1
|
Ishikawa S, Kosugi Y, Kanda Y, Shimoda K, Jing Y, Toyao T, Shimizu KI, Ueda W. Microporosity and Catalytic Activity for Hydrodesulfurization of Pharmacosiderite Mo 4P 3O 16 Synthesized at a Moderate Temperature. Inorg Chem 2024; 63:7780-7791. [PMID: 38625744 DOI: 10.1021/acs.inorgchem.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Pharmacosiderite Mo4P3O16 (Pharma-MoPO) consists of [Mo4O4] cubane unit and [PO4] tetrahedral to form an open framework with a microporous structure similar to that of LTA-type zeolite. Although attractive applications are expected due to its microporous structure and redox-active components, its physicochemical properties have been poorly investigated due to the specificity of its synthesis, which requires a high hydrothermal synthesis temperature of 360 °C. In this study, we succeeded in synthesizing Pharma-MoPO by hydrothermal synthesis at 230 °C, which can be applied using a commercially available autoclave by changing the metal source. Through the study of the solids and liquids obtained after hydrothermal syntheses, the formation process of Pharma-MoPO under our studied synthesis conditions was proposed. Advanced characterizations provided detailed structural information on Pharma-MoPO, including the location site of a countercation NH4+. Pharma-MoPO could adsorb CO2 with the amount close to the number of cages without removing NH4+. Pharma-MoPO exhibited stable catalytic activity for the hydrodesulfurization of thiophene while maintaining its crystal structure, except for the introduction of sulfide by replacing lattice oxygens. Pharmacosiderite Mo4P3O16 was successfully obtained by hydrothermal synthesis at a moderate temperature, and its microporosity for CO2 adsorption and catalytic properties for hydrodesulfurization were discovered.
Collapse
Affiliation(s)
- Satoshi Ishikawa
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yudai Kosugi
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yasuharu Kanda
- Chemical and Biological Engineering Research Unit, College of Information and Systems, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Kosuke Shimoda
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Wataru Ueda
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
2
|
Khare R, Weindl R, Jentys A, Reuter K, Shi H, Lercher JA. Di- and Tetrameric Molybdenum Sulfide Clusters Activate and Stabilize Dihydrogen as Hydrides. JACS AU 2022; 2:613-622. [PMID: 35373212 PMCID: PMC8965828 DOI: 10.1021/jacsau.1c00507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 06/14/2023]
Abstract
NaY zeolite-encapsulated dimeric (Mo2S4) and tetrameric (Mo4S4) molybdenum sulfide clusters stabilize hydrogen as hydride binding to Mo atoms. Density functional theory (DFT) calculations and adsorption measurements suggest that stabilization of hydrogen as sulfhydryl (SH) groups, as typical for layered MoS2, is thermodynamically disfavored. Competitive adsorption of H2 and ethene on Mo was probed by quantifying adsorbed CO on partly hydrogen and/or ethene covered samples with IR spectroscopy. During hydrogenation, experiment and theory suggest that Mo is covered predominately with ethene and sparsely with hydride. DFT calculations further predict that, under reaction conditions, each Mo x S y cluster can activate only one H2, suggesting that the entire cluster (irrespective of its nuclearity) acts as one active site for hydrogenation. The nearly identical turnover frequencies (24.7 ± 3.3 molethane·h-1·molcluster -1), apparent activation energies (31-32 kJ·mol-1), and reaction orders (∼0.5 in ethene and ∼1.0 in H2) show that the active sites in both clusters are catalytically indistinguishable.
Collapse
Affiliation(s)
- Rachit Khare
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, 85747 Garching, Germany
| | - Roland Weindl
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, 85747 Garching, Germany
| | - Andreas Jentys
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, 85747 Garching, Germany
| | - Karsten Reuter
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, 85747 Garching, Germany
- Fritz
Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Hui Shi
- School
of Chemistry and Chemical Engineering, Yangzhou
University, Yangzhou, 225009 Jiangsu China
| | - Johannes A. Lercher
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, 85747 Garching, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
3
|
Enhancement of the Hydrodesulfurization and C–S Bond Cleavage Activities of Rhodium Phosphide Catalysts by Platinum Addition. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Matus Е, Yashnik S, Salnikov A, Khitsova L, Popova A, Nikitin A, Sozinov S, Ismagilov Z. Genesis and Properties of MOx/CNTs (M = Ce, Cu, Mo) Catalysts for Aerobic Oxidative Desulfurization of a Model Diesel Fuel. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2021. [DOI: 10.18321/ectj1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Aerobic oxidative desulfurization of a model diesel fuel over MOx/CNTs catalysts (M = Ce, Cu, Mo) was studied to develop innovative technology for cleaning motor fuels to EURO-5 standard. It was shown that the thermal stability of catalysts improves in the following order of metal Сu < Сe < Мо. The disordering of the carbon matrix of support increases in the next row of M: Mo < Ce < Cu, which is accompanied by an increase in the specific surface area of the samples (40 → 105 m2/g). The forms of stabilization of the active component (CeO2, CuO/Cu2O/ Cu, or MoO3/MoO2) were revealed, indicating a partial reduction of the metal cations during the thermal decomposition of copper and molybdenum precursor compounds deposited on CNTs. In oxidative desulfurization of a model diesel fuel over MOx/CNTs catalysts at 150 °C the total conversion of dibenzothiophene increased in the next row of M: Се < Сu < Мо. It was found that at 150 °C over the optimum MoOx/CNTs catalyst the highest dibenzothiophene conversion 95–99% is observed. It was assumed that the high activity of MoOx/CNTs is associated with both the oxidizing ability and the tendency of MoOx to chemosorption of sulfur compounds.
Collapse
|
5
|
Weindl R, Khare R, Kovarik L, Jentys A, Reuter K, Shi H, Lercher JA. Zeolite‐Stabilized Di‐ and Tetranuclear Molybdenum Sulfide Clusters Form Stable Catalytic Hydrogenation Sites. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Roland Weindl
- Department of Chemistry and Catalysis Research Center Technical University of Munich 85747 Garching Germany
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center Technical University of Munich 85747 Garching Germany
| | - Libor Kovarik
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Andreas Jentys
- Department of Chemistry and Catalysis Research Center Technical University of Munich 85747 Garching Germany
| | - Karsten Reuter
- Department of Chemistry and Catalysis Research Center Technical University of Munich 85747 Garching Germany
- Fritz Haber Institute of the Max Planck Society 14195 Berlin Germany
| | - Hui Shi
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 China
| | - Johannes A. Lercher
- Department of Chemistry and Catalysis Research Center Technical University of Munich 85747 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| |
Collapse
|
6
|
Weindl R, Khare R, Kovarik L, Jentys A, Reuter K, Shi H, Lercher JA. Zeolite-Stabilized Di- and Tetranuclear Molybdenum Sulfide Clusters Form Stable Catalytic Hydrogenation Sites. Angew Chem Int Ed Engl 2021; 60:9301-9305. [PMID: 33576131 PMCID: PMC8252740 DOI: 10.1002/anie.202015769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Indexed: 11/24/2022]
Abstract
Supercages of faujasite (FAU)‐type zeolites serve as a robust scaffold for stabilizing dinuclear (Mo2S4) and tetranuclear (Mo4S4) molybdenum sulfide clusters. The FAU‐encaged Mo4S4 clusters have a distorted cubane structure similar to the FeMo‐cofactor in nitrogenase. Both clusters possess unpaired electrons on Mo atoms. Additionally, they show identical catalytic activity per sulfide cluster. Their catalytic activity is stable (>150 h) for ethene hydrogenation, while layered MoS2 structures deactivate significantly under the same reaction conditions.
Collapse
Affiliation(s)
- Roland Weindl
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85747, Garching, Germany
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85747, Garching, Germany
| | - Libor Kovarik
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Andreas Jentys
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85747, Garching, Germany
| | - Karsten Reuter
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85747, Garching, Germany.,Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85747, Garching, Germany.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
7
|
Cui TY, Rajendran A, Fan HX, Feng J, Li WY. Review on Hydrodesulfurization over Zeolite-Based Catalysts. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06234] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tian-You Cui
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Antony Rajendran
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Hong-Xia Fan
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jie Feng
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Wen-Ying Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
8
|
Peña-Obeso PJ, Huirache-Acuña R, Arroyo-Albiter M, Guevara-Martínez SJ, Leyva C, Cervantes-Gaxiola ME. Hydrodesulfurization of dibenzothiophene using NiMoWS catalysts supported on Al–Mg and Ti–Mg mixed oxides. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2019-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this work, two series of trimetallic NiMoW sulfide catalysts supported on Al–Mg(x) and Ti–Mg(x) mixed oxides with different content of MgO (x = 5, 10, 15 and 20 wt.% of MgO) were synthesized. The mixed oxides and catalysts were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, N2 physisorption and Diffuse reflectance spectroscopy (DRS UV–Vis); and evaluated during the hydrodesulfurization (HDS) of dibenzothiophene (DBT) reaction. The NiMoW/Al–Mg catalysts showed a higher dispersion of Ni, Mo and W species than NiMoW/Ti–Mg catalysts resulting in higher catalytic activities. Catalysts with 10 wt.% of MgO showed the highest catalytic activity for both series of catalysts. Most of the synthesized catalysts exhibited higher activities than NiMoWS/Al–Ti reference catalyst. The present comparison study clearly showed that NiMoW/Al–Mg and NiMoW/Ti–Mg catalyst with 10 wt.% of MgO might be a promising and effective catalyst for the HDS-DBT reaction.
Collapse
Affiliation(s)
- Pablo Jahir Peña-Obeso
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan, 80030, Sinaloa, Mexico
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, 58030, Michoacán, Mexico
| | - Rafael Huirache-Acuña
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, 58030, Michoacán, Mexico
| | - Manuel Arroyo-Albiter
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Michoacán, Mexico
| | - Santiago José Guevara-Martínez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Michoacán, Mexico
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA Unidad Legaria, Legaria 694, Irrigación, Mexico City, 11500, Mexico
| | | |
Collapse
|
9
|
Giang H, Pali M, Fan L, Suni II. Impedance Biosensing atop MoS
2
Thin Films with Mo−S Bond Formation to Antibody Fragments Created by Disulphide Bond Reduction. ELECTROANAL 2019. [DOI: 10.1002/elan.201800845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hannah Giang
- Department of Chemistry & Biochemistry, Materials Technology CenterSouthern Illinois University Carbondale IL 62901
| | - Madhavi Pali
- Department of Chemistry & Biochemistry, Materials Technology CenterSouthern Illinois University Carbondale IL 62901
| | - Li Fan
- Department of Chemistry & Biochemistry, Materials Technology CenterSouthern Illinois University Carbondale IL 62901
| | - Ian I. Suni
- Department of Chemistry & Biochemistry, Materials Technology CenterSouthern Illinois University Carbondale IL 62901
- Department of Mechanical Engineering & Energy ProcessesSouthern Illinois University Carbondale IL 62901
| |
Collapse
|
10
|
Catalytic Activities of Noble Metal Phosphides for Hydrogenation and Hydrodesulfurization Reactions. Catalysts 2018. [DOI: 10.3390/catal8040160] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Inamura K, Kagami N, Shirakawa T, Eura S, Watabe M. Improvement in hydrocracking activity of heavy oil upgrading catalyst by modifications to some specific properties of Y-zeolite. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-1970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Ahn SH, Cluff KJ, Bhuvanesh N, Blümel J. Hydrogen Peroxide and Di(hydroperoxy)propane Adducts of Phosphine Oxides as Stoichiometric and Soluble Oxidizing Agents. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shin Hye Ahn
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842‐3012 (USA) http://www.chem.tamu.edu/rgroup/bluemel
| | - Kyle J. Cluff
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842‐3012 (USA) http://www.chem.tamu.edu/rgroup/bluemel
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842‐3012 (USA) http://www.chem.tamu.edu/rgroup/bluemel
| | - Janet Blümel
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842‐3012 (USA) http://www.chem.tamu.edu/rgroup/bluemel
| |
Collapse
|
13
|
Ahn SH, Cluff KJ, Bhuvanesh N, Blümel J. Hydrogen Peroxide and Di(hydroperoxy)propane Adducts of Phosphine Oxides as Stoichiometric and Soluble Oxidizing Agents. Angew Chem Int Ed Engl 2015; 54:13341-5. [PMID: 26457679 DOI: 10.1002/anie.201505291] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/17/2015] [Indexed: 11/05/2022]
Abstract
Aqueous hydrogen peroxide is widely used as an oxidizing agent in industry and academia. Herein, the hydrogen peroxide adducts of phosphine oxides, [tBu3PO⋅H2O2]2 and [Ph3PO⋅H2O2]2⋅H2O2, are described. Additionally, the corresponding di(hydroperoxy)propane adducts R3PO⋅(HOO)2CMe2 (R=Cy, Ph) were synthesized and characterized. All adducts could be obtained as large single crystals suitable for structural characterization by X-ray crystallography and solid-state NMR spectroscopy. The di(hydroperoxy)propane adducts are soluble in organic solvents which enables oxidation reactions in one phase. As the adducts are solid and molecular, they can easily be applied stoichiometrically. No loss of oxidizing power occurs upon long-term storage of the single crystals at room temperature or the powders at -20 °C.
Collapse
Affiliation(s)
- Shin Hye Ahn
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842-3012 (USA) http://www.chem.tamu.edu/rgroup/bluemel
| | - Kyle J Cluff
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842-3012 (USA) http://www.chem.tamu.edu/rgroup/bluemel
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842-3012 (USA) http://www.chem.tamu.edu/rgroup/bluemel
| | - Janet Blümel
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842-3012 (USA) http://www.chem.tamu.edu/rgroup/bluemel.
| |
Collapse
|
14
|
Citric acid-assisted synthesis of γ-alumina-supported high loading CoMo sulfide catalysts for the hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) reactions. APPLIED PETROCHEMICAL RESEARCH 2015. [DOI: 10.1007/s13203-015-0097-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
15
|
Sattler A, Parkin G. Trinuclear, tetranuclear and octanuclear chalcogenido clusters of molybdenum and tungsten supported by trimethylphosphine ligands. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|