1
|
Alex J, Mathew TV. Surface Modification of Bi 2O 3 Nanoparticles with Biotinylated β-Cyclodextrin as a Biocompatible Therapeutic Agent for Anticancer and Antimicrobial Applications. Molecules 2023; 28:molecules28083604. [PMID: 37110839 PMCID: PMC10142954 DOI: 10.3390/molecules28083604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Bismuth oxide nanoparticles with appropriate surface chemistry exhibit many interesting properties that can be utilized in a variety of applications. This paper describes a new route to the surface modification of bismuth oxide nanoparticles (Bi2O3 NPs) using functionalized beta-Cyclodextrin (β-CD) as a biocompatible system. The synthesis of Bi2O3 NP was done using PVA (poly vinyl alcohol) as the reductant and the Steglich esterification procedure for the functionalization of β-CD with biotin. Ultimately, the Bi2O3 NPs are modified using this functionalized β-CD system. The particle size of the synthesized Bi2O3 NPs is found to be in the range of 12-16 nm. The modified biocompatible systems were characterized using different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Differential Scanning Calorimetric analysis (DSC). Additionally, the antibacterial and anticancerous effects of the surface-modified Bi2O3 NP system were also investigated.
Collapse
Affiliation(s)
- Jogy Alex
- Department of Chemistry, St. Thomas College Palai, Arunapuram P.O., Kottayam 686574, Kerala, India
| | - Thomas V Mathew
- Department of Chemistry, St. Thomas College Palai, Arunapuram P.O., Kottayam 686574, Kerala, India
| |
Collapse
|
2
|
Abstract
The ability to detect and characterize multiple secondary structures or polymorphs within peptide and protein aggregates is crucial to treatment and prevention of amyloidogenic diseases, production of novel biomaterials, and many other applications. Here we report a label-free method to distinguish multiple β-sheet configurations within a single peptide aggregate using two-dimensional infrared spectroscopy. By calculating the transition dipole strength (TDS) spectrum from the ratio of linear and two-dimensional signals, we can extract maximum TDS values which provide higher sensitivity to vibrational coupling, and thus specifics of protein structure, than vibrational frequency alone. TDS spectra of AcKFE8 aggregates reveal two distinct β-sheet structures within fibers that appear homogeneous by other techniques. Furthermore, TDS spectra taken during early stages of aggregation show additional peaks that may indicate the presence of more weakly coupled β-sheet structures. These results demonstrate a unique and powerful spectroscopic method capable of distinguishing multiple oligomeric and polymorphic motifs throughout the aggregation using only native vibrational modes.
Collapse
Affiliation(s)
- William B Weeks
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Lauren E Buchanan
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
3
|
Mitomo H, Ijiro K. Controlled Nanostructures Fabricated by the Self-Assembly of Gold Nanoparticles via Simple Surface Modifications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hideyuki Mitomo
- Research Institute for Electronic Science (RIES), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science (RIES), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
4
|
Long K, Liu Y, Li Y, Wang W. Self-assembly of trigonal building blocks into nanostructures: molecular design and biomedical applications. J Mater Chem B 2021; 8:6739-6752. [PMID: 32686806 DOI: 10.1039/d0tb01128b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trigonal molecules have a special triskelion structure similar to clathrin protein, providing great inspiration for constructing artificial nanoassemblies. To date, various synthetic trigonal conjugates have been designed for supramolecular self-assembly, which have demonstrated versatile and controllable self-assembly ability in materials science. Here we will review the design of trigonal (sometimes called three-legged, tripodal, C3-symmetric, or triskelion) building blocks that can self-assemble into various nanostructures and discuss the biomedical applications of the self-assembled nanomaterials.
Collapse
Affiliation(s)
- Kaiqi Long
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | | | | | | |
Collapse
|
5
|
Liang X, Li L, Tang J, Komiyama M, Ariga K. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200012] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Jiaxuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
6
|
Abstract
Capsid of tomato bushy stunt virus consists of an outer coat protein shell decorated on an internal skeleton comprising a β-annulus motif. We mimicked this capsid structure with our artificial viral capsid dressed up with protein. We synthesized the β-annulus peptide bearing a Cys at the C-terminal side and linked it with Cys34 of the human serum albumin (HSA) via a bismaleimide linker. The β-annulus peptide-HSA conjugate self-assembled into spherical structures of a 50-70 nm size range in the Tris-HCl buffer, with the ζ-potential of assemblies of such conjugate revealing that HSA proteins were displayed on the outer surface of the artificial viral capsid. Interestingly, the critical aggregation concentration (CAC) of the conjugate in the Tris-HCl buffer at 25 °C was approximately 0.01 μM, or 1/2500 lower than that of the unmodified β-annulus peptides, suggesting that the artificial viral capsids were stabilized via HSA modification. The present strategy of constructing protein nanocapsule by self-assembly of a β-annulus peptide-protein conjugate is simpler than that of previously reported protein nanocapsules.
Collapse
|
7
|
Hata Y, Sawada T, Marubayashi H, Nojima S, Serizawa T. Temperature-Directed Assembly of Crystalline Cellulose Oligomers into Kinetically Trapped Structures during Biocatalytic Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7026-7034. [PMID: 31045372 DOI: 10.1021/acs.langmuir.9b00850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Crystalline polysaccharides, such as cellulose and chitin, can form superior assemblies in terms of physicochemical stability and mechanical properties. However, their use as molecular building blocks for self-assembled materials is rare, possibly because each crystalline polysaccharide has its own unique monomer unit, preventing molecular design for controlling the self-assembly. Herein, we demonstrate the temperature-directed assembly of crystalline cellulose oligomers into kinetically trapped structures, namely, precipitated nanosheets, nanoribbon network hydrogels, and dispersed nanosheets (in descending order of temperature). It was found that enzymatically synthesized cellulose oligomers self-assembled in situ into those structures depending on the synthetic temperatures. Mechanistic studies suggested that the formation of the nanoribbon networks and the dispersed nanosheets at lower temperatures were driven by synergy between the decreased hydrophobic effect and the simultaneously induced self-crowding effect. Furthermore, nanoribbon network formation was exploited for the construction of cellulose oligomer-based hybrid gels with colloidal particles. Our findings promote the development of robust self-assembled materials composed of crystalline polysaccharides with highly ordered nano-to-macroscale structures.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) , Japan Science and Technology Agency (JST) , 4-1-8 Honcho , Kawaguchi-shi , Saitama 332-0012 , Japan
| | - Hironori Marubayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Shuichi Nojima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| |
Collapse
|
8
|
Fei J, Dai L, Gao F, Zhao J, Li J. Assembled Vitamin B2 Nanocrystals with Optical Waveguiding and Photosensitizing Properties for Potential Biomedical Application. Angew Chem Int Ed Engl 2019; 58:7254-7258. [DOI: 10.1002/anie.201900124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Luru Dai
- National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
| | - Fuping Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences Beijing 100049 China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Fei J, Dai L, Gao F, Zhao J, Li J. Assembled Vitamin B2 Nanocrystals with Optical Waveguiding and Photosensitizing Properties for Potential Biomedical Application. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Luru Dai
- National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
| | - Fuping Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences Beijing 100049 China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
10
|
Liu R, Hudalla GA. Using Self-Assembling Peptides to Integrate Biomolecules into Functional Supramolecular Biomaterials. Molecules 2019; 24:E1450. [PMID: 31013712 PMCID: PMC6514692 DOI: 10.3390/molecules24081450] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
Throughout nature, self-assembly gives rise to functional supramolecular biomaterials that can perform complex tasks with extraordinary efficiency and specificity. Inspired by these examples, self-assembly is increasingly used to fabricate synthetic supramolecular biomaterials for diverse applications in biomedicine and biotechnology. Peptides are particularly attractive as building blocks for these materials because they are based on naturally derived amino acids that are biocompatible and biodegradable; they can be synthesized using scalable and cost-effective methods, and their sequence can be tailored to encode formation of diverse architectures. To endow synthetic supramolecular biomaterials with functional capabilities, it is now commonplace to conjugate self-assembling building blocks to molecules having a desired functional property, such as selective recognition of a cell surface receptor or soluble protein, antigenicity, or enzymatic activity. This review surveys recent advances in using self-assembling peptides as handles to incorporate biologically active molecules into supramolecular biomaterials. Particular emphasis is placed on examples of functional nanofibers, nanovesicles, and other nano-scale structures that are fabricated by linking self-assembling peptides to proteins and carbohydrates. Collectively, this review highlights the enormous potential of these approaches to create supramolecular biomaterials with sophisticated functional capabilities that can be finely tuned to meet the needs of downstream applications.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
11
|
Chakrabarti S, Chattopadhyay P, Islam J, Ray S, Raju PS, Mazumder B. Aspects of Nanomaterials in Wound Healing. Curr Drug Deliv 2019; 16:26-41. [PMID: 30227817 DOI: 10.2174/1567201815666180918110134] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 01/23/2023]
Abstract
Wound infections impose a remarkable clinical challenge that has a considerable influence on morbidity and mortality of patients, influencing the cost of treatment. The unprecedented advancements in molecular biology have come up with new molecular and cellular targets that can be successfully applied to develop smarter therapeutics against diversified categories of wounds such as acute and chronic wounds. However, nanotechnology-based diagnostics and treatments have achieved a new horizon in the arena of wound care due to its ability to deliver a plethora of therapeutics into the target site, and to target the complexity of the normal wound-healing process, cell type specificity, and plethora of regulating molecules as well as pathophysiology of chronic wounds. The emerging concepts of nanobiomaterials such as nanoparticles, nanoemulsion, nanofibrous scaffolds, graphene-based nanocomposites, etc., and nano-sized biomaterials like peptides/proteins, DNA/RNA, oligosaccharides have a vast application in the arena of wound care. Multi-functional, unique nano-wound care formulations have acquired major attention by facilitating the wound healing process. In this review, emphasis has been given to different types of nanomaterials used in external wound healing (chronic cutaneous wound healing); the concepts of basic mechanisms of wound healing process and the promising strategies that can help in the field of wound management.
Collapse
Affiliation(s)
- Srijita Chakrabarti
- Defence Research Laboratory, Tezpur - 784 001, Assam, India.,Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | | | - Johirul Islam
- Defence Research Laboratory, Tezpur - 784 001, Assam, India
| | - Subhabrata Ray
- Dr. B. C. Roy College of Pharmacy & AHS, Durgapur - 713 206, West Bengal, India
| | | | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| |
Collapse
|
12
|
Xue S, Xing P, Zhang J, Zeng Y, Zhao Y. Diverse Role of Solvents in Controlling Supramolecular Chirality. Chemistry 2019; 25:7426-7437. [PMID: 30791175 DOI: 10.1002/chem.201900714] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/20/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Shixin Xue
- College of ChemistryTianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Pengyao Xing
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Jingbo Zhang
- College of ChemistryTianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
| | - Yongfei Zeng
- College of ChemistryTianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| |
Collapse
|
13
|
Ariga K, Mori T, Li J. Langmuir Nanoarchitectonics from Basic to Frontier. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3585-3599. [PMID: 29806980 DOI: 10.1021/acs.langmuir.8b01434] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Methodology to combine nanotechnology and these organization processes has been proposed as a novel concept of nanoarchitectonics, which can fabricate functional materials with nanolevel units. As an instant nanoarchitectonics approach, confining systems within a two-dimensional plane to drastically reduce translational motion freedom can be regarded as one of the rational approaches. Supramolecular chemistry and nanofabrication and their related functions at the air-water interface with the concept of nanoarchitectonics would lead to the creation of a novel methodology of Langmuir nanoarchitectonics. In this feature article, we briefly summarize research efforts related to Langmuir nanoarchitectonics including the basics for anomalies in molecular interactions such as highly enhanced molecular recognition capabilities. It is also extended to frontiers including the fabrication of supramolecular receptors and two-dimensional patterns with subnanometer-scale structural regulation, manual control of molecular machines and receptors by hand-motion-like macroscopic actions, and the regulation of cell fates at nanoarchitected arrays of nanocarbon assemblies and at direct liquid interfaces.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba 305-0044 , Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa , Chiba 277-8561 , Japan
| | - Taizo Mori
- WPI-MANA , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing , 100190 , China
- University of the Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
14
|
Fukunaga K, Tsutsumi H, Mihara H. Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180293] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kazuto Fukunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
15
|
Manivannan S, Kang D, Kim K. M13 Viruses as a Dimension‐directing Agent for Fabrication of Core‐Shell Gold‐Silicate Nanosheets. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shanmugam Manivannan
- Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of ChemistryIncheon National University Incheon 22012 Republic of Korea
| | - Dong‐Ku Kang
- Nanobio Laboratory, Department of ChemistryIncheon National University Incheon 22012 South Republic of Korea
| | - Kyuwon Kim
- Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of ChemistryIncheon National University Incheon 22012 Republic of Korea
| |
Collapse
|
16
|
Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha LK, Hill JP. Self-assembly as a key player for materials nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:51-95. [PMID: 30787960 PMCID: PMC6374972 DOI: 10.1080/14686996.2018.1553108] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 05/07/2023]
Abstract
The development of science and technology of advanced materials using nanoscale units can be conducted by a novel concept involving combination of nanotechnology methodology with various research disciplines, especially supramolecular chemistry. The novel concept is called 'nanoarchitectonics' where self-assembly processes are crucial in many cases involving a wide range of component materials. This review of self-assembly processes re-examines recent progress in materials nanoarchitectonics. It is composed of three main sections: (1) the first short section describes typical examples of self-assembly research to outline the matters discussed in this review; (2) the second section summarizes self-assemblies at interfaces from general viewpoints; and (3) the final section is focused on self-assembly processes at interfaces. The examples presented demonstrate the strikingly wide range of possibilities and future potential of self-assembly processes and their important contribution to materials nanoarchitectonics. The research examples described in this review cover variously structured objects including molecular machines, molecular receptors, molecular pliers, molecular rotors, nanoparticles, nanosheets, nanotubes, nanowires, nanoflakes, nanocubes, nanodisks, nanoring, block copolymers, hyperbranched polymers, supramolecular polymers, supramolecular gels, liquid crystals, Langmuir monolayers, Langmuir-Blodgett films, self-assembled monolayers, thin films, layer-by-layer structures, breath figure motif structures, two-dimensional molecular patterns, fullerene crystals, metal-organic frameworks, coordination polymers, coordination capsules, porous carbon spheres, mesoporous materials, polynuclear catalysts, DNA origamis, transmembrane channels, peptide conjugates, and vesicles, as well as functional materials for sensing, surface-enhanced Raman spectroscopy, photovoltaics, charge transport, excitation energy transfer, light-harvesting, photocatalysts, field effect transistors, logic gates, organic semiconductors, thin-film-based devices, drug delivery, cell culture, supramolecular differentiation, molecular recognition, molecular tuning, and hand-operating (hand-operated) nanotechnology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | | | - Taizo Mori
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Jun Takeya
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Lok Kumar Shrestha
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Jonathan P. Hill
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
| |
Collapse
|
17
|
Self-Assembled Fullerene Crystals as Excellent Aromatic Vapor Sensors. SENSORS 2019; 19:s19020267. [PMID: 30641916 PMCID: PMC6359261 DOI: 10.3390/s19020267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/29/2023]
Abstract
Here we report the aromatic vapor sensing performance of bitter melon shaped nanoporous fullerene C60 crystals that are self-assembled at a liquid-liquid interface between isopropyl alcohol and C60 solution in dodecylbenzene at 25 °C. Average length and center diameter of the crystals were ca. 10 μm and ~2 μm, respectively. Powder X-ray diffraction pattern (pXRD) confirmed a face-centered cubic (fcc) structure with cell dimension ca. a = 1.4272 nm, and V = 2.907 nm3, which is similar to that of the pristine fullerene C60. Transmission electron microscopy (TEM) confirmed the presence of a nanoporous structure. Quartz crystal microbalance (QCM) results showed that the bitter melon shaped nanoporous C60 performs as an excellent sensing system, particularly for aromatic vapors, due to their easy diffusion through the porous architecture and strong π–π interactions with the sp2-carbon.
Collapse
|
18
|
Stevanović M. Biomedical Applications of Nanostructured Polymeric Materials. NANOSTRUCTURED POLYMER COMPOSITES FOR BIOMEDICAL APPLICATIONS 2019:1-19. [DOI: 10.1016/b978-0-12-816771-7.00001-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Ariga K, Matsumoto M, Mori T, Shrestha LK. Materials nanoarchitectonics at two-dimensional liquid interfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1559-1587. [PMID: 31467820 PMCID: PMC6693411 DOI: 10.3762/bjnano.10.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/16/2019] [Indexed: 05/06/2023]
Abstract
Much attention has been paid to the synthesis of low-dimensional materials from small units such as functional molecules. Bottom-up approaches to create new low-dimensional materials with various functional units can be realized with the emerging concept of nanoarchitectonics. In this review article, we overview recent research progresses on materials nanoarchitectonics at two-dimensional liquid interfaces, which are dimensionally restricted media with some freedoms of molecular motion. Specific characteristics of molecular interactions and functions at liquid interfaces are briefly explained in the first parts. The following sections overview several topics on materials nanoarchitectonics at liquid interfaces, such as the preparation of two-dimensional metal-organic frameworks and covalent organic frameworks, and the fabrication of low-dimensional and specifically structured nanocarbons and their assemblies at liquid-liquid interfaces. Finally, interfacial nanoarchitectonics of biomaterials including the regulation of orientation and differentiation of living cells are explained. In the recent examples described in this review, various materials such as molecular machines, molecular receptors, block-copolymer, DNA origami, nanocarbon, phages, and stem cells were assembled at liquid interfaces by using various useful techniques. This review overviews techniques such as conventional Langmuir-Blodgett method, vortex Langmuir-Blodgett method, liquid-liquid interfacial precipitation, instructed assembly, and layer-by-layer assembly to give low-dimensional materials including nanowires, nanowhiskers, nanosheets, cubic objects, molecular patterns, supramolecular polymers, metal-organic frameworks and covalent organic frameworks. The nanoarchitecture materials can be used for various applications such as molecular recognition, sensors, photodetectors, supercapacitors, supramolecular differentiation, enzyme reactors, cell differentiation control, and hemodialysis.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Michio Matsumoto
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
20
|
Asanuma H, Murayama K, Kamiya Y, Kashida H. The DNA Duplex as an Aqueous One-Dimensional Soft Crystal Scaffold for Photochemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180278] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroyuki Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Keiji Murayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yukiko Kamiya
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hiromu Kashida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
21
|
Gupta S, Singh R, Kumar V, Shukla P, Joshi KB. Ornamentation of Triskelion Peptide Nanotori to Produce Gold Nanoparticle (AuNP)-Embedded Peptide Nanobangles. Chem Asian J 2018; 13:3285-3295. [DOI: 10.1002/asia.201801270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Shradhey Gupta
- Department of Chemistry, School of Chemical Science and Technology; Dr. Harisingh Gour Central University; Sagar, MP 470003 India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology; Dr. Harisingh Gour Central University; Sagar, MP 470003 India
| | - Vikas Kumar
- Current address: BIOPEP group; Stellenbosch University; Stellenbosch 7600 South Africa
| | - Prashant Shukla
- Department of Physics; Dr. Harisingh Gour Central University; Sagar, MP 470003 India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology; Dr. Harisingh Gour Central University; Sagar, MP 470003 India
| |
Collapse
|
22
|
|
23
|
Hata Y, Sawada T, Serizawa T. Macromolecular crowding for materials-directed controlled self-assembly. J Mater Chem B 2018; 6:6344-6359. [PMID: 32254643 DOI: 10.1039/c8tb02201a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macromolecular crowding refers to intracellular environments where various macromolecules, including proteins and nucleic acids, are present at high total concentrations. Its influence on biological processes has been investigated using a highly concentrated in vitro solution of water-soluble polymers as a model. Studies have revealed significant effects of macromolecular crowding on the thermodynamic equilibria and dynamics of biomolecular self-assembly in vivo. Recently, macromolecular crowding has attracted materials scientists, especially those in bio-related areas, as a tool to control molecular/colloidal self-assembly. Macromolecular crowding has been exploited to control the structure of supramolecular materials, assemble nanomaterials, and improve the performance of polymeric materials. Furthermore, nanostructured materials have been shown to be an interesting alternative to water-soluble polymers for creating crowded environments for controlled self-assembly. In this review article, we summarize recent progress in research on macromolecular crowding for controlled self-assembly in bio-related materials chemistry.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | | | | |
Collapse
|
24
|
Ariga K, Jackman JA, Cho NJ, Hsu SH, Shrestha LK, Mori T, Takeya J. Nanoarchitectonic-Based Material Platforms for Environmental and Bioprocessing Applications. CHEM REC 2018; 19:1891-1912. [PMID: 30230688 DOI: 10.1002/tcr.201800103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
The challenges of pollution, environmental science, and energy consumption have become global issues of broad societal importance. In order to address these challenges, novel functional systems and advanced materials are needed to achieve high efficiency, low emission, and environmentally friendly performance. A promising approach involves nanostructure-level controls of functional material design through a novel concept, nanoarchitectonics. In this account article, we summarize nanoarchitectonic approaches to create nanoscale platform structures that are potentially useful for environmentally green and bioprocessing applications. The introduced platforms are roughly classified into (i) membrane platforms and (ii) nanostructured platforms. The examples are discussed together with the relevant chemical processes, environmental sensing, bio-related interaction analyses, materials for environmental remediation, non-precious metal catalysts, and facile separation for biomedical uses.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,Department of Medicine, Stanford University Stanford, California, 94305, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, R.O.C
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jun Takeya
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
25
|
Jackman JA, Cho NJ, Nishikawa M, Yoshikawa G, Mori T, Shrestha LK, Ariga K. Materials Nanoarchitectonics for Mechanical Tools in Chemical and Biological Sensing. Chem Asian J 2018; 13:3366-3377. [PMID: 29959818 DOI: 10.1002/asia.201800935] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 12/28/2022]
Abstract
In this Focus Review, nanoarchitectonic approaches for mechanical-action-based chemical and biological sensors are briefly discussed. In particular, recent examples of piezoelectric devices, such as quartz crystal microbalances (QCM and QCM-D) and a membrane-type surface stress sensor (MSS), are introduced. Sensors need well-designed nanostructured sensing materials for the sensitive and selective detection of specific targets. Nanoarchitectonic approaches for sensing materials, such as mesoporous materials, 2D materials, fullerene assemblies, supported lipid bilayers, and layer-by-layer assemblies, are highlighted. Based on these sensing approaches, examples of bioanalytical applications are presented for toxic gas detection, cell membrane interactions, label-free biomolecular assays, anticancer drug evaluation, complement activation-related multiprotein membrane attack complexes, and daily biodiagnosis, which are partially supported by data analysis, such as machine learning and principal component analysis.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
- Department of Medicine, Stanford University, Stanford, California, 94305, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Michihiro Nishikawa
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Genki Yoshikawa
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
26
|
Komiyama M, Mori T, Ariga K. Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180084] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Makoto Komiyama
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577, Japan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
27
|
Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1154. [PMID: 29986436 PMCID: PMC6073273 DOI: 10.3390/ma11071154] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Due to the high surface: volume ratio and the extraordinary properties arising from the nanoscale (optical, electric, magnetic, etc.), nanoparticles (NPs) are excellent candidates for multiple applications. In this context, nanoscience is opening a wide range of modern technologies in biological and biomedical fields, among others. However, one of the main drawbacks that still delays its fast evolution and effectiveness is related to the behavior of nanomaterials in the presence of biological fluids. Unfortunately, biological fluids are characterized by high ionic strengths which usually induce NP aggregation. Besides this problem, the high content in biomacromolecules—such as lipids, sugars, nucleic acids and, especially, proteins—also affects NP stability and its viability for some applications due to, for example, the formation of the protein corona around the NPs. Here, we will review the most common strategies to achieve stable NPs dispersions in high ionic strength fluids and, also, antifouling strategies to avoid the protein adsorption.
Collapse
Affiliation(s)
- Luca Guerrini
- Departamento de Quimica Fisica e Inorganica and EMaS, Universitat Rovira i Virgili Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain.
| | - Ramon A Alvarez-Puebla
- Departamento de Quimica Fisica e Inorganica and EMaS, Universitat Rovira i Virgili Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain.
- Institución Catalana de Investigación y Estudios Avanzados, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Nicolas Pazos-Perez
- Departamento de Quimica Fisica e Inorganica and EMaS, Universitat Rovira i Virgili Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain.
| |
Collapse
|
28
|
Hiraoka S. Unresolved Issues that Remain in Molecular Self-Assembly. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
29
|
Liu K, Ren X, Sun J, Zou Q, Yan X. Primitive Photosynthetic Architectures Based on Self-Organization and Chemical Evolution of Amino Acids and Metal Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1701001. [PMID: 29938179 PMCID: PMC6010005 DOI: 10.1002/advs.201701001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/15/2018] [Indexed: 05/23/2023]
Abstract
The emergence of light-energy-utilizing metabolism is likely to be a critical milestone in prebiotic chemistry and the origin of life. However, how the primitive pigment is spontaneously generated still remains unknown. Herein, a primitive pigment model based on adaptive self-organization of amino acids (Cystine, Cys) and metal ions (zinc ion, Zn2+) followed by chemical evolution under hydrothermal conditions is developed. The resulting hybrid microspheres are composed of radially aligned cystine/zinc (Cys/Zn) assembly decorated with carbonate-doped zinc sulfide (C-ZnS) nanocrystals. The part of C-ZnS can work as a light-harvesting antenna to capture ultraviolet and visible light, and use it in various photochemical reactions, including hydrogen (H2) evolution, carbon dioxide (CO2) photoreduction, and reduction of nicotinamide adenine dinucleotide (NAD+) to nicotinamide adenine dinucleotide hydride (NADH). Additionally, guest molecules (e.g., glutamate dehydrogenase, GDH) can be encapsulated within the hierarchical Cys/Zn framework, which facilitates sustainable photoenzymatic synthesis of glutamate. This study helps deepen insight into the emergent functionality (conversion of light energy) and complexity (hierarchical architecture) from interaction and reaction of prebiotic molecules. The primitive pigment model is also promising to work as an artificial photosynthetic microreactor.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
- University of Chinese Academy of Sciences100049BeijingChina
| | - Xiaokang Ren
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
- University of Chinese Academy of Sciences100049BeijingChina
| | - Jianxuan Sun
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
| | - Qianli Zou
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
| | - Xuehai Yan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
- University of Chinese Academy of Sciences100049BeijingChina
- Center for MesoscienceInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
| |
Collapse
|
30
|
Dynamic nanoarchitectonics: Supramolecular polymorphism and differentiation, shape-shifter and hand-operating nanotechnology. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
|
32
|
Abstract
In 2016, the Nobel Prize in Chemistry was awarded for pioneering work on molecular machines. Half a year later, in Toulouse, the first molecular car race, a "nanocar race", was held by using the tip of a scanning tunneling microscope as an electrical remote control. In this Focus Review, we discuss the current state-of-the-art in research on molecular machines at interfaces. In the first section, we briefly explain the science behind the nanocar race, followed by a selection of recent examples of controlling molecules on surfaces. Finally, motion synchronization and the functions of molecular machines at liquid interfaces are discussed. This new concept of molecular tuning at interfaces is also introduced as a method for the continuous modification and optimization of molecular structure for target functions.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Taizo Mori
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Waka Nakanishi
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
33
|
Shimizu T. Self-Assembly of Discrete Organic Nanotubes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170424] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
34
|
Sawada T, Serizawa T. Filamentous Viruses as Building Blocks for Hierarchical Self-Assembly toward Functional Soft Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170428] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-17 Honcho, Kawaguchi, Saitama 332-0012
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550
| |
Collapse
|
35
|
Haketa Y, Maeda H. Dimension-Controlled π-Electronic Ion-Pairing Assemblies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170434] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
36
|
Shutava TG, Livanovich KS, Pankov VV. Synergetic effect of polyethylene glycol-grafted chitosan and bovine serum albumin on colloidal stability of polyelectrolyte nanocapsules. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Taketa TB, Dos Santos DM, Fiamingo A, Vaz JM, Beppu MM, Campana-Filho SP, Cohen RE, Rubner MF. Investigation of the Internal Chemical Composition of Chitosan-Based LbL Films by Depth-Profiling X-ray Photoelectron Spectroscopy (XPS) Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1429-1440. [PMID: 29307187 DOI: 10.1021/acs.langmuir.7b04104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chitosan-based thin films were assembled using the layer-by-layer technique, and the axial composition was accessed using X-ray photoelectron spectroscopy with depth profiling. Chitosan (CHI) samples possessing different degrees of acetylation ([Formula: see text]) and molecular weight ([Formula: see text]) produced via the ultrasound-assisted deacetylation reaction were used in this study along with two different polyanions, namely, sodium polystyrenesulfonate (PSS) and carboxymethylcellulose (CMC). When chitosan, a positively charged polymer in aqueous acid medium, was combined with a strong polyanion (PSS), the total positive charge of chitosan, directly related to its [Formula: see text], was the key factor affecting the film formation. However, for CMC/CHI films, the pH of the medium and [Formula: see text] of chitosan strongly affected the film structure and composition. Consequently, the structure and the axial composition of chitosan-based films can be finely adjusted by choosing the polyanion and defining the chitosan to be used according to its DA and [Formula: see text] for the desired application, as demonstrated by the antibacterial tests.
Collapse
Affiliation(s)
- Thiago B Taketa
- School of Chemical Engineering, University of Campinas , 13083-852 SP, Campinas, Brazil
| | - Danilo M Dos Santos
- São Carlos Institute of Chemistry, University of São Paulo , 13010-111 SP, São Paulo, Brazil
| | - Anderson Fiamingo
- São Carlos Institute of Chemistry, University of São Paulo , 13010-111 SP, São Paulo, Brazil
| | - Juliana M Vaz
- School of Chemical Engineering, University of Campinas , 13083-852 SP, Campinas, Brazil
| | - Marisa M Beppu
- School of Chemical Engineering, University of Campinas , 13083-852 SP, Campinas, Brazil
| | - Sérgio P Campana-Filho
- São Carlos Institute of Chemistry, University of São Paulo , 13010-111 SP, São Paulo, Brazil
| | | | | |
Collapse
|
38
|
Cherumukkil S, Vedhanarayanan B, Das G, Praveen VK, Ajayaghosh A. Self-Assembly of Bodipy-Derived Extended π-Systems. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170334] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sandeep Cherumukkil
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram-695019, India
| | - Balaraman Vedhanarayanan
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram-695019, India
| | - Gourab Das
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram-695019, India
| | - Vakayil K. Praveen
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram-695019, India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram-695019, India
| |
Collapse
|
39
|
Suzuki S, Sawada T, Ishizone T, Serizawa T. Bioinspired structural transition of synthetic polymers through biomolecular ligand binding. Chem Commun (Camb) 2018; 54:12006-12009. [DOI: 10.1039/c8cc06232c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bioinspired structural transition of thermoresponsive poly(N-isopropylacrylamide) was demonstrated by specific ligand binding of artificially evolved peptides to the polymer.
Collapse
Affiliation(s)
- Seigo Suzuki
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| | - Takashi Ishizone
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| |
Collapse
|
40
|
Ariga K, Mori T, Shrestha LK. Nanoarchitectonics from Molecular Units to Living-Creature-Like Motifs. CHEM REC 2017; 18:676-695. [PMID: 29205796 DOI: 10.1002/tcr.201700070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
Important points for the fabrication of functional materials are the creation of nanoscale/molecular-scale units and architecting them into functional materials and systems. Recently, a new conceptual paradigm, nanoarchitectonics, has been proposed to combine nanotechnology and other methodologies including supramolecular chemistry, self-assembly and self-organization to satisfy major features of nanoscience and promote the creation of functional materials and systems. In this account article, our recent research results in materials development based on the nanoarchitectonics concept are summarized in two stories, (i) nanoarchitectonics from fullerenes as the simplest nano-units and (ii) dimension-dependent nanoarchitectonics from various structural units. The former demonstrates creativity of the nanoarchitectonics concept only with simple construction stuffs on materials fabrications, and a wide range of material applicability for the nanoarchitectonics strategy is realized in the latter ones.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-0827, Japan
| | - Taizo Mori
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Lok Kumar Shrestha
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|