1
|
Uno K, Itoh T, Sato H, Lloyd-Jones GC, Orito Y. Direct Observation of Palladium Leaching from Pd/C by a Simple Method: X-ray Absorption Spectroscopy of Heterogeneous Mixtures. ACS OMEGA 2023; 8:21787-21792. [PMID: 37360423 PMCID: PMC10286095 DOI: 10.1021/acsomega.3c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Herein, we show the detailed behavior of palladium leaching from palladium on charcoal by aqueous HCl, directly observed by X-ray absorption spectroscopy measurement employing a simplified reaction setup. While Pd0 is not affected by the addition of HCl, palladium oxide in nanoparticles readily reacts with HCl to form the ionic species [PdIICl4]2-, even though these ions mostly remain adsorbed on the surface of activated charcoal and can only be detected at a low level in the solution phase. This finding provides a new aspect for control of the leaching behavior and robust usage of palladium on charcoal in organic reactions.
Collapse
Affiliation(s)
- Kenichi Uno
- Process
Technology Research Laboratories, Daiichi
Sankyo Co., Ltd., 1-12-1
Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| | - Takanori Itoh
- Physical
Properties & Chemical Analysis Department, NISSAN ARC, LTD., 1,
Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Hidenori Sato
- Physical
Properties & Chemical Analysis Department, NISSAN ARC, LTD., 1,
Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Guy C. Lloyd-Jones
- School
of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh EH9 1FJ, U.K.
| | - Yuya Orito
- Process
Technology Research Laboratories, Daiichi
Sankyo Co., Ltd., 1-12-1
Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| |
Collapse
|
2
|
Yamamoto A, Liu X, Arashiba K, Konomi A, Tanaka H, Yoshizawa K, Nishibayashi Y, Yoshida H. Coordination Structure of Samarium Diiodide in a Tetrahydrofuran-Water Mixture. Inorg Chem 2023; 62:5348-5356. [PMID: 36728764 DOI: 10.1021/acs.inorgchem.2c03752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemoselective reductive conversion of organic and inorganic compounds has been developed by the combination of samarium(II) diiodide (SmI2) and water. Despite the extensive previous studies to elucidate the role of water in the reactivity of SmI2, the direct structural data of the reactive Sm2+-water complexes, SmI2(H2O)n, in an organic solvent-water mixture have not been reported experimentally so far. Herein, we performed the structure analysis of the Sm2+-water complex in tetrahydrofuran (THF) in the presence of water by in situ X-ray absorption spectroscopy using high-energy X-rays (Sm K-edge, 46.8 keV). The analysis revealed the dissociation of the Sm2+-I bonds in the presence of ≥ eight equivalents of water in the THF-water mixture. The origin of the peak shift in the UV/visible absorption spectra after the addition of water into SmI2/THF solution was proposed based on electron transitions simulated with time-dependent density-functional-theory calculations using optimized structures in THF or water. The obtained structural information provides the fundamental insights for elucidating the reactivity and chemoselectivity in the Sm2+-water complex system.
Collapse
Affiliation(s)
- Akira Yamamoto
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto606-8501, Japan.,Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8520, Japan
| | - Xueshi Liu
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto606-8501, Japan
| | - Kazuya Arashiba
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka819-0395, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya457-8530, Japan
| | - Kazunari Yoshizawa
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8520, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Hisao Yoshida
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto606-8501, Japan.,Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8520, Japan
| |
Collapse
|
3
|
Matsubara K. Well-Defined NHC-Ni Complexes as Catalysts: Preparation, Structures and Mechanistic Studies in Cross-Coupling Reactions. CHEM REC 2021; 21:3925-3942. [PMID: 34596959 DOI: 10.1002/tcr.202100204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Indexed: 02/06/2023]
Abstract
Developmental studies are ongoing to discover a way to utilise new N-heterocyclic carbene (NHC)-Ni complexes as catalysts. Using a bulky NHC ligand, it is possible to synthesise an NHC/phosphine-mixed heteroleptic Ni(II) complex, which can serve as an excellent catalyst for various cross-coupling reactions. During the study of the reaction mechanisms using these Ni complexes, NHC-Ni(I) complexes were accidentally discovered, and it was observed that they exhibit excellent catalytic activity for cross-coupling reactions. The possibility of the presence of NHC-Ni(I) intermediates in these catalytic reaction pathways has been experimentally demonstrated. Depending on the type of reaction, dinuclear Ni(I) and mononuclear Ni(I) complexes can function as intermediates. The results of the investigation of each reaction mechanism are summarised, and the prospects are described.
Collapse
Affiliation(s)
- Kouki Matsubara
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka, 814-0180, Japan
| |
Collapse
|
4
|
Adak L, Jin M, Saito S, Kawabata T, Itoh T, Ito S, Sharma AK, Gower NJ, Cogswell P, Geldsetzer J, Takaya H, Isozaki K, Nakamura M. Iron-catalysed enantioselective carbometalation of azabicycloalkenes. Chem Commun (Camb) 2021; 57:6975-6978. [PMID: 34219132 DOI: 10.1039/d1cc02387j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first enantioselective carbometalation reaction of azabicycloalkenes has been achieved by iron catalysis to in situ form optically active organozinc intermediates, which are amenable to further synthetic elaborations. The observed chiral induction, along with the DFT and XAS analyses, reveals the direct coordination of the chiral phosphine ligand to the iron centre during the carbon-carbon and carbon-metal bond forming step. This new class of iron-catalysed asymmetric reaction will contribute to the synthesis and production of bioactive molecules.
Collapse
Affiliation(s)
- Laksmikanta Adak
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan. and Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Masayoshi Jin
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan. and Process Technology Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| | - Shota Saito
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Tatsuya Kawabata
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Takuma Itoh
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Shingo Ito
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan. and Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21Nanyang Link 637371, Singapore
| | - Akhilesh K Sharma
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Nicholas J Gower
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Paul Cogswell
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Jan Geldsetzer
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Hikaru Takaya
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Katsuhiro Isozaki
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Masaharu Nakamura
- International Research Center for Elements Science, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
5
|
Adak L, Hatakeyama T, Nakamura M. Iron-Catalyzed Cross-Coupling Reactions Tuned by Bulky Ortho-Phenylene Bisphosphine Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Laksmikanta Adak
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Masaharu Nakamura
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
6
|
Yuan N, Gudmundsson A, Gustafson KPJ, Oschmann M, Tai CW, Persson I, Zou X, Verho O, Bajnóczi ÉG, Bäckvall JE. Investigation of the Deactivation and Reactivation Mechanism of a Heterogeneous Palladium(II) Catalyst in the Cycloisomerization of Acetylenic Acids by In Situ XAS . ACS Catal 2021; 11:2999-3008. [PMID: 33842022 PMCID: PMC8028044 DOI: 10.1021/acscatal.0c04374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/11/2021] [Indexed: 11/30/2022]
Abstract
![]()
A well-studied heterogeneous
palladium(II) catalyst used for the
cycloisomerization of acetylenic acids is known to be susceptible
to deactivation through reduction. To gain a deeper understanding
of this deactivation process and to enable the design of a reactivation
strategy, in situ X-ray absorption spectroscopy (XAS)
was used. With this technique, changes in the palladium oxidation
state and coordination environment could be studied in close detail,
which provided experimental evidence that the deactivation was primarily
caused by triethylamine-promoted reduction of palladium(II) to metallic
palladium nanoparticles. Furthermore, it was observed that the choice
of the acetylenic acid substrate influenced the distribution between
palladium(II) and palladium(0) species in the heterogeneous catalyst
after the reaction. From the mechanistic insight gained through XAS,
an improved catalytic protocol was developed that did not suffer from
deactivation and allowed for more efficient recycling of the catalyst.
Collapse
Affiliation(s)
- Ning Yuan
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Arnar Gudmundsson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Karl P. J. Gustafson
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Oschmann
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Cheuk-Wai Tai
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ingmar Persson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Oscar Verho
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Medicinal Chemistry, Uppsala Biomedical Centre, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Éva G. Bajnóczi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
- Wigner Research Centre for Physics, H-1121 Budapest, Hungary
| | - Jan-E. Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-851 70 Sundsvall, Sweden
| |
Collapse
|
7
|
Sharma AK, Nakamura M. A DFT Study on Fe I/Fe II/Fe III Mechanism of the Cross-Coupling between Haloalkane and Aryl Grignard Reagent Catalyzed by Iron-SciOPP Complexes. Molecules 2020; 25:molecules25163612. [PMID: 32784472 PMCID: PMC7465158 DOI: 10.3390/molecules25163612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 01/18/2023] Open
Abstract
To explore plausible reaction pathways of the cross-coupling reaction between a haloalkane and an aryl metal reagent catalyzed by an iron–phosphine complex, we examine the reaction of FeBrPh(SciOPP) 1 and bromocycloheptane employing density functional theory (DFT) calculations. Besides the cross-coupling, we also examined the competitive pathways of β-hydrogen elimination to give the corresponding alkene byproduct. The DFT study on the reaction pathways explains the cross-coupling selectivity over the elimination in terms of FeI/FeII/FeIII mechanism which involves the generation of alkyl radical intermediates and their propagation in a chain reaction manner. The present study gives insight into the detailed molecular mechanic of the cross-coupling reaction and revises the FeII/FeII mechanisms previously proposed by us and others.
Collapse
Affiliation(s)
- Akhilesh K. Sharma
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan;
| | - Masaharu Nakamura
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan;
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Correspondence: ; Tel.: +81-774-38-3180
| |
Collapse
|
8
|
Dhital RN, Sen A, Sato T, Hu H, Ishii R, Hashizume D, Takaya H, Uozumi Y, Yamada YMA. Activator-Promoted Aryl Halide-Dependent Chemoselective Buchwald-Hartwig and Suzuki-Miyaura Type Cross-Coupling Reactions. Org Lett 2020; 22:4797-4801. [PMID: 32484355 DOI: 10.1021/acs.orglett.0c01600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report the development of aryl halide-dependent chemoselective reactions, viz., the Buchwald-Hartwig type coupling reaction of an aryl iodide with an arylboronic acid and an aryl amine in the presence of a heterogeneous and reusable nickel catalyst and the Suzuki-Miyaura type coupling of an aryl chloride under similar conditions. Control experiments revealed that the presence of stoichiometric amounts of the phenylboronic acid/ester and aryl amine are essential for both reactions. NMR and XAFS studies suggested the formation of a boron-amine "ate" complex.
Collapse
Affiliation(s)
- Raghu N Dhital
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Abhijit Sen
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takuma Sato
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hao Hu
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Rikako Ishii
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Hikaru Takaya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasuhiro Uozumi
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.,Institute for Molecular Science, Okazaki, Aichi 444-8787, Japan
| | - Yoichi M A Yamada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
|
10
|
Schoch A, Burkhardt L, Schoch R, Stührenberg K, Bauer M. Hard X-ray spectroscopy: an exhaustive toolbox for mechanistic studies (?). Faraday Discuss 2020; 220:113-132. [PMID: 31532420 DOI: 10.1039/c9fd00070d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Established and recent hard X-ray spectroscopic methods in the form of conventional X-ray absorption near edge structure spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS), and the photon-in/photon-out techniques high energy resolution fluorescence detection XANES and valence-to-core X-ray emission spectroscopy (VtC-XES) provide unique opportunities to study mechanisms in metal-organic reactions. The combination of these techniques allows the determination of the local geometric and electronic structures in the form of the numbers of nearest neighbours, their types and distances around an X-ray absorbing atom and the highest occupied and lowest unoccupied molecular levels. Different sample cells for this purpose, which allow high pressure, electrochemical or multi-spectroscopic measurements under inert conditions, are presented and discussed. The potential of HERFD-XANES and VtC-XES to eliminate limitations of conventional EXAFS spectroscopy is established with case studies on the Hieber anion [Fe(CO)3(NO)]- and the iron hydride complex [Fe(CO)H(NO)(PPh3)2]. With VtC-XES the formation of an allyl complex by reaction of [Fe(CO)3(NO)]- in a catalytic nucleophilic substitution reaction can be followed. Combination of HERFD-XANES and VtC-XES allows the identification and investigation of hydride species, as well as their fate in chemical reactions. On the other hand, in order to investigate the active species formation in iron-catalysed cross coupling reactions, conventional XANES and EXAFS are the method of choice for the moment. For all examples, the advantages and limitations of the hard X-ray toolbox are commented on and the value of the individual methods are compared.
Collapse
Affiliation(s)
- Anke Schoch
- Paderborn University, Department of Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | | | | | | | | |
Collapse
|
11
|
Liu L, Lee W, Yuan M, Acha C, Geherty MB, Williams B, Gutierrez O. Intra- and intermolecular Fe-catalyzed dicarbofunctionalization of vinyl cyclopropanes. Chem Sci 2020; 11:3146-3151. [PMID: 34122819 PMCID: PMC8157325 DOI: 10.1039/d0sc00467g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/18/2020] [Indexed: 01/01/2023] Open
Abstract
Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of alkyl radical intermediates out of the solvent cage to participate in an intra- or intermolecular radical cascade with a range of VCPs followed by re-entering the Fe radical cross-coupling cycle to undergo (stereo)selective C(sp2)-C(sp3) bond formation. This work provides a proof-of-concept of the use of vinyl cyclopropanes as synthetically useful 1,5-synthons in Fe-catalyzed conjunctive cross-couplings with alkyl halides and aryl/vinyl Grignard reagents. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations.
Collapse
Affiliation(s)
- Lei Liu
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Wes Lee
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Chris Acha
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Michael B Geherty
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Brandon Williams
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| |
Collapse
|
12
|
Yamamoto A, Arashiba K, Naniwa S, Kato K, Tanaka H, Yoshizawa K, Nishibayashi Y, Yoshida H. Structural characterization of molybdenum–dinitrogen complex as key species toward ammonia formation by dispersive XAFS spectroscopy. Phys Chem Chem Phys 2020; 22:12368-12372. [DOI: 10.1039/c9cp06761b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dispersive XAFS (DXAFS) was used for the structural characterization of a hardly-isolatable molybdenum–dinitrogen complex bearing a PNP-type pincer ligand.
Collapse
Affiliation(s)
- Akira Yamamoto
- Department of Interdisciplinary Environment
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Kazuya Arashiba
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Shimpei Naniwa
- Department of Interdisciplinary Environment
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Kazuo Kato
- Japan Synchrotron Radiation Research Institute
- Hyogo 679-5198
- Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences
- Daido University
- Nagoya 457-8530
- Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Hisao Yoshida
- Department of Interdisciplinary Environment
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto 606-8501
- Japan
| |
Collapse
|
13
|
Solution X-Ray Absorption Spectroscopy (XAS) for Analysis of Catalytically Active Species in Reactions with Ethylene by Homogeneous (Imido)vanadium(V) Complexes—Al Cocatalyst Systems. Catalysts 2019. [DOI: 10.3390/catal9121016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Solution V K-edge XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) analysis of vanadium(V) complexes containing both imido ligands and anionic ancillary donor ligands (L) of type, V(NR)(L)X2 (R = Ar, Ad (1-adamantyl); Ar = 2,6-Me2C6H3; X = Cl, Me, L = 2-(ArNCH2)C5H4N, OAr, WCA-NHC, and 2-(2’-benzimidazolyl)pyridine; WCA-NHC = anionic NHCs containing weak coordinating B(C6F5)3), which catalyze ethylene dimerization and/or polymerization in the presence of Al cocatalysts, has been explored. Different catalytically actives species with different oxidation states were formed depending upon the Al cocatalyst (MAO, Me2AlCl, AliBu3, etc.) and the anionic ancillary donor ligand employed. The method is useful for obtainment of the direct information of the active species (oxidation state, basic framework around the centered metal) in solution, and for better understanding in catalysis mechanism and organometallic as well as coordination chemistry.
Collapse
|
14
|
Gregori BJ, Schwarzhuber F, Pöllath S, Zweck J, Fritsch L, Schoch R, Bauer M, Jacobi von Wangelin A. Stereoselective Alkyne Hydrogenation by using a Simple Iron Catalyst. CHEMSUSCHEM 2019; 12:3864-3870. [PMID: 31265757 DOI: 10.1002/cssc.201900926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The stereoselective hydrogenation of alkynes constitutes one of the key approaches for the construction of stereodefined alkenes. The majority of conventional methods utilize noble and toxic metal catalysts. This study concerns a simple catalyst comprised of the commercial chemicals iron(II) acetylacetonate and diisobutylaluminum hydride, which enables the Z-selective semihydrogenation of alkynes under near ambient conditions (1-3 bar H2 , 30 °C, 5 mol % [Fe]). Neither an elaborate catalyst preparation nor addition of ligands is required. Mechanistic studies (kinetic poisoning, X-ray absorption spectroscopy, TEM) strongly indicate the operation of small iron clusters and particle catalysts.
Collapse
Affiliation(s)
- Bernhard J Gregori
- Dept. of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146, Hamburg, Germany
| | - Felix Schwarzhuber
- Dept. of Physics, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Simon Pöllath
- Dept. of Physics, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Josef Zweck
- Dept. of Physics, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lorena Fritsch
- Institute of Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Roland Schoch
- Institute of Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Matthias Bauer
- Institute of Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | | |
Collapse
|
15
|
Hashimoto T, Maruyama T, Yamaguchi T, Matsubara Y, Yamaguchi Y. Cross‐Coupling Reactions of Alkyl Halides with Aryl Grignard Reagents Using a Tetrachloroferrate with an Innocent Countercation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Toru Hashimoto
- Department of Advanced Materials Chemistry, Graduate School of EngineeringYokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Tsubasa Maruyama
- Department of Advanced Materials Chemistry, Graduate School of EngineeringYokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Takamichi Yamaguchi
- Department of Advanced Materials Chemistry, Graduate School of EngineeringYokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Yutaka Matsubara
- Department of Advanced Materials Chemistry, Graduate School of EngineeringYokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Yoshitaka Yamaguchi
- Department of Advanced Materials Chemistry, Graduate School of EngineeringYokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| |
Collapse
|
16
|
Heravi MM, Zadsirjan V, Hajiabbasi P, Hamidi H. Advances in Kumada–Tamao–Corriu cross-coupling reaction: an update. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-2364-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Agata R, Kawamura S, Isozaki K, Nakamura M. Iron-catalyzed Alkyl–Alkyl Negishi Coupling of Organoaluminum Reagents. CHEM LETT 2019. [DOI: 10.1246/cl.180954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ryosuke Agata
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shintaro Kawamura
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Katsuhiro Isozaki
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masaharu Nakamura
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
18
|
Agata R, Takaya H, Matsuda H, Nakatani N, Takeuchi K, Iwamoto T, Hatakeyama T, Nakamura M. Iron-Catalyzed Cross Coupling of Aryl Chlorides with Alkyl Grignard Reagents: Synthetic Scope and FeII/FeIV Mechanism Supported by X-ray Absorption Spectroscopy and Density Functional Theory Calculations. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ryosuke Agata
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hikaru Takaya
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Matsuda
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Naoki Nakatani
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Katsuhiko Takeuchi
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takahiro Iwamoto
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuji Hatakeyama
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masaharu Nakamura
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
19
|
Neidig ML, Carpenter SH, Curran DJ, DeMuth JC, Fleischauer VE, Iannuzzi TE, Neate PGN, Sears JD, Wolford NJ. Development and Evolution of Mechanistic Understanding in Iron-Catalyzed Cross-Coupling. Acc Chem Res 2019; 52:140-150. [PMID: 30592421 DOI: 10.1021/acs.accounts.8b00519] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since the pioneering work of Kochi in the 1970s, iron has attracted great interest for cross-coupling catalysis due to its low cost and toxicity as well as its potential for novel reactivity compared to analogous reactions with precious metals like palladium. Today there are numerous iron-based cross-coupling methodologies available, including challenging alkyl-alkyl and enantioselective methods. Furthermore, cross-couplings with simple ferric salts and additives like NMP and TMEDA ( N-methylpyrrolidone and tetramethylethylenediamine) continue to attract interest in pharmaceutical applications. Despite the tremendous advances in iron cross-coupling methodologies, in situ formed and reactive iron species and the underlying mechanisms of catalysis remain poorly understood in many cases, inhibiting mechanism-driven methodology development in this field. This lack of mechanism-driven development has been due, in part, to the challenges of applying traditional characterization methods such as nuclear magnetic resonance (NMR) spectroscopy to iron chemistry due to the multitude of paramagnetic species that can form in situ. The application of a broad array of inorganic spectroscopic methods (e.g., electron paramagnetic resonance, 57Fe Mössbauer, and magnetic circular dichroism) removes this barrier and has revolutionized our ability to evaluate iron speciation. In conjunction with inorganic syntheses of unstable organoiron intermediates and combined inorganic spectroscopy/gas chromatography studies to evaluate in situ iron reactivity, this approach has dramatically evolved our understanding of in situ iron speciation, reactivity, and mechanisms in iron-catalyzed cross-coupling over the past 5 years. This Account focuses on the key advances made in obtaining mechanistic insight in iron-catalyzed carbon-carbon cross-couplings using simple ferric salts, iron-bisphosphines, and iron- N-heterocyclic carbenes (NHCs). Our studies of ferric salt catalysis have resulted in the isolation of an unprecedented iron-methyl cluster, allowing us to identify a novel reaction pathway and solve a decades-old mystery in iron chemistry. NMP has also been identified as a key to accessing more stable intermediates in reactions containing nucleophiles with and without β-hydrogens. In iron-bisphosphine chemistry, we have identified several series of transmetalated iron(II)-bisphosphine complexes containing mesityl, phenyl, and alkynyl nucleophile-derived ligands, where mesityl systems were found to be unreliable analogues to phenyls. Finally, in iron-NHC cross-coupling, unique chelation effects were observed in cases where nucleophile-derived ligands contained coordinating functional groups. As with the bisphosphine case, high-spin iron(II) complexes were shown to be reactive and selective in cross-coupling. Overall, these studies have demonstrated key aspects of iron cross-coupling and the utility of detailed speciation and mechanistic studies for the rational improvement and development of iron cross-coupling methods.
Collapse
Affiliation(s)
- Michael L. Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Stephanie H. Carpenter
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Daniel J. Curran
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Joshua C. DeMuth
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Valerie E. Fleischauer
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Theresa E. Iannuzzi
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Peter G. N. Neate
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Jeffrey D. Sears
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Nikki J. Wolford
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
20
|
Iwamoto T, Okuzono C, Adak L, Jin M, Nakamura M. Iron-catalysed enantioselective Suzuki–Miyaura coupling of racemic alkyl bromides. Chem Commun (Camb) 2019; 55:1128-1131. [DOI: 10.1039/c8cc09523j] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first iron-catalyzed enantioselective Suzuki–Miyaura coupling reaction has been established by using electron-deficient P-chiral bisphosphine ligand (R,R)-QuinoxP*.
Collapse
Affiliation(s)
- Takahiro Iwamoto
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
- Department of Energy and Hydrocarbon Chemistry
| | - Chiemi Okuzono
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
- Department of Energy and Hydrocarbon Chemistry
| | - Laksmikanta Adak
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Masayoshi Jin
- Process Technology Research Laboratories
- Pharmaceutical Technology Division
- Daiichi Sankyo Co., Ltd
- Hiratsuka
- Japan
| | - Masaharu Nakamura
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
- Department of Energy and Hydrocarbon Chemistry
| |
Collapse
|
21
|
The highly surprising behaviour of diphosphine ligands in iron-catalysed Negishi cross-coupling. Nat Catal 2018. [DOI: 10.1038/s41929-018-0197-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Piontek A, Bisz E, Szostak M. Iron-Catalyzed Cross-Couplings in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability. Angew Chem Int Ed Engl 2018; 57:11116-11128. [PMID: 29460380 DOI: 10.1002/anie.201800364] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 01/29/2023]
Abstract
The scarcity of precious metals has led to the development of sustainable strategies for metal-catalyzed cross-coupling reactions. The establishment of new catalytic methods using iron is attractive owing to the low cost, abundance, ready availability, and very low toxicity of iron. In the last few years, sustainable methods for iron-catalyzed cross-couplings have entered the critical area of pharmaceutical research. Most notably, iron is one of the very few metals that have been successfully field-tested as highly effective base-metal catalysts in practical, kilogram-scale industrial cross-couplings. In this Minireview, we critically discuss the strategic benefits of using iron catalysts as green and sustainable alternatives to precious metals in cross-coupling applications for the synthesis of pharmaceuticals. The Minireview provides an essential introduction to the fundamental aspects of practical iron catalysis, highlights areas for improvement, and identifies new fields to be explored.
Collapse
Affiliation(s)
- Aleksandra Piontek
- Department of Chemistry, Opole University, 48 Oleska Street, 45-052, Opole, Poland
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, 45-052, Opole, Poland
| | - Michal Szostak
- Department of Chemistry, Opole University, 48 Oleska Street, 45-052, Opole, Poland.,Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
23
|
Piontek A, Bisz E, Szostak M. Eisenkatalysierte Kreuzkupplungen in der Synthese von Pharmazeutika: Streben nach Nachhaltigkeit. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800364] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aleksandra Piontek
- Department of Chemistry Opole University 48 Oleska Street 45-052 Opole Polen
| | - Elwira Bisz
- Department of Chemistry Opole University 48 Oleska Street 45-052 Opole Polen
| | - Michal Szostak
- Department of Chemistry Opole University 48 Oleska Street 45-052 Opole Polen
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
24
|
Hirano M, Sano K, Kanazawa Y, Komine N, Maeno Z, Mitsudome T, Takaya H. Mechanistic Insights on Pd/Cu-Catalyzed Dehydrogenative Coupling of Dimethyl Phthalate. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masafumi Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Kosuke Sano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yuki Kanazawa
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Nobuyuki Komine
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Zen Maeno
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hikaru Takaya
- Institute of Chemical Research, Kyoto University, Gokashou, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
25
|
Yi H, Tang Z, Bian C, Chen H, Qi X, Yue X, Lan Y, Lee JF, Lei A. Oxidation-induced C-H amination leads to a new avenue to build C-N bonds. Chem Commun (Camb) 2018; 53:8984-8987. [PMID: 28744532 DOI: 10.1039/c7cc04955b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, we develop an oxidation-induced C-H functionalization strategy, which not only leads to a new avenue to build C-N bonds, but also leads to different site-selectivity compared with "classic directing-groups". The high selectivity of our new catalytic system originates from the heterogeneous electron-density distribution of the radical cation species which are induced by single electron transfer between the aromatics and oxidant-Cu(ii) species.
Collapse
Affiliation(s)
- Hong Yi
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sharma AK, Sameera WMC, Jin M, Adak L, Okuzono C, Iwamoto T, Kato M, Nakamura M, Morokuma K. DFT and AFIR Study on the Mechanism and the Origin of Enantioselectivity in Iron-Catalyzed Cross-Coupling Reactions. J Am Chem Soc 2017; 139:16117-16125. [DOI: 10.1021/jacs.7b05917] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akhilesh K. Sharma
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - W. M. C. Sameera
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido University, Kita-Ku, Sapporo 060-0810, Japan
| | - Masayoshi Jin
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Process
Technology Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| | - Laksmikanta Adak
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Chiemi Okuzono
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takahiro Iwamoto
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Masako Kato
- Department
of Chemistry, Faculty of Science, Hokkaido University, Kita-Ku, Sapporo 060-0810, Japan
| | - Masaharu Nakamura
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Keiji Morokuma
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
27
|
Lee W, Zhou J, Gutierrez O. Mechanism of Nakamura’s Bisphosphine-Iron-Catalyzed Asymmetric C(sp2)–C(sp3) Cross-Coupling Reaction: The Role of Spin in Controlling Arylation Pathways. J Am Chem Soc 2017; 139:16126-16133. [DOI: 10.1021/jacs.7b06377] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wes Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jun Zhou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
28
|
Carpenter SH, Neidig ML. A Physical-Inorganic Approach for the Elucidation of Active Iron Species and Mechanism in Iron-Catalyzed Cross-Coupling. Isr J Chem 2017; 57:1106-1116. [PMID: 29622838 DOI: 10.1002/ijch.201700036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Detailed studies of iron speciation and mechanism in iron-catalyzed cross-coupling reactions are critical for providing the necessary fundamental insight to drive new reaction development. However, such insight is challenging to obtain due to the prevalence of mixtures of unstable, paramagnetic organoiron species that can form in this chemistry. A physical-inorganic research approach combining freeze-trapped inorganic spectroscopic studies, organometallic synthesis and GC/kinetic studies provides a powerful method for studying such systems. Mössbauer, EPR and MCD spectroscopy enable the direct investigation of in situ formed iron species and, combined with GC analysis, the direct correlation of reactions of specific iron species to the generation of organic products. This review focuses on a description of the key methods involved in this physical-inorganic approach, as well as examples of its application to investigations of iron-SciOPP catalyzed cross-coupling catalysis.
Collapse
Affiliation(s)
- Stephanie H Carpenter
- Department of Chemistry, University of Rochester, Rochester, New York 14627 (USA), Tel: 585-276-6006
| | - Michael L Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627 (USA), Tel: 585-276-6006
| |
Collapse
|
29
|
Adak L, Kawamura S, Toma G, Takenaka T, Isozaki K, Takaya H, Orita A, Li HC, Shing TKM, Nakamura M. Synthesis of Aryl C-Glycosides via Iron-Catalyzed Cross Coupling of Halosugars: Stereoselective Anomeric Arylation of Glycosyl Radicals. J Am Chem Soc 2017; 139:10693-10701. [DOI: 10.1021/jacs.7b03867] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Laksmikanta Adak
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Shintaro Kawamura
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Gabriel Toma
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Toshio Takenaka
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Katsuhiro Isozaki
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Hikaru Takaya
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Akihiro Orita
- Department
of Applied Chemistry, Okayama University of Science, Ridai-cho, Okayama 700-0005, Japan
| | - Ho C. Li
- Department
of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tony K. M. Shing
- Department
of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Masaharu Nakamura
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|
30
|
Nagashima H. Catalyst Design of Iron Complexes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hideo Nagashima
- Graduate School of Engineering Sciences, Kyushu University, Kasugakoen 6-1 Kasuga, Fukuoka 816-8580
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasugakoen 6-1 Kasuga, Fukuoka 816-8580
- CREST, Japan Science and Technology Agency, Gobancho 7 Chiyoda-ku, Tokyo 102-0076
| |
Collapse
|
31
|
Sunada Y, Nagashima H. Design and Development of Iron-based Non-precious Metal Catalyst Systems. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.1253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yusuke Sunada
- Institute of Industrial Science, The University of Tokyo
| | - Hideo Nagashima
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
32
|
Fürstner A. Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion. ACS CENTRAL SCIENCE 2016; 2:778-789. [PMID: 27981231 PMCID: PMC5140022 DOI: 10.1021/acscentsci.6b00272] [Citation(s) in RCA: 470] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Indexed: 05/03/2023]
Abstract
The current status of homogeneous iron catalysis in organic chemistry is contemplated, as are the reasons why this particular research area only recently starts challenging the enduring dominance of the late and mostly noble metals over the field. Centered in the middle of the d-block and able to support formal oxidation states ranging from -II to +VI, iron catalysts hold the promise of being able to encompass organic synthesis at large. They are expected to serve reductive as well as oxidative regimes, can emulate "noble tasks", but are also able to adopt "early" transition metal character. Since a comprehensive coverage of this multidimensional agenda is beyond the scope of an Outlook anyway, emphasis is laid in this article on the analysis of the factors that perhaps allow one to control the multifarious chemical nature of this earth-abundant metal. The challenges are significant, not least at the analytical frontier; their mastery mandates a mindset that differs from the routines that most organic chemists interested in (noble metal) catalysis tend to cultivate. This aspect notwithstanding, it is safe to predict that homogeneous iron catalysis bears the chance to enable a responsible paradigm for chemical synthesis and a sustained catalyst economy, while potentially providing substantial economic advantages. This promise will spur the systematic and in-depth investigations that it takes to upgrade this research area to strategy-level status in organic chemistry and beyond.
Collapse
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
33
|
Iwasaki T, Akimoto R, Kuniyasu H, Kambe N. Fe-Catalyzed Cross-Coupling Reaction of Vinylic Ethers with Aryl Grignard Reagents. Chem Asian J 2016; 11:2834-2837. [DOI: 10.1002/asia.201600972] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Takanori Iwasaki
- Department of Applied Chemistry Graduate School of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Ryo Akimoto
- Department of Applied Chemistry Graduate School of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Hitoshi Kuniyasu
- Department of Applied Chemistry Graduate School of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Nobuaki Kambe
- Department of Applied Chemistry Graduate School of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| |
Collapse
|
34
|
Mako TL, Byers JA. Recent advances in iron-catalysed cross coupling reactions and their mechanistic underpinning. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00295h] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in iron-catalysed cross coupling from 2010–2015 are critically reviewed.
Collapse
Affiliation(s)
- T. L. Mako
- Department of Chemistry
- Boston College
- Chestnut Hill
- USA
| | - J. A. Byers
- Department of Chemistry
- Boston College
- Chestnut Hill
- USA
| |
Collapse
|
35
|
Daifuku SL, Kneebone JL, Snyder BER, Neidig ML. Iron(II) Active Species in Iron-Bisphosphine Catalyzed Kumada and Suzuki-Miyaura Cross-Couplings of Phenyl Nucleophiles and Secondary Alkyl Halides. J Am Chem Soc 2015; 137:11432-44. [PMID: 26266698 PMCID: PMC4887939 DOI: 10.1021/jacs.5b06648] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
While previous studies have identified FeMes2(SciOPP) as the active catalyst species in iron-SciOPP catalyzed Kumada cross-coupling of mesitylmagnesium bromide and primary alkyl halides, the active catalyst species in cross-couplings with phenyl nucleophiles, where low valent iron species might be prevalent due to accessible reductive elimination pathways, remains undefined. In the present study, in situ Mössbauer and magnetic circular dichroism spectroscopic studies combined with inorganic syntheses and reaction studies are employed to evaluate the in situ formed iron species and identify the active catalytic species in iron-SciOPP catalyzed Suzuki-Miyaura and Kumada cross-couplings of phenyl nucleophiles and secondary alkyl halides. While reductive elimination to form Fe(η(6)-biphenyl)(SciOPP) occurs upon reaction of FeCl2(SciOPP) with phenyl nucleophiles, this iron(0) species is not found to be kinetically competent for catalysis. Importantly, mono- and bis-phenylated iron(II)-SciOPP species that form prior to reductive elimination are identified, where both species are found to be reactive toward electrophile at catalytically relevant rates. The higher selectivity toward the formation of cross-coupled product observed for the monophenylated species combined with the undertransmetalated nature of the in situ iron species in both Kumada and Suzuki-Miyaura reactions indicates that Fe(Ph)X(SciOPP) (X = Br, Cl) is the predominant reactive species in cross-coupling. Overall, these studies demonstrate that low-valent iron is not required for the generation of highly reactive species for effective aryl-alkyl cross-couplings.
Collapse
Affiliation(s)
- Stephanie L Daifuku
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Jared L Kneebone
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Benjamin E R Snyder
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Michael L Neidig
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| |
Collapse
|
36
|
Jin M, Adak L, Nakamura M. Iron-Catalyzed Enantioselective Cross-Coupling Reactions of α-Chloroesters with Aryl Grignard Reagents. J Am Chem Soc 2015; 137:7128-34. [DOI: 10.1021/jacs.5b02277] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masayoshi Jin
- Process Technology
Research Laboratories, Pharmaceutical Technology Division, Daiichi
Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Laksmikanta Adak
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Masaharu Nakamura
- International
Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
37
|
Kawamura S, Agata R, Nakamura M. Regio- and stereoselective multisubstituted olefin synthesis via hydro/carboalumination of alkynes and subsequent iron-catalysed cross-coupling reaction with alkyl halides. Org Chem Front 2015. [DOI: 10.1039/c5qo00147a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic route towards multisubstituted olefins was developed based on the direct cross coupling of alkenyl aluminium reagents, prepared by hydro- and carboalumination, with alkyl halides in the presence of an iron catalyst.
Collapse
Affiliation(s)
- Shintaro Kawamura
- International Research Center for Elements Science (IRCELS)
- Institute for Chemical Research (ICR)
- Kyoto University
- Kyoto
- Japan
| | - Ryosuke Agata
- International Research Center for Elements Science (IRCELS)
- Institute for Chemical Research (ICR)
- Kyoto University
- Kyoto
- Japan
| | - Masaharu Nakamura
- International Research Center for Elements Science (IRCELS)
- Institute for Chemical Research (ICR)
- Kyoto University
- Kyoto
- Japan
| |
Collapse
|