1
|
Chung HY, Lee GS, Nam SH, Lee JH, Han JP, Song S, Kim GD, Jung C, Hyeon DY, Hwang D, Choi BO, Yeom SC. Morc2a variants cause hydroxyl radical-mediated neuropathy and are rescued by restoring GHKL ATPase. Brain 2024; 147:2114-2127. [PMID: 38227798 DOI: 10.1093/brain/awae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
Mutations in the Microrchidia CW-type zinc finger 2 (MORC2) GHKL ATPase module cause a broad range of neuropathies, such as Charcot-Marie-Tooth disease type 2Z; however, the aetiology and therapeutic strategy are not fully understood. Previously, we reported that the Morc2a p.S87L mouse model exhibited neuropathy and muscular dysfunction through DNA damage accumulation. In the present study, we analysed the gene expression of Morc2a p.S87L mice and designated the primary causing factor. We investigated the pathological pathway using Morc2a p.S87L mouse embryonic fibroblasts and human fibroblasts harbouring MORC2 p.R252W. We subsequently assessed the therapeutic effect of gene therapy administered to Morc2a p.S87L mice. This study revealed that Morc2a p.S87L causes a protein synthesis defect, resulting in the loss of function of Morc2a and high cellular apoptosis induced by high hydroxyl radical levels. We considered the Morc2a GHKL ATPase domain as a therapeutic target because it simultaneously complements hydroxyl radical scavenging and ATPase activity. We used the adeno-associated virus (AAV)-PHP.eB serotype, which has a high CNS transduction efficiency, to express Morc2a or Morc2a GHKL ATPase domain protein in vivo. Notably, AAV gene therapy ameliorated neuropathy and muscular dysfunction with a single treatment. Loss-of-function characteristics due to protein synthesis defects in Morc2a p.S87L were also noted in human MORC2 p.S87L or p.R252W variants, indicating the correlation between mouse and human pathogenesis. In summary, CMT2Z is known as an incurable genetic disorder, but the present study demonstrated its mechanisms and treatments based on established animal models. This study demonstrates that the Morc2a p.S87L variant causes hydroxyl radical-mediated neuropathy, which can be rescued through AAV-based gene therapy.
Collapse
Affiliation(s)
- Hye Yoon Chung
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Kangwon 25354, Korea
| | - Geon Seong Lee
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Kangwon 25354, Korea
| | - Soo Hyun Nam
- Samsung Medical Center, Cell & Gene Therapy Institute, Seoul 06351, Korea
| | - Jeong Hyeon Lee
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Kangwon 25354, Korea
| | - Jeong Pil Han
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Kangwon 25354, Korea
| | - Sumin Song
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Kangwon 25354, Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Kangwon 25354, Korea
| | - Choonkyun Jung
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Kangwon 25354, Korea
| | - Do Young Hyeon
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Bioinformatics Institute, Bio-MAX, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Ok Choi
- Samsung Medical Center, Cell & Gene Therapy Institute, Seoul 06351, Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Kangwon 25354, Korea
- Department of Agricultural Biotechnology, WCU Biomodulation Major, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Ma Z, Liang H, Cui R, Ji J, Liu H, Liu X, Shen P, Wang H, Wang X, Song Z, Jiang Y. Construction of a risk model and prediction of prognosis and immunotherapy based on cuproptosis-related LncRNAs in the urinary system pan-cancer. Eur J Med Res 2023; 28:198. [PMID: 37370148 DOI: 10.1186/s40001-023-01173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Urinary pan-cancer system is a general term for tumors of the urinary system including renal cell carcinoma (RCC), prostate cancer (PRAD), and bladder cancer (BLCA). Their location, physiological functions, and metabolism are closely related, making the occurrence and outcome of these tumors highly similar. Cuproptosis is a new type of cell death that is different from apoptosis and plays an essential role in tumors. Therefore, it is necessary to study the molecular mechanism of cuproptosis-related lncRNAs to urinary system pan-cancer for the prognosis, clinical diagnosis, and treatment of urinary tumors. METHOD In our study, we identified 35 co-expression cuproptosis-related lncRNAs (CRLs) from the urinary pan-cancer system. 28 CRLs were identified as prognostic-related CRLs by univariate Cox regression analysis. Then 12 CRLs were obtained using lasso regression and multivariate cox analysis to construct a prognostic model. We divided patients into high- and low-risk groups based on the median risk scores. Next, Kaplan-Meier analysis, principal component analysis (PCA), functional rich annotations, and nomogram were used to compare the differences between the high- and low-risk groups. Finally, the prediction of tumor immune dysfunction and rejection, gene mutation, and drug sensitivity were discussed. CONCLUSION Finally, the candidate molecules of the urinary system pan-cancer were identified. This CRLs risk model may be promising for clinical prediction of prognosis and immunotherapy response in urinary system pan-cancer patients.
Collapse
Affiliation(s)
- Zhihui Ma
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Haining Liang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Rongjun Cui
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jinli Ji
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Hongfeng Liu
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaoxue Liu
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ping Shen
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Huan Wang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xingyun Wang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zheyao Song
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ying Jiang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
| |
Collapse
|
3
|
Zha D, Yang Y, Huang X, Wang Z, Lin H, Yang L, Xu L, Wu Y, Huang H, Wang Y, Xin Z, Wu X, Xiao YF, Li TS, Deng KY, Xin HB, Qian Y. Nicaraven protects against endotoxemia-induced inflammation and organ injury through modulation of AMPK/Sirt1 signaling in macrophages. Eur J Pharmacol 2023; 946:175666. [PMID: 36944380 DOI: 10.1016/j.ejphar.2023.175666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
Endotoxemia is a disease characterized by systemic inflammatory responses and organ injury caused by lipopolysaccharide (LPS) infection, with high mortality. Nicaraven (AVS), a potent hydroxyl radical scavenger, has been proven to regulate the inflammatory response in tumors. To investigate the protective effects and mechanisms of AVS in endotoxemia, mice were injected intraperitoneally with LPS to induce endotoxemia. AVS treatment significantly decreased the levels of pro-inflammatory cytokines in the serum, reduced neutrophil infiltration, attenuated multiple organ injury, and increased the survival rate in LPS-challenged mice. In the LPS-induced inflammatory model of macrophages, AVS inhibited macrophage activation, suppressed nitric oxide (NO) production, and inhibited the expression and secretion of pro-inflammatory cytokines. Mechanistically, AVS treatment up-regulated silence information regulator transcript-1 (Sirt1) expression in a time- and dose-dependent manner. AVS treatment activated the AMP-dependent protein kinase (AMPK)/Sirt1 signaling pathway and suppressed the activation of nuclear factor kappa B (NF-κB) in macrophages exposed to LPS. However, the anti-inflammatory effects of AVS could be reversed by the AMPK, the Sirt1 inhibitor, or the histone deacetylase inhibitor. We confirmed that the AMPK inhibitor inhibited AVS-mediated AMPK/Sirt1 activation and NF-κB p65 acetylation. These results suggested that AVS alleviated endotoxemia by activating the AMPK/Sirt1 signaling pathway in macrophages.
Collapse
Affiliation(s)
- Duoduo Zha
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yaqin Yang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Xiang Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Ziwei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Hongru Lin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Lingyi Yang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Luyan Xu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yijia Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Houda Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Zhaochen Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Xuehan Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yun-Fei Xiao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China.
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Zou Z, Li J, Ji X, Wang T, Chen Q, Liu Z, Ji S. Naples Prognostic Score as an Independent Predictor of Survival Outcomes for Resected Locally Advanced Non-Small Cell Lung Cancer Patients After Neoadjuvant Treatment. J Inflamm Res 2023; 16:793-807. [PMID: 36860794 PMCID: PMC9969868 DOI: 10.2147/jir.s401446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Background The Naples Prognostic Score (NPS) can reflect patient's nutritional and inflammatory status, which is identified as a prognostic indicator for various malignant tumors. However, its significance in patients with resected locally advanced non-small cell lung cancer (LA-NSCLC) patients who receive neoadjuvant treatment remains unclear so far. Methods A total of 165 LA-NSCLC patients surgically treated from May 2012 to November 2017 were retrospectively investigated. The LA-NSCLC patients were divided into three groups according to NPS scores. The receiver operating curve (ROC) analysis was performed to reveal the discriminatory ability of NPS and other indicators for predicting the survival. The NPS and clinicopathological variables were further evaluated the prognostic value by univariate and multivariate Cox analysis. Results The NPS was related to age (P = 0.046), smoking history (P = 0.004), Eastern Cooperative Oncology Group (ECOG) score (P = 0.005), and adjuvant treatment (P = 0.017). Patients with high NPS scores had worse overall survival (OS) (group 1 vs 0, P = 0.006; group 2 vs 0, P < 0.001) and disease-free survival (DFS) (group 1 vs 0, P < 0.001; group 2 vs 0, P < 0.001). The ROC analysis demonstrated that NPS had better predictive ability than other prognostic indicators. Multivariate analysis revealed that NPS was independent prognostic indicator of OS (group 1 vs 0, hazard ratio [HR] =2.591, P = 0.023; group 2 vs 0, HR = 8.744, P = 0.001) and DFS (group 1 vs 0, HR =3.754, P < 0.001; group 2 vs 0, HR = 9.673, P < 0.001). Conclusion The NPS could be an independent prognostic indicator in patients with resected LA-NSCLC receiving neoadjuvant treatment and more reliable than the other nutritional and inflammatory indicators.
Collapse
Affiliation(s)
- Zhonghua Zou
- Department of Radiotherapy & Oncology, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Jinping Li
- Department of Gastroenterology, Fangzi People’s Hospital, Weifang, People’s Republic of China
| | - Xiang Ji
- Department of Gastroenterology, Fangzi People’s Hospital, Weifang, People’s Republic of China
| | - Tingxing Wang
- Department of Radiotherapy & Oncology, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Qingqing Chen
- Department of Radiotherapy & Oncology, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Zhengcao Liu
- Department of Radiotherapy & Oncology, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Shengjun Ji
- Department of Radiotherapy & Oncology, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China,Correspondence: Shengjun Ji, Department of Radiotherapy & Oncology, the affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No. 16 Baita Road, Suzhou, 215001, People’s Republic of China, Email
| |
Collapse
|
5
|
de Groot EM, Goense L, Kingma BF, van den Berg JW, Ruurda JP, van Hillegersberg R. Implementation of the robotic abdominal phase during robot-assisted minimally invasive esophagectomy (RAMIE): results from a high-volume center. Surg Endosc 2023; 37:1357-1365. [PMID: 36203109 PMCID: PMC9945034 DOI: 10.1007/s00464-022-09681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Evidence on the added value of robotic-assistance in the abdominal phase during esophagectomy is scarce. In 2003, our center implemented the robotic thoracic phase for esophagectomy. In November 2018 the robot was also implemented in the abdominal phase. The aim of this study was to evaluate the implementation of the abdominal phase during robot-assisted minimally invasive esophagectomy (RAMIE). METHODS Consecutive patients who underwent full RAMIE with intrathoracic anastomosis for esophageal cancer were included. Patients were extracted from a prospectively maintained institutional database. A cumulative sum (CUSUM) analysis was performed for abdominal operation time and abdominal lymph node yield. Intraoperative, postoperative and oncological outcomes including collected lymph nodes per abdominal lymph node station were reported. RESULTS Between 2018 and 2021, 70 consecutive patients were included. The majority of the patients had an adenocarcinoma (n = 55, 77%) and underwent neoadjuvant chemo(radio)therapy (n = 65, 95%). The median operative time for the abdominal phase was 180 min (range 110-233). The CUSUM analysis for abdominal operation time showed a plateau at case 22. There were no intraoperative complications or conversions during the abdominal phase. The most common postoperative complications were pneumonia (n = 18, 26%) and anastomotic leakage (n = 14, 20%). Radical resection margins were achieved in 69 (99%) patients. The median total lymph node yield was 42 (range 23-83) and the median abdominal lymph node yield was 16 (range 2-43). The CUSUM analysis for abdominal lymph node yield showed a plateau at case 21. Most abdominal lymph nodes were collected from the left gastric artery (median 4, range 0-20). CONCLUSIONS This study shows that a robotic abdominal phase was safely implemented for RAMIE without compromising intraoperative, postoperative and oncological outcomes. The learning curve is estimated to be 22 cases in a high-volume center with experienced upper GI robotic surgeons.
Collapse
Affiliation(s)
- E. M. de Groot
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, POBOX 85500, 3508 GA Utrecht, Netherlands
| | - L. Goense
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, POBOX 85500, 3508 GA Utrecht, Netherlands
| | - B. F. Kingma
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, POBOX 85500, 3508 GA Utrecht, Netherlands
| | - J. W. van den Berg
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, POBOX 85500, 3508 GA Utrecht, Netherlands
| | - J. P. Ruurda
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, POBOX 85500, 3508 GA Utrecht, Netherlands
| | - R. van Hillegersberg
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, POBOX 85500, 3508 GA Utrecht, Netherlands
| |
Collapse
|
6
|
Nicaraven-loaded electrospun wound dressings promote diabetic wound healing via proangiogenic and immunomodulatory functions: a preclinical investigation. Drug Deliv Transl Res 2023; 13:222-236. [PMID: 35648292 DOI: 10.1007/s13346-022-01176-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/13/2022]
Abstract
The current study developed a biopolymer-based wound dressing by electrospinning of Nicaraven-loaded collagen solution. Firstly, collagen was dissolved in acetic acid, and then Nicaraven was added to the polymeric solution at three different concentrations of 2 w/w%, 4 w/w%, and 6 w/w%. The resulting solution was then electrospun. Various experiments were performed to characterize the produced wound dressings. In vitro studies showed that Nicaraven-loaded scaffolds were not toxic against L929 fibroblast cells and protected them against oxidative stress. Wound healing potential of different formulations of Nicaraven-loaded collagen wound dressings was studied in a rat model of the excisional diabetic wound. The study showed that the collagen/4% Nicaraven and collagen/6% Nicaraven wound dressings exhibited a significantly higher percentage of wound closure, the thickness of the epithelium, and collagen deposition compared with collagen/2% Nicaraven, collagen-only, and sterile gauze groups. Gene expression study showed that the developed wound dressings reduced the tissue expression levels of glutathione peroxidase, NFKβ, and matrix metalloproteinase 9 (MMP9) genes. In addition, in the wounds treated with collagen/4% Nicaraven and collagen/6% Nicaraven scaffolds, wound healing was associated with a higher tissue expression level of b-FGF, VEGF, and collagen type I genes. Overall, wound healing activity of collagen/4% Nicaraven and collagen/6% Nicaraven wound dressings was not significantly different. This study implies that collagen wound dressings incorporated with 4% and 6% Nicaraven can be considered a potential candidate to treat diabetic wounds in the clinic.
Collapse
|
7
|
Xu Y, Abdelghany L, Sekiya R, Zhai D, Jingu K, Li TS. Optimization on the dose and time of nicaraven administration for mitigating the side effects of radiotherapy in a preclinical tumor-bearing mouse model. Ther Adv Respir Dis 2022; 16:17534666221137277. [PMID: 36404753 PMCID: PMC9677297 DOI: 10.1177/17534666221137277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Radiation-induced lung injury (RILI) is one of the serious complications of radiotherapy. We have recently demonstrated that nicaraven can effectively mitigate RILI in healthy mice. Here, we further tried to optimize the dose and time of nicaraven administration for alleviating the side effects of radiotherapy in tumor-bearing mice. METHODS AND RESULTS A subcutaneous tumor model was established in the back of the chest in C57BL/6N mice by injecting Lewis lung cancer cells. Therapeutic thoracic irradiations were done, and placebo or different doses of nicaraven (20, 50, 100 mg/kg) were administrated intraperitoneally pre-irradiation (at almost 5-10 min before irradiation) or post-irradiation (within 5 min after irradiation). Mice that received radiotherapy and nicaraven were sacrificed on the 30th day, but control mice were sacrificed on the 15th day. Serum and lung tissues were collected for evaluation. Nicaraven significantly decreased the level of CCL8, but did not clearly change the levels of 8-OHdG, TGF-β, IL-1β, and IL-6 in serum. Besides these, nicaraven effectively decreased the levels of TGF-β, IL-1β, and SOD2 in the lungs, especially by post-irradiation administration with the dose of 20 mg/kg. Although there was no significant difference, the expression of SOD1, 53BP1, and caspase 3 was detected lower in the lungs of mice received nicaraven post-irradiation than that of pre-irradiation. CONCLUSION According to our data, the administration of nicaraven at a relatively low dose soon after radiotherapy will be recommended for attenuating the side effects of radiotherapy.
Collapse
Affiliation(s)
- Yong Xu
- Department of Stem Cell Biology, Atomic Bomb
Disease Institute, Nagasaki University, Nagasaki, Japan,Department of Stem Cell Biology, Graduate
School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb
Disease Institute, Nagasaki University, Nagasaki, Japan,Department of Stem Cell Biology, Graduate
School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Atomic Bomb
Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Da Zhai
- Department of Stem Cell Biology, Atomic Bomb
Disease Institute, Nagasaki University, Nagasaki, Japan,Department of Stem Cell Biology, Graduate
School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate
School of Medicine, Tohoku University, Sendai, Japan
| | | |
Collapse
|
8
|
Xu Y, Zhai D, Goto S, Zhang X, Jingu K, Li TS. Nicaraven mitigates radiation-induced lung injury by downregulating the NF-κB and TGF-β/Smad pathways to suppress the inflammatory response. JOURNAL OF RADIATION RESEARCH 2022; 63:158-165. [PMID: 34999842 PMCID: PMC8944328 DOI: 10.1093/jrr/rrab112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Indexed: 06/14/2023]
Abstract
Radiation-induced lung injury (RILI) is commonly observed in patients receiving radiotherapy, and clinical prevention and treatment remain difficult. We investigated the effect and mechanism of nicaraven for mitigating RILI. C57BL/6 N mice (12-week-old) were treated daily with 6 Gy X-ray thoracic radiation for 5 days in sequences (cumulative dose of 30 Gy), and nicaraven (50 mg/kg) or placebo was injected intraperitoneally in 10 min after each radiation exposure. Mice were sacrificed and lung tissues were collected for experimental assessments at the next day (acute phase) or 100 days (chronic phase) after the last radiation exposure. Of the acute phase, immunohistochemical analysis of lung tissues showed that radiation significantly induced DNA damage of the lung cells, increased the number of Sca-1+ stem cells, and induced the recruitment of CD11c+, F4/80+ and CD206+ inflammatory cells. However, all these changes in the irradiated lungs were effectively mitigated by nicaraven administration. Western blot analysis showed that nicaraven administration effectively attenuated the radiation-induced upregulation of NF-κB, TGF-β, and pSmad2 in lungs. Of the chronic phase, nicaraven administration effectively attenuated the radiation-induced enhancement of α-SMA expression and collagen deposition in lungs. In conclusion we find that nicaraven can effectively mitigate RILI by downregulating NF-κB and TGF-β/pSmad2 pathways to suppress the inflammatory response in the irradiated lungs.
Collapse
Affiliation(s)
- Yong Xu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Da Zhai
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Xu Zhang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Tao-Sheng Li
- Corresponding author: Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7099; Fax: +81-95-819-7100, E-mail:
| |
Collapse
|
9
|
Abdelghany L, Zhang X, Kawabata T, Goto S, El-Mahdy N, Jingu K, Li TS. Nicaraven prevents the fast growth of inflamed tumors by an anti-inflammatory mechanism. Med Oncol 2021; 39:7. [PMID: 34761342 DOI: 10.1007/s12032-021-01602-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022]
Abstract
Inflammatory microenvironment is known to accelerate the progression of malignant tumors. We investigated the possible anti-inflammatory effect of nicaraven on slowing tumor growth. Tumor-bearing mice randomly received nicaraven injection (50 mg/kg daily, i.p, n = 8) or placebo treatment (n = 8) for 10 days, and then sacrificed for evaluations. Nicaraven administration effectively inhibited the fast growth of tumor, as a large tumor (> 1.0 g) developed finally in three of the eight mice received placebo treatment. Cytokines/chemokines array indicated that nicaraven reduced the levels of CXCL10 and SDF-1 in the tumor as well as the levels of IL-2 and MIP-2 in serum. Immunofluorescence staining showed that nicaraven significantly reduced the recruitment of macrophages and neutrophils in the tumor. Interestingly, western blot indicated that the expression of CD86, CD206, and NIMP-R14 was especially enhanced in the three large-size tumors, suggesting the potential role of nicaraven in preventing the hyper-inflammatory tumor microenvironment. Moreover, the expression of PARP-1 was downregulated, but the expression of phospho-p38 MAPK, phospho-MKK-3/6, and phospho-MSK-1 was upregulated in the large-size tumors, suggesting the involvement of p38 MAPK pathway in the anti-inflammatory effect of nicaraven. Taken together, our study suggests that nicaraven may effectively prevent the fast growth of inflamed tumors by an anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Xu Zhang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Nageh El-Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
10
|
Mi L, Zhang N, Wan J, Cheng M, Liao J, Zheng X. Remote ischemic post‑conditioning alleviates ischemia/reperfusion‑induced intestinal injury via the ERK signaling pathway‑mediated RAGE/HMGB axis. Mol Med Rep 2021; 24:773. [PMID: 34490475 PMCID: PMC8441982 DOI: 10.3892/mmr.2021.12413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal ischemia reperfusion (I/R) injury is a tissue and organ injury that frequently occurs during surgery and significantly contributes to the pathological processes of severe infection, injury, shock, cardiopulmonary insufficiency and other diseases. However, the mechanism of intestinal I/R injury remains to be elucidated. A mouse model of intestinal I/R injury was successfully established and the model mice were treated with remote ischemic post‑conditioning (RIPOC) and/or an ERK inhibitor (CC‑90003), respectively. Histopathological changes of the intestinal mucosa were determined by hematoxylin and eosin staining. In addition, the levels of high‑mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) expression were confirmed by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry assays. The levels of antioxidants, oxidative stress markers (8‑OHdG) and interleukin 1 family members were evaluated by ELISA assays and the levels of NF‑κB pathway proteins were analyzed by western blotting. The data demonstrated that RIPOC could attenuate the histopathological features of intestinal mucosa in the intestinal I/R‑injury mouse models via the ERK pathway. It was also revealed that HMGB1 and RAGE expression in the mouse models could be markedly reduced by RIPOC (P<0.05) and that these reductions were associated with inhibition of the ERK pathway. Furthermore, it was demonstrated that RIPOC produced significant antioxidant and anti‑inflammatory effects following an intestinal I/R injury and that these effects were mediated via the ERK pathway (P<0.05). In addition, RIPOC was demonstrated to suppress the NF‑κB (p65)/NLR family pyrin domain containing 3 (NLRP3) inflammatory pathways in the intestinal I/R injury mouse models via the ERK pathway. The findings of the present study demonstrated that RIPOC helped to protect mice with an intestinal I/R injury by downregulating the ERK pathway.
Collapse
Affiliation(s)
- Lei Mi
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Nan Zhang
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Jiyun Wan
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Ming Cheng
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Jianping Liao
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xiao Zheng
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
11
|
Li Y, Luo NC, Zhang X, Hara T, Inadomi C, Li TS. Prolonged oxygen exposure causes the mobilization and functional damage of stem or progenitor cells and exacerbates cardiac ischemia or reperfusion injury in healthy mice. J Cell Physiol 2021; 236:6657-6665. [PMID: 33554327 DOI: 10.1002/jcp.30317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/31/2020] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
Oxygen is often administered to patients and occasionally to healthy individuals as well; however, the cellular toxicity of oxygen, especially following prolonged exposure, is widely known. To evaluate the potential effect of oxygen exposure on circulating stem/progenitor cells and cardiac ischemia/reperfusion (I/R) injury, we exposed healthy adult mice to 100% oxygen for 20 or 60 min. We then examined the c-kit-positive stem/progenitor cells and colony-forming cells and measured the cytokine/chemokine levels in peripheral blood. We also induced cardiac I/R injury in mice at 3 h after 60 min of oxygen exposure and examined the recruitment of inflammatory cells and the fibrotic area in the heart. The proportion of c-kit-positive stem/progenitor cells significantly increased in peripheral blood at 3 and 24 h after oxygen exposure for either 20 or 60 min (p < .01 vs. control). However, the abundance of colony-forming cells in peripheral blood conversely decreased at 3 and 24 h after oxygen exposure for only 60 min (p < .05 vs. control). Oxygen exposure for either 20 or 60 min resulted in significantly decreased plasma vascular endothelial growth factor levels at 3 h, whereas oxygen exposure for only 60 min reduced plasma insulin-like growth factor 1 levels at 24 h (p < .05 vs. control). Protein array indicated the increase in the levels of some cytokines/chemokines, such as CXCL6 (GCP-2) at 24 h after 60 min of oxygen exposure. Moreover, oxygen exposure for 60 min enhanced the recruitment of Ly6g- and CD11c-positive inflammatory cells at 3 days (p < .05 vs. control) and increased the fibrotic area at 14 days in the heart after I/R injury (p < .05 vs. control). Prolonged oxygen exposure induced the mobilization and functional impairment of stem/progenitor cells and likely enhanced inflammatory responses to exacerbate cardiac I/R injury in healthy mice.
Collapse
Affiliation(s)
- Yu Li
- School of Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Na-Chuan Luo
- School of Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Xu Zhang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tetsuya Hara
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chiaki Inadomi
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
12
|
Lin H, Wu X, Yang Y, Wang Z, Huang W, Wang LF, Liu QW, Guan XH, Deng KY, Li TS, Qian Y, Xin HB. Nicaraven inhibits TNFα-induced endothelial activation and inflammation through suppression of NF-κB signaling pathway. Can J Physiol Pharmacol 2021; 99:803-811. [PMID: 33356884 DOI: 10.1139/cjpp-2020-0558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation-induced activation and dysfunction of endothelial cells play an important role in the pathology of multiple vascular diseases. Nicaraven, a potent hydroxyl radical scavenger, has recently been found to have anti-inflammatory roles; however, the mechanism of its action is not fully understood. Here we investigated the effects of Nicaraven on tumor necrosis factor α (TNFα) - induced inflammatory response in human umbilical vein endothelial cells and we explore the underlying mechanisms related to the nuclear factor-κB (NF-κB) signaling pathway. Our results showed that Nicaraven significantly reduced the reactive oxygen species production after TNFα stimulation. Nicaraven suppressed TNFα-induced mRNA expression of multiple adhesion molecules and pro-inflammatory cytokines, including vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E-selectin, MCP-1, TNFα, interleukin-1β (IL-1β), IL-6, and IL-8. In addition, Nicaraven inhibited monocyte adhesion and reduced the protein levels of VCAM-1 and ICAM-1. Mechanistically, Nicaraven prevented TNFα-induced activation of NF-κB signaling pathway by suppressing the phosphorylation of NF-κB p65, IκBα, and IκB kinase (IKK)α/β, stabilizing IκBα, and inhibiting the translocation of p65 from cytosol to nucleus. Finally, we showed that Nicaraven improved the functions of endothelial cells, seen as the upregulation of endothelial nitric oxide synthase and increased nitric oxide levels. Our findings indicated that Nicaraven effectively inhibits TNFα-induced endothelial activation and inflammatory response at least partly through inhibiting NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hongru Lin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuehan Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yaqin Yang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ziwei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Weilu Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Quan-Wen Liu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
13
|
Chen S, Yang X, Zhang Y, Liu Y, Lu H, Qiu Y, Cheng L, Li C, Wang C. Inhalable Porous Microspheres Loaded with Metformin and Docosahexaenoic Acid Suppress Tumor Metastasis by Modulating Premetastatic Niche. Mol Pharm 2021; 18:2622-2633. [PMID: 34165313 DOI: 10.1021/acs.molpharmaceut.1c00125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer metastasis is the major cause of cancer-related death; therefore, achieving suppression of tumor metastasis is a long-sought goal in cancer therapy. As the premetastatic niche acts as a prerequisite for tumor metastasis, it serves as an effective target for metastasis suppression. This study tests the feasibility of inhalable porous microspheres loaded with two premetastatic niche modulation agents, metformin and docosahexaenoic acid, as orthotopic delivery carriers for the reversion of lung premetastatic microenvironments and targeted suppression of tumor lung metastasis. The microspheres were prepared via an improved emulsion-solvent evaporation method and exhibit an excellent lung deposition, leading to significant inhibition of circulating tumor cells (CTCs)-endothelial cells adhesion, reduction of vascular permeability, and suppression of adhesion protein expression in lung premetastatic microenvironments. As a result, inhalable microspheres can prevent tumor lung metastasis formation excellently in vivo. Overall, this study proved that the encapsulation of metformin and docosahexaenoic acid in inhalable microspheres could be a promising strategy for tumor lung metastasis inhibition via orthotopically modulating premetastatic niche in the lungs.
Collapse
Affiliation(s)
- Shuang Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China
| | - Xiaohong Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing 401331, P. R. China
| | - Yan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China
| | - Yun Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China
| | - Hui Lu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China
| | - Yanfei Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China
| | - Liting Cheng
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China
| |
Collapse
|
14
|
Lee SE, Kim HY, Yoon JH, Kim EK, Kim JY, Kim MJ, Kim GR, Park YV, Moon HJ. Chronological Trends of Breast Ductal Carcinoma In Situ: Clinical, Radiologic, and Pathologic Perspectives. Ann Surg Oncol 2021; 28:8699-8709. [PMID: 34196861 DOI: 10.1245/s10434-021-10378-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Because no prior studies have evaluated the chronological trends of ductal carcinoma in situ (DCIS) despite the increasing number of surgeries performed for DCIS, this study analyzed how the clinical, radiologic, and pathologic characteristics of DCIS changed during a 10-year period. METHODS Of 7123 patients who underwent primary breast cancer surgery at a single institution from 2006 to 2015, 792 patients with pure DCIS were included in this study. The chronological trends of age, symptoms, method for detecting either mammography or ultrasonography, tumor size, nuclear grade, comedonecrosis, and molecular markers were calculated using Poisson regression for all patients and asymptomatic patients. RESULTS During 10 years, DCIS surgery rates significantly increased (p < 0.001). Despite the high percentage of DCIS detected on mammography, the detection rate for DCIS by mammography significantly decreased (97.3% in 2006 to 67.6% in 2015; p = 0.025), whereas the detection rate by ultrasound significantly increased (2.7% to 31.0%; p < 0.001). Conservation surgery rates (odds ratio [OR], 1.058), low-to-intermediate nuclear grade rates (OR, 1.069), and the absence of comedonecrosis (OR, 1.104) significantly increased over time (all p < 0.05). Estrogen receptor (ER) negativity (OR, 0.935) and human epidermal growth factor receptor 2 (HER2) positivity rates (OR, 0.953) significantly decreased (all p < 0.05). The same trends were observed for the 613 asymptomatic patients. CONCLUSION The rate of DCIS detected on ultrasound only significantly increased during 10 years. Low-to-intermediate nuclear grade rates significantly increased, whereas ER negativity and HER2 positivity rates significantly decreased during the same period. These findings suggest that DCIS detected on screening ultrasound is less aggressive than DCIS detected on mammography.
Collapse
Affiliation(s)
- Si Eun Lee
- Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Ha Yan Kim
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hyun Yoon
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Kyung Kim
- Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Jee Ye Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Jung Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ga Ram Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Youngjean Vivian Park
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Jung Moon
- Department of Radiology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
15
|
de Groot EM, Goense L, Ruurda JP, van Hillegersberg R. State of the art in esophagectomy: robotic assistance in the abdominal phase. Updates Surg 2020; 73:823-830. [PMID: 33382446 PMCID: PMC8184533 DOI: 10.1007/s13304-020-00937-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
Over the years, robot-assisted esophagectomy gained popularity. The current literature focused mainly on robotic assistance in the thoracic phase, whereas the implementation of robotic assistance in the abdominal phase is lagging behind. Advantages of adding a robotic system to the abdominal phase include robotic stapling and the increased surgeon's independency. In terms of short-term outcomes and lymphadenectomy, robotic assistance is at least equal to laparoscopy. Yet high quality evidence to conclude on this topic remains scarce. This review focuses on the evidence of robotic assistance in the abdominal phase of esophagectomy.
Collapse
Affiliation(s)
- Eline M de Groot
- Department of Surgery, University Medical Center Utrecht, POBOX 85500, 3508 GA, Utrecht, The Netherlands.
| | - Lucas Goense
- Department of Surgery, University Medical Center Utrecht, POBOX 85500, 3508 GA, Utrecht, The Netherlands
| | - Jelle P Ruurda
- Department of Surgery, University Medical Center Utrecht, POBOX 85500, 3508 GA, Utrecht, The Netherlands
| | - Richard van Hillegersberg
- Department of Surgery, University Medical Center Utrecht, POBOX 85500, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Okada S, Shimomura M, Tsunezuka H, Teramukai S, Ishihara S, Shimada J, Inoue M. Prognostic Significance of Perioperative C-Reactive Protein in Resected Non-Small Cell Lung Cancer. Semin Thorac Cardiovasc Surg 2020; 32:1046-1055. [PMID: 32437868 DOI: 10.1053/j.semtcvs.2020.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/17/2023]
Abstract
Inflammation is reportedly associated with the development and progression of various malignancies. However, the clinical significance of preoperative and postoperative inflammation in lung cancer patients undergoing surgery is unknown. The relationship between preoperative and postoperative C-reactive protein (CRP), an indicator of inflammation, and survival was retrospectively analyzed in 356 patients who underwent complete resection of pathologic Stage I and II non-small cell lung cancers. Cutoffs for preoperative CRP (CRPpre), postoperative maximum levels of CRP (CRPmax), and postoperative CRP levels 30 days after surgery (CRP30) were determined as 0.2 mg/dL, 6.4 mg/dL, and 0.2 mg/dL, respectively. Patients with CRPprehigh, CRPmaxhigh, or CRP30high status had significantly poorer overall survival (OS) and relapse-free survival (RFS) than those with CRPprelow, CRPmaxlow, or CRP30low. Patients were stratified into 4 groups according to perioperative CRP grades, combining CRPprehigh, CRPmaxhigh, and CRP30high statuses, yielding groups with grades 0, 1, 2, and 3. OS and RFS significantly worsened with increasing grade. After controlling for potential confounders, the multivariate Cox proportional hazard model revealed perioperative CRP grade as an independent poor prognostic factor for OS (grade 3 vs grade 0): adjusted hazard ratio, 5.05; 95% confidence interval, 1.59-19.6; P = 0.005), and RFS (adjusted hazard ratio, 3.62; 95% confidence interval, 1.50-9.33; P = 0.004). Perioperative inflammation was associated with a long-term negative prognostic impact after lobectomy for lung cancer. Further prospective analysis is required to identify whether control of perioperative inflammation may improve prognosis after lung cancer surgery.
Collapse
Affiliation(s)
- Satoru Okada
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Masanori Shimomura
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Hiroaki Tsunezuka
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Satoshi Teramukai
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Shunta Ishihara
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Junichi Shimada
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Masayoshi Inoue
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan.
| |
Collapse
|
17
|
Zhang X, Li TS. ASO Author Reflections: How Should a Surgeon Care and Manage Cancer Metastasis? Ann Surg Oncol 2019; 27:1075-1076. [PMID: 31832918 DOI: 10.1245/s10434-019-08131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Xu Zhang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|