-dependent manner. Additionally, the PROX1 expression in many types of tumors has prognostic significance and is associated with patient outcomes. In our previous experimental studies, we showed that PROX1 is present in the thyroid cancer (THC) cells of different origins and has a high impact on follicular thyroid cancer (FTC) phenotypes, regulating migration, invasion, focal adhesion, cytoskeleton reorganization, and angiogenesis. Herein, we discuss the PROX1 transcript and protein structures, the expression pattern of PROX1 in THC specimens, and its epigenetic regulation. Next, we emphasize the biological processes and genes regulated by PROX1 in CGTH-W-1 cells, derived from squamous cell carcinoma of the thyroid gland. Finally, we discuss the interaction of PROX1 with other lymphatic factors. In our review, we aimed to highlight the importance of vascular molecules in cancer development and provide an update on the functionality of PROX1 in THC biology regulation.
Collapse
|
6
|
Rudzińska M, Grzanka M, Stachurska A, Mikula M, Paczkowska K, Stępień T, Paziewska A, Ostrowski J, Czarnocka B. Molecular Signature of Prospero Homeobox 1 (PROX1) in Follicular Thyroid Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20092212. [PMID: 31060342 PMCID: PMC6539481 DOI: 10.3390/ijms20092212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 01/15/2023] Open
Abstract
The prospero homeobox 1 (PROX1) transcription factor is a product of one of the lymphangiogenesis master genes. It has also been suggested to play a role in carcinogenesis, although its precise role in tumour development and metastasis remains unclear. The aim of this study was to gain more knowledge on the PROX1 function in thyroid tumorigenesis. Follicular thyroid cancer-derived cells—CGTH-W-1—were transfected with PROX1-siRNA (small interfering RNA) and their proliferation, cell cycle, apoptosis and motility were then analysed. The transcriptional signature of PROX1 depletion was determined using RNA-Sequencing (RNA-Seq) and the expression of relevant genes was further validated using reverse transcriptase quantitative PCR (RT-qPCR), Western blot and immunocytochemistry. PROX1 depletion resulted in a decreased cell motility, with both migratory and invasive potential being significantly reduced. The cell morphology was also affected, while the other studied cancer-related cell characteristics were not significantly altered. RNA-seq analysis revealed significant changes in the expression of transcripts encoding genes involved in both motility and cytoskeleton organization. Our transcriptional analysis of PROX1-depleted follicular thyroid carcinoma cells followed by functional and phenotypical analyses provide, for the first time, evidence that PROX1 plays an important role in the metastasis of thyroid cancer cells by regulating genes involved in focal adhesion and cytoskeleton organization in tumour cells.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Anna Stachurska
- Department of Immunohematology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
| | - Katarzyna Paczkowska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
| | - Tomasz Stępień
- Clinic of Endocrinological and General Surgery, Medical University of Lodz, 93-513 Lodz, Poland.
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| |
Collapse
|
7
|
Gao T, Ma C, Li Y, Ju J, Kang X, Cai Y, Sun M. High Expression of Prospero-Related Homeobox-1 (PROX1) Is Associated With Poor Prognosis in Patients With Salivary Adenoid Cystic Carcinoma. J Oral Maxillofac Surg 2018; 76:1440-1446. [PMID: 29406257 DOI: 10.1016/j.joms.2017.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Prospero-related homeobox-1 (PROX1) plays an important role in the invasion and metastasis of many human cancers. However, the expression pattern of PROX1 in salivary adenoid cystic carcinoma (SACC) remains unclear. The aim of this study was to investigate PROX1 expression and its prognostic value in SACC. MATERIALS AND METHODS PROX1 expression was determined by immunohistochemistry (IHC) in SACC tissue specimens. Correlations between PROX1 expression and clinicopathologic features were investigated. The Kaplan-Meier method was used to analyze the correlation between PROX1 expression and survival. Independent prognostic factors associated with overall survival (OS) were analyzed using Cox regression analysis. RESULTS The IHC data showed that the PROX1 positivity rate in SACC tissue specimens was significantly higher than that in normal salivary gland tissues (71.1 vs 13.3%; P < .05). PROX1 expression was detected mainly in the nucleolus. In addition, PROX1 expression was correlated with perineural invasion, local regional recurrence, and distant metastasis of patients with SACC (P < .05), and no significant association was found between PROX1 expression and other clinicopathologic parameters. Data indicated that patients with positive PROX1 expression had poor OS compared with those with negative PROX1 expression (P = .0005). Multivariate analysis showed that PROX1 expression, local regional recurrence, and distant metastasis were independent prognostic factors for OS. CONCLUSIONS These findings showed that PROX1 expression was statistically higher in SACC specimens. Positive expression of PROX1 might serve as a potential predictor of prognosis in SACC.
Collapse
Affiliation(s)
- Tao Gao
- Attending Physician, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University; Department of Oral and Maxillofacial Surgery, The First Hospital of Yulin, Stomatological Hospital of Yulin, Shaanxi, China
| | - Chao Ma
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yun Li
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jun Ju
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Xi'an; Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an; Department of Otolaryngology Head and Neck Surgery, Navy General Hospital, Beijing, China
| | - Xiangfeng Kang
- Resident, Department of Pediatrics, The First Hospital of Yulin, Shaanxi, China
| | - Yuanlin Cai
- Resident, Department of Emergency Medicine, The First Hospital of Yulin, Shaanxi, China
| | - Moyi Sun
- Professor, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
8
|
The role of prospero homeobox 1 (PROX1) expression in follicular thyroid carcinoma cells. Oncotarget 2017; 8:114136-114155. [PMID: 29371975 PMCID: PMC5768392 DOI: 10.18632/oncotarget.23167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022] Open
Abstract
The prospero homeobox 1 (Prox1) transcription factor is a key player during embryogenesis and lymphangiogenesis. Altered Prox1 expression has been found in a variety of human cancers, including papillary thyroid carcinoma (PTC). Interestingly, Prox1 may exert tumor suppressive or tumor promoting effect, depending on the tissue context. In this study, we have analyzed Prox1 expression in normal and malignant human thyroid carcinoma cell lines. Moreover, we determined the effect of Prox1 silencing and overexpression on the cellular processes associated with the metastatic potential of tumor cells: proliferation, migration, invasion, apoptosis and anchorage-independent growth, in the follicular thyroid carcinoma (FTC) FTC-133 cell line. We found that Prox1 expression was significantly higher in FTC-derived cells than in PTC-derived cells and normal thyroid, and it was associated with the PI3K/Akt signaling pathway. In the FTC-133 cells, it was associated with cell invasive potential, motility and wound closure capacities, but not with proliferation or apoptosis. Modifying Prox1 expression also induced substantial changes in the cytoskeleton structure and cell morphology. In conclusion, we have shown that Prox1 plays an important role in the development of FTC and that its suppression prevents, whereas its overexpression promotes, the malignant behavior of thyroid follicular cancer cells.
Collapse
|
9
|
PROX1 promotes human glioblastoma cell proliferation and invasion via activation of the nuclear factor-κB signaling pathway. Mol Med Rep 2016; 15:963-968. [PMID: 28035380 DOI: 10.3892/mmr.2016.6075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/08/2016] [Indexed: 11/05/2022] Open
Abstract
Prospero homeobox protein 1 (PROX1) is highly expressed in high-grade malignant astrocytic gliomas. However, the role of PROX1 in the pathogenesis of glioblastoma multiforme (GBM) remains unclear. The present study overexpressed PROX1 in human GBM cell lines and examined its effects on cell growth, tumorigenesis, and invasiveness. In addition, the involvement of the nuclear factor‑κB (NF‑κB) signaling pathway in the action of PROX1 was examined. It was identified that overexpression of PROX1 significantly increased the proliferation and colony formation of glioblastoma cells, compared with empty vector‑transfected controls. Furthermore, ectopic expression of PROX1 promoted the growth of GBM xenograft tumors. Western blot analysis revealed that PROX1 overexpression induced nuclear accumulation of NF‑κB p65 and upregulated the expression levels of the NF‑κB responsive genes cyclin D1 and matrix metallopeptidase 9. An NF‑κB reporter assay demonstrated that PROX1‑overexpressing glioblastoma cells had significantly greater NF‑κB‑dependent reporter activities compared with empty vector‑transfected controls. Transfection of a dominant inhibitor of κBα mutant into PROX1‑overexpressing cells significantly impaired their proliferation and invasion capacities, which was accompanied by reduced levels of nuclear NF‑κB p65. Collectively, these data indicated that PROX1 serves an oncogenic role in GBM and promotes cell proliferation and invasiveness potentially via activation of the NF‑κB signaling pathway. Therefore, PROX1 may represent a potential target for the treatment of GBM.
Collapse
|
10
|
Saukkonen K, Hagström J, Mustonen H, Juuti A, Nordling S, Kallio P, Alitalo K, Seppänen H, Haglund C. PROX1 and β-catenin are prognostic markers in pancreatic ductal adenocarcinoma. BMC Cancer 2016; 16:472. [PMID: 27411302 PMCID: PMC4944261 DOI: 10.1186/s12885-016-2497-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/28/2016] [Indexed: 12/27/2022] Open
Abstract
Background The Wnt/β-catenin pathway has a key role in regulating cellular processes and its aberrant signaling can lead to cancer development. The role of β-catenin expression in pancreatic ductal adenocarcinoma is somewhat controversial. Transcription factor PROX1 is a target of Wnt/β-catenin signaling and it is involved in carcinogenesis through alterations in its expression. The actions can be either oncogenic or tumor suppressive depending on the tissue. The aim of this study was to investigate PROX1 and β-catenin expression in pancreatic ductal adenocarcinoma (PDAC). Methods Expression of PROX1 and β-catenin were evaluated in 156 patients by immunohistochemistry of tissue microarrays. Associations between tumor marker expression and clinicopathological parameters were assessed by the Fischer’s exact-test or the linear-by-linear association test. The Kaplan-Meier method and log-rank test were used for survival analysis. Uni- and multivariate survival analyses were carried out by the Cox regression proportional hazard model. Results High PROX1 expression was seen in 74 (48 %) tumors, and high β-catenin expression in 100 (65 %). High β-catenin expression was associated with lower tumor grade (p = 0.025). High PROX1 and β-catenin expression associated significantly with lower risk of death from PDAC in multivariate analysis (HR = 0.63; 95 % CI 0.42–0.95, p = 0.026; and HR = 0.54; 95 % CI 0.35–0.82, p = 0.004; respectively). The combined high expression of PROX1 and β-catenin also predicted lower risk of death from PDAC (HR = 0.46; 95 % CI 0.28–0.76, p = 0.002). Conclusion In conclusion, high PROX1 and β-catenin expression were independent factors for better prognosis in pancreatic ductal adenocarcinoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2497-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kapo Saukkonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FIN-00029 HUS, Helsinki, Finland. .,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 63, Helsinki, FIN-00014, Finland.
| | - Jaana Hagström
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 63, Helsinki, FIN-00014, Finland.,Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, FIN-00014, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FIN-00029 HUS, Helsinki, Finland
| | - Anne Juuti
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FIN-00029 HUS, Helsinki, Finland
| | - Stig Nordling
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, FIN-00014, Finland
| | - Pauliina Kallio
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 63, Helsinki, FIN-00014, Finland
| | - Kari Alitalo
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 63, Helsinki, FIN-00014, Finland
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FIN-00029 HUS, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FIN-00029 HUS, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O. Box 63, Helsinki, FIN-00014, Finland
| |
Collapse
|
11
|
Yokobori T, Bao P, Fukuchi M, Altan B, Ozawa D, Rokudai S, Bai T, Kumakura Y, Honjo H, Hara K, Sakai M, Sohda M, Miyazaki T, Ide M, Nishiyama M, Oyama T, Kuwano H. Nuclear PROX1 is Associated with Hypoxia-Inducible Factor 1α Expression and Cancer Progression in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2015; 22 Suppl 3:S1566-73. [PMID: 26310281 DOI: 10.1245/s10434-015-4831-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Transcription factor prospero homeobox 1 (PROX1) has been identified as a master regulator of lymphangiogenesis associated with metastasis. Although PROX1 expression has been investigated in several cancers, its clinical significance remains controversial and needs further validation. In this study, we investigated the clinical and functional significance of PROX1 and PROX1 regulator hypoxia-inducible factor 1α (HIF1α) in esophageal squamous cell carcinoma (ESCC). METHODS A total of 117 samples from ESCC patients were analyzed for PROX1, HIF1α, and E-cadherin expression by immunohistochemistry; correlation with clinicopathological characteristics was determined. PROX1 function was evaluated in PROX1 small interfering RNA (siRNA)-transfected human ESCC cells in vitro by assessing cell proliferation and migration. RESULTS PROX1 expression was higher in ESCC than in normal tissues. Patients with higher PROX1 expression (n = 26) had increased nuclear accumulation of HIF1α (p = 0.004) and more advanced metastasis, both lymph node (N factor; p = 0.09) and hematogenous (M factor; p = 0.04), than those with lower PROX1 expression (n = 91). In addition, high PROX1 and HIF1α expression correlated with low levels of E-cadherin, an epithelial cell marker. Analysis of overall and cancer-specific survival indicated that elevated PROX1 expression was significantly correlated with poor prognosis (p = 0.0064). PROX1 downregulation in ESCC cells inhibited cellular proliferation and migration (p < 0.05). Hypoxia restored PROX1 levels that were reduced by PROX1-specific siRNA. CONCLUSION Our data suggest that high expression of PROX1 in ESCC could be used as an indicator of poor prognosis, and that PROX1 is a promising candidate molecular target for ESCC treatment.
Collapse
Affiliation(s)
- Takehiko Yokobori
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Pinjie Bao
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Minoru Fukuchi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan.
| | - Bolag Altan
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Daigo Ozawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Susumu Rokudai
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tuya Bai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yuji Kumakura
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroaki Honjo
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Keigo Hara
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Tatsuya Miyazaki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Munenori Ide
- Department of Diagnostic Pathology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Masahiko Nishiyama
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
12
|
Holzmann J, Hennchen M, Rohrer H. Prox1 identifies proliferating neuroblasts and nascent neurons during neurogenesis in sympathetic ganglia. Dev Neurobiol 2015; 75:1352-67. [PMID: 25788138 DOI: 10.1002/dneu.22289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 12/28/2022]
Abstract
Neurogenesis in embryonic sympathetic ganglia involves neuroblasts that resume proliferation following neuronal differentiation. As cell cycle exit is not associated with neuronal differentiation, the identity of proliferating neuroblasts is incompletely understood. Here, we use sympathetic ganglia of chick embryos to define the timing of neurogenesis and neuroblast identity focusing on the expression and function of the transcription factor Prox1. We show that a large fraction of neuroblasts has initially withdrawn from the cell cycle at embryonic day 3 (E3), which is reflected by a high proportion of p27(+)/Islet1(+) neuroblasts (63%) and low numbers of EdU(+)/Islet1(+) cells (12%). The proportion of proliferating Islet1(+) neuroblasts, identified by EdU pulse labeling and by the absence of the postmitotic marker p27 increases to reach maximal levels at E5, when virtually all neuroblasts are in the cell cycle (95%). Subsequently, the proportion of EdU-labeled and p27(-) neuroblasts is reduced to reach low levels at E11. Interestingly, the expression of the transcription factor Prox1 is restricted to the neuronal lineage, that is, Sox10(+)/Phox2b(+) neuron progenitors, proliferating p27(-)/Islet1(+) neuroblasts and nascent neurons but is rapidly lost in postmitotic neurons. In vitro and in vivo knockdown and overexpression experiments demonstrate effects of Prox1 in the support of neuroblast proliferation and survival. Taken together, these results define the neurogenesis period in the chick paravertebral sympathetic ganglia including an initial cell cycle withdrawal and identify Prox1 as a marker and regulator of proliferating sympathetic neuroblasts.
Collapse
Affiliation(s)
- Julia Holzmann
- Max-Planck-Institute for Brain Research; Research Group Developmental Neurobiology, Max-von-Laue-Str. 4, 60438 Frankfurt/Main, Germany
| | - Melanie Hennchen
- Max-Planck-Institute for Brain Research; Research Group Developmental Neurobiology, Max-von-Laue-Str. 4, 60438 Frankfurt/Main, Germany
| | - Hermann Rohrer
- Max-Planck-Institute for Brain Research; Research Group Developmental Neurobiology, Max-von-Laue-Str. 4, 60438 Frankfurt/Main, Germany.,Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| |
Collapse
|
13
|
Rodrigues MFSD, de Oliveira Rodini C, de Aquino Xavier FC, Paiva KB, Severino P, Moyses RA, López RM, DeCicco R, Rocha LA, Carvalho MB, Tajara EH, Nunes FD. PROX1 gene is differentially expressed in oral cancer and reduces cellular proliferation. Medicine (Baltimore) 2014; 93:e192. [PMID: 25526434 PMCID: PMC4603077 DOI: 10.1097/md.0000000000000192] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/07/2023] Open
Abstract
Homeobox genes are a family of transcription factors that play a pivotal role in embryogenesis. Prospero homeobox 1 (PROX1) has been shown to function as a tumor suppressor gene or oncogene in various types of cancer, including oral squamous cell carcinoma (OSCC). We have previously identified PROX1 as a downregulated gene in OSCC. The aim of this study is to clarify the underlying mechanism by which PROX1 regulates tumorigenicity of OSCC cells. PROX1 mRNA and protein expression levels were first investigated in 40 samples of OSCC and in nontumor margins. Methylation and amplification analysis was also performed to assess the epigenetic and genetic mechanisms involved in controlling PROX1 expression. OSCC cell line SCC9 was also transfected to stably express the PROX1 gene. Next, SCC9-PROX1-overexpressing cells and controls were subjected to proliferation, differentiation, apoptosis, migration, and invasion assays in vitro. OSCC samples showed reduced PROX1 expression levels compared with nontumor margins. PROX1 amplification was associated with better overall survival. PROX1 overexpression reduces cell proliferation and downregulates cyclin D1. PROX1-overexpressing cells also exhibited reduced CK18 and CK19 expression and transcriptionally altered the expression of WISP3, GATA3, NOTCH1, and E2F1. Our results suggest that PROX1 functions as a tumor suppressor gene in oral carcinogenesis.
Collapse
Affiliation(s)
- Maria F S D Rodrigues
- From the Department of Estomatology (MFSDR, LAR, FDN), School of Dentistry; Department of Biochemistry (KBP), Chemistry Institute; Department of Head and Neck Surgery (RAM), School of Medicine; Department of Epidemiology (RML), Public Health; Department of Genetics and Evolutionary Biology (EHT), Institute of Biosciences, University of São Paulo; Albert Einstein Research and Education Institute (PS), Albert Einstein Israelita Hospital, Center for Experimental Research; Department of Head and Neck Surgery (RDC), Arnaldo Vieira de Carvalho Cancer Institute; Department of Head and Neck Surgery (MBC), Heliopolis Hospital Complex, São Paulo; Department of Estomatology (FCdAX), School of Dentistry, Federal University of Bahia, Salvador; Department of Histology (CdOR), School of Dentistry, University of São Paulo, Bauru; and Department of Molecular Biology (EHT), School of Medicine, São José do Rio Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kharma B, Baba T, Matsumura N, Kang HS, Hamanishi J, Murakami R, McConechy MM, Leung S, Yamaguchi K, Hosoe Y, Yoshioka Y, Murphy SK, Mandai M, Hunstman DG, Konishi I. STAT1 drives tumor progression in serous papillary endometrial cancer. Cancer Res 2014; 74:6519-30. [PMID: 25267067 DOI: 10.1158/0008-5472.can-14-0847] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies of the interferon-induced transcription factor STAT1 have associated its dysregulation with poor prognosis in some cancers, but its mechanistic contributions are not well defined. In this study, we report that the STAT1 pathway is constitutively upregulated in type II endometrial cancers. STAT1 pathway alteration was especially prominent in serous papillary endometrial cancers (SPEC) that are refractive to therapy. Our results defined a "SPEC signature" as a molecular definition of its malignant features and poor prognosis. Specifically, we found that STAT1 regulated MYC as well as ICAM1, PD-L1, and SMAD7, as well as the capacity for proliferation, adhesion, migration, invasion, and in vivo tumorigenecity in cells with a high SPEC signature. Together, our results define STAT1 as a driver oncogene in SPEC that modulates disease progression. We propose that STAT1 functions as a prosurvival gene in SPEC, in a manner important to tumor progression, and that STAT1 may be a novel target for molecular therapy in this disease.
Collapse
Affiliation(s)
- Budiman Kharma
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hyun Sook Kang
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Melissa M McConechy
- Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Samuel Leung
- Genetic Pathology Evaluation Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yumiko Yoshioka
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susan K Murphy
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Masaki Mandai
- Department of Obstetrics and Gynecology, Kinki University Faculty of Medicine, Osaka, Japan
| | - David G Hunstman
- Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Genetic Pathology Evaluation Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Elsir T, Smits A, Lindström MS, Nistér M. Transcription factor PROX1: its role in development and cancer. Cancer Metastasis Rev 2013; 31:793-805. [PMID: 22733308 DOI: 10.1007/s10555-012-9390-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The homeobox gene PROX1 is critical for organ development during embryogenesis. The Drosophila homologue, known as prospero has been shown to act as a tumor suppressor by controlling asymmetric cell division of neuroblasts. Likewise, alterations in PROX1 expression and function are associated with a number of human cancers including hematological malignancies, carcinomas of the pancreas, liver and the biliary system, sporadic breast cancer, Kaposiform hemangioendothelioma, colon cancer, and brain tumors. PROX1 is involved in cancer development and progression and has been ascribed both tumor suppressive and oncogenic properties in a variety of different cancer types. However, the exact mechanisms through which PROX1 regulates proliferation, migration, and invasion of cancer cells are by large unknown. This review provides an update on the role of PROX1 in organ development and on its emerging functions in cancer, with special emphasis on the central nervous system and glial brain tumors.
Collapse
Affiliation(s)
- Tamador Elsir
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | | | | | | |
Collapse
|
16
|
Foskolou IP, Stellas D, Rozani I, Lavigne MD, Politis PK. Prox1 suppresses the proliferation of neuroblastoma cells via a dual action in p27-Kip1 and Cdc25A. Oncogene 2012; 32:947-60. [PMID: 22508481 DOI: 10.1038/onc.2012.129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuroblastoma is a pediatric tumor that originates from precursor cells of the sympathetic nervous system with less than 40% long-term survival in children diagnosed with high-risk disease. These clinical observations underscore the need for novel insights in the mechanisms of malignant transformation and progression. Accordingly, it was recently reported that Prox1, a homeobox transcription regulator, is expressed in higher levels in human neuroblastoma with favorable prognosis. Consistently, we have recently shown that Prox1 exerts a strong antiproliferative effect on neural precursor cells during embryonic development. Thus, Prox1 is a candidate gene with a critical role in suppressing malignant neuroblastoma transformation. Here, we provide evidence that Prox1 strongly suppresses the proliferation of mouse and human neuroblastoma cell lines and blocks the growth of neuroblastoma tumors in SCID mice. Conversely, short hairpin RNA (shRNA) -mediated knockdown of basal Prox1 expression significantly induces proliferation, genomic instability and the ability of neuroblastoma cells to form tumors. Mechanistically, analysis of an inducible Prox1-overexpressing Neuro2A cell line indicates that Prox1 is sufficient to suppress CyclinD1, CyclinA and CyclinB1, consistent with a role in cell cycle arrest. Surprisingly, Prox1 strongly induces CyclinE1 expression in the same system despite its action on blocking cell cycle progression, which could account for the context dependent oncogenic function of Prox1. Most importantly, Prox1 was sufficient to decrease Cdc25A and induce p27-Kip1, but not p21-Cip1 or p53. By alleviating the Prox1 action in Cdc25A and p27-Kip1 expression, we were able to rescue its effect on cell cycle arrest. Together these data suggest that Prox1 negatively regulates neuroblastoma carcinogenesis through suppression of Cdc25A and induction of p27-Kip1 to counteract CyclinE1 overexpression and block cell cycle progression. Furthermore, these observations render Prox1 a candidate target for the treatment of neuroblastoma tumors.
Collapse
Affiliation(s)
- I P Foskolou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|