1
|
Sakamaki T, Zhang Y, Fukuma S, Cruz CM, Valdivia AC, Campaña AG, Casado J, Shang R, Nakamura E. Doubly Spiro-Conjugated Chiral Carbocycles Exhibiting SOMO-HOMO Inversion in Persistent Radical Cations. J Am Chem Soc 2024; 146:12712-12722. [PMID: 38655573 DOI: 10.1021/jacs.4c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Persistent chiral organic open-shell systems have captured growing interest due to their potential applications in organic spintronic and optoelectronic devices. Nevertheless, the integration of configurationally stable chirality into an organic open-shell system continues to pose challenges in molecular design. The π-extended skeleton incorporated in spiro-conjugated carbocycles can provide robust chiroptical properties and a significant stabilization of the excited and ionic radical states. However, this approach has been relatively less explored in the design of persistent organic open-shell systems. We report here the (S,S)-, (R,R)-, and meso-isomers of doubly spiro-conjugated carbocycles featuring flat and rigid carbon-bridged para-phenylenevinylene (CPV) of different conjugation lengths connected by two spiro-carbon centers, which we denote D-spiro-CPV for its quasi-dimeric structure. Our synthetic method based on a double lithiation cyclization approach enables facile production of D-spiro-CPV. D-spiro-CPVs exhibit circularly polarized luminescence (CPL) with high fluorescence quantum yields (ΦFL) resulting in a high CPL brightness of 21 M-1 cm-1 and also exhibit high thermal and photostability. The monoradical cation of D-spiro-CPV absorbing near-infrared light is notably persistent, exhibiting a half-life of 570 h under ambient conditions due to doubly spiro-conjugative stabilization. Theoretical and electrochemical studies indicate the radical cation of D-spiro-CPVs presents a non-Aufbau electron filling, exhibiting inversion of the energy level of the singly occupied molecular orbital (SOMO) and the highest (doubly) occupied molecular orbitals with the SOMO level even below the HOMO-1 level (double SHI effect). Our discoveries provide valuable insights into non-Aufbau molecules and the development of configurationally stable, optically active persistent radicals.
Collapse
Affiliation(s)
- Takumi Sakamaki
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yan Zhang
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shota Fukuma
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Carlos M Cruz
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avenida Fuente Nueva s/n, 18071 Granada, Spain
| | - Abel Cárdenas Valdivia
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Campus de Teatinos, s/n, 29071 Málaga, Spain
| | - Araceli G Campaña
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avenida Fuente Nueva s/n, 18071 Granada, Spain
| | - Juan Casado
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Campus de Teatinos, s/n, 29071 Málaga, Spain
| | - Rui Shang
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Tada K, Kitagawa Y. Issues on DFT+ U calculations of organic diradicals. Phys Chem Chem Phys 2023; 25:32110-32122. [PMID: 37983012 DOI: 10.1039/d3cp04187e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The diradical state is an important electronic state for understanding molecular functions and should be elucidated for the in silico design of functional molecules and their application to molecular devices. The density functional theory calculation with plane-wave basis and correction of the on-site Coulomb parameter U (DFT+U/plane-wave calculation) is a good candidate of high-throughput calculations of diradical-band interactions. However, it has not been investigated in detail to what extent the DFT+U/plane-wave calculation can be used to calculate organic diradicals with a high degree of accuracy. In the present study, using typical organic diradical molecules (bisphenalenyl molecules) as model systems, the discrepancy in the optimum U values between the two electronic states (open-shell singlet and triplet) that compose the diradical state is detected. The calculated results show that the reason for this U value discrepancy is the difference in electronic delocalisation due to π-conjugation between the open-shell singlet and triplet states, and that the effect of U discrepancy becomes large as diradical character decreases. This indicates that it is necessary to investigate the U value discrepancy with reference to the calculated results by more accurate methods or to experimental values when calculating organic diradicals with low diradical character. For this investigation, the local magnetic moments, unpaired beta electron numbers, and effective magnetic exchange integral values can be used as reference values. For the effective magnetic exchange integral values, the effects of U discrepancy are partially cancelled out. However, because the effects may not be completely offset, care should be taken when using the effective magnetic exchange integral value as a reference. Furthermore, a comparison of DFT+U and hybrid-DFT calculations shows that the DFT+U underestimates the HOMO-LUMO gap of bisphenalenyls, although a qualitative discussion of the gap is possible.
Collapse
Affiliation(s)
- Kohei Tada
- Research Institute of Electrochemical Energy, Department of Energy and Environment (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
3
|
Shu C, Yang Z, Rajca A. From Stable Radicals to Thermally Robust High-Spin Diradicals and Triradicals. Chem Rev 2023; 123:11954-12003. [PMID: 37831948 DOI: 10.1021/acs.chemrev.3c00406] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Stable radicals and thermally robust high-spin di- and triradicals have emerged as important organic materials due to their promising applications in diverse fields. New fundamental properties, such as SOMO/HOMO inversion of orbital energies, are explored for the design of new stable radicals, including highly luminescent ones with good photostability. A relation with the singlet-triplet energy gap in the corresponding diradicals is proposed. Thermally robust high-spin di- and triradicals, with energy gaps that are comparable to or greater than a thermal energy at room temperature, are more challenging to synthesize but more rewarding. We summarize a number of high-spin di- and triradicals, based on nitronyl nitroxides that provide a relation between the experimental pairwise exchange coupling constant J/k in the high-spin species vs experimental hyperfine coupling constants in the corresponding monoradicals. This relation allows us to identify outliers, which may correspond to radicals where J/k is not measured with sufficient accuracy. Double helical high-spin diradicals, in which spin density is delocalized over the chiral π-system, have been barely explored, with the sole example of such high-spin diradical possessing alternant π-system with Kekulé resonance form. Finally, we discuss a high-spin diradical with electrical conductivity and derivatives of triangulene diradicals.
Collapse
Affiliation(s)
- Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
4
|
Kitano S, Tanabe I, Shioya N, Hasegawa T, Murata T, Morita Y, Tsuji R, Fukui KI. Voltammetric and In Situ Spectroscopic Investigations on the Redox Processes of Trioxotriangulene Neutral Radicals on Graphite Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6846-6854. [PMID: 37130319 DOI: 10.1021/acs.langmuir.3c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To investigate the microscopic electrochemical dynamics of a stable trioxotriangulene (TOT) organic neutral π-radical on a graphite electrode surface, voltammetric and in situ infrared (IR) spectroelectrochemical studies were conducted using electrolyte solutions containing TOT monoanions. Upright columnar crystals (face-on alignment) of the TOT neutral radical were preferentially formed and dissolved in a rather reversible manner in the electrolyte with a low concentration of TOT monoanion under electrochemical conditions; however, more flat-lying columnar crystals (edge-on alignment) were formed in a higher concentration electrolyte. The flat-lying crystals remained on the graphite surface even at a fully reduced potential, owing to the lack of direct π-π interactions between the molecules and the graphite electrode. In situ IR attenuated total reflectance spectroscopy analyses successfully characterized the alignment of the columnar crystals of the TOT neutral radicals and their electrochemical behaviors, including the possible origins of the irreversible redox reaction of TOT on the graphite electrode.
Collapse
Affiliation(s)
- Shohei Kitano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Material Solutions New Research Engine, Kaneka Corporation, Settsu, Osaka 566-0072, Japan
| | - Ichiro Tanabe
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobutaka Shioya
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takeshi Hasegawa
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Ryotaro Tsuji
- Material Solutions New Research Engine, Kaneka Corporation, Settsu, Osaka 566-0072, Japan
| | - Ken-Ichi Fukui
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
5
|
Nakai H, Kobayashi M, Yoshikawa T, Seino J, Ikabata Y, Nishimura Y. Divide-and-Conquer Linear-Scaling Quantum Chemical Computations. J Phys Chem A 2023; 127:589-618. [PMID: 36630608 DOI: 10.1021/acs.jpca.2c06965] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fragmentation and embedding schemes are of great importance when applying quantum-chemical calculations to more complex and attractive targets. The divide-and-conquer (DC)-based quantum-chemical model is a fragmentation scheme that can be connected to embedding schemes. This feature article explains several DC-based schemes developed by the authors over the last two decades, which was inspired by the pioneering study of DC self-consistent field (SCF) method by Yang and Lee (J. Chem. Phys. 1995, 103, 5674-5678). First, the theoretical aspects of the DC-based SCF, electron correlation, excited-state, and nuclear orbital methods are described, followed by the two-component relativistic theory, quantum-mechanical molecular dynamics simulation, and the introduction of three programs, including DC-based schemes. Illustrative applications confirmed the accuracy and feasibility of the DC-based schemes.
Collapse
Affiliation(s)
- Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Masato Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba274-8510, Japan
| | - Junji Seino
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Yasuhiro Ikabata
- Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan.,Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| |
Collapse
|
6
|
Murata T, Yoshida K, Suzuki S, Ueda A, Nishida S, Kawai J, Fukui K, Sato K, Takui T, Nakasuji K, Morita Y. Double‐σ‐Bonded Close‐Shell Dimers and Peroxy‐Linked Open‐Shell Dimer Derived from a
C
3
Symmetric Trioxophenalenyl Neutral Diradical. Chemistry 2022; 28:e202201426. [DOI: 10.1002/chem.202201426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering Aichi Institute of Technology Yachigusa 1247, Yakusa Toyota Aichi Japan
| | - Kenta Yoshida
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Shuichi Suzuki
- Department of Chemistry Graduate School of Engineering Science Osaka University Machikaneyama 1–3 Toyonaka Osaka Japan
| | - Akira Ueda
- Department of Chemistry Faculty of Advanced Science and Technology Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto Japan
| | - Shinsuke Nishida
- Department of Applied Chemistry, Faculty of Engineering Aichi Institute of Technology Yachigusa 1247, Yakusa Toyota Aichi Japan
| | - Junya Kawai
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Kozo Fukui
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science Graduate School of Science Osaka City University/Osaka Metropolitan University Sugimoto 3–3-138 Sumiyoshi-ku Osaka Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science Graduate School of Science Osaka City University/Osaka Metropolitan University Sugimoto 3–3-138 Sumiyoshi-ku Osaka Japan
| | - Kazuhiro Nakasuji
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering Aichi Institute of Technology Yachigusa 1247, Yakusa Toyota Aichi Japan
| |
Collapse
|
7
|
Suzuki S, Kozaki M, Naota T. Intriguing Properties and Functionalities of Extremely Stable Radical Cation Species. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuichi Suzuki
- Graduate School of Engineering Science, Osaka University
| | | | - Takeshi Naota
- Graduate School of Engineering Science, Osaka University
| |
Collapse
|
8
|
Rasmussen MG, Jespersen MF, Blacque O, Mikkelsen KV, Juríček M, Nielsen MB. Subphthalocyanine-triangulene dyads: Property tuning for light-harvesting device applications. ENERGY SCIENCE & ENGINEERING 2022; 10:1752-1762. [PMID: 35909459 PMCID: PMC9306930 DOI: 10.1002/ese3.1071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/10/2021] [Accepted: 01/06/2022] [Indexed: 05/08/2023]
Abstract
Organic photovoltaics relies on the development of stable chromophores and redox-active organic molecules with tailor-made HOMO/LUMO energies. Here, we present the synthesis and properties of novel dyads composed of boron subphthalocyanine (SubPc) and triangulene units, connected either at the peripheral position of the subphthalocyanine or at the axial boron. The connectivity has strong implications for the absorption and fluorescence properties of the dyads, as well as their redox properties. While the SubPc unit has a bowl shape, triangulene is a planar structural unit that allows dyads to dimerize in the solid state on account of π-stacking interactions as shown by X-ray crystallography of one of the dyads. The electronic properties were also studied computationally by density functional theory methods. Excellent agreement between experimental and computed data were obtained, showing that our computational method is a strong tool in the rational design of optimum molecules to ultimately obtain finely tuned molecules for device applications.
Collapse
Affiliation(s)
| | | | - Olivier Blacque
- Department of ChemistryUniversity of ZurichZurichSwitzerland
| | | | - Michal Juríček
- Department of ChemistryUniversity of ZurichZurichSwitzerland
| | | |
Collapse
|
9
|
Diradical Characters of s-Indaceno[1,2,3-cd;5,6,7-c’d’]Diphenalene with and without Interaction with MgO(001). E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2022. [DOI: 10.1380/ejssnt.2022-011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Murata T, Yoshida K, Suzuki S, Ueda A, Nishida S, Kawai J, Fukui K, Nakasuji K, Morita Y. Design and Synthesis of a C3 Symmetrical Phenalenyl Derivative with Three Oxo Groups by Regioselective Deoxygenation/Oxygenation. Org Lett 2022; 24:1033-1037. [PMID: 35050630 DOI: 10.1021/acs.orglett.1c04227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tri-tert-butylated 4,7-dihydroxyphenalenone was designed and synthesized from a corresponding 4,9-dimethoxyphenalenone derivative by regioselective deoxygenation/oxygenation. The 4,7-dihydroxyphenalenone derivative showed a chromic behavior accompanied by protonation and deprotonation, giving monocation and dianion species, respectively, and their C3 symmetric electronic structures were elucidated by experimental and theoretical methods.
Collapse
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa 1247, Yakusa, Toyota, Aichi 470-0392, Japan
| | - Kenta Yoshida
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shuichi Suzuki
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Akira Ueda
- Department of Chemistry, Kumamoto University, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinsuke Nishida
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa 1247, Yakusa, Toyota, Aichi 470-0392, Japan
| | - Junya Kawai
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kozo Fukui
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kazuhiro Nakasuji
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa 1247, Yakusa, Toyota, Aichi 470-0392, Japan
| |
Collapse
|
11
|
Abstract
Triangulene is the smallest non-Kekulé graphene fragment known as Clar's hydrocarbon. Due to its open-shell electronic structure, triangulene is a promising molecular building block of carbon-based organic materials for spintronics and quantum molecular science. It comprises six benzenoid rings arranged in a triangular shape with two unpaired electrons delocalized over the entire conjugated core, making this molecule highly reactive. A triplet ground state is predicted for this hydrocarbon by Ovchinnikov's rule, or Lieb's theorem, in accord with Hund's rule. The pioneering work on triangulene was performed almost 70 years ago by Erich Clar, who attempted to prepare the pristine compound. Since then, several synthetic approaches to prepare this molecule have been exploited. The extreme reactivity of triangulene can be circumvented using on-surface techniques or by installation of sterically demanding substituents, which kinetically stabilize the diradical core against oligomerization in solution. The first two examples of a persistent derivative of triangulene were simultaneously and independently developed last year. This article presents a historical development in the synthesis of triangulene and its derivatives and outlines possible future applications in ferromagnetic materials, electrically conductive polymers or quantum computing. A historical development of synthetic efforts to “tame” triangulene—an iconic non-Kekulé graphene fragment known as a Clar's hydrocarbon—up to the most recent advancements that open new possibilities in the design of carbon-based spin materials.![]()
Collapse
Affiliation(s)
- Leoš Valenta
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Michal Juríček
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Prievidza Chemical Society, M. Hodžu 10/16, 971 01 Prievidza, Slovak Republic
| |
Collapse
|
12
|
Murata T, Asakura N, Tsuji R, Kanzaki Y, Sato K, Takui T, Morita Y. A Redox-active Microporous Organosiloxane Containing a Stable Neutral Radical, Trioxotriangulene. Chemistry 2021; 28:e202104447. [PMID: 34964187 DOI: 10.1002/chem.202104447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 11/10/2022]
Abstract
A new silyl-substituted trioxotriangulene ( TOT ) neutral radical and corresponding porous organosiloxanes (POSs) were synthesized. The neutral radical exhibited a peculiarly high stability and formed a diamagnetic π-dimer characteristic to TOT neutral radicals stabilized by the strong multiple SOMO-SOMO interaction in both solution and solid states. POSs including TOT units within the organosiloxane-wall were prepared by polycondensation of the silyl groups, and formed microporous structures with ~1 nm-size diameters. Redox ability of TOT units in the POS was demonstrated by the treatment of oxidant/reductant in heterogeneous suspension condition, where the TOT units were reversibly converted between reduced and neutral radical species. Furthermore, the solid-state electrochemical measurements of the POS revealed the reversible multi-stage redox ability of TOT units involving polyanionic species within the organosiloxane-wall.
Collapse
Affiliation(s)
- Tsuyoshi Murata
- Aichi Institute of Technology: Aichi Kogyo Daigaku, Department of Applied Chemistry, Faculty of Engineering, Yachigusa 1247, Yakusa, 470-0392, Toyota, JAPAN
| | - Noriaki Asakura
- Aichi Institute of Technology: Aichi Kogyo Daigaku, Department of Applied Chemistry, Faculty of Engineering, Yachigusa 1247, Yakusa, 470-0392, Toyota, JAPAN
| | - Ryotaro Tsuji
- Kaneka Corporation, Materials Solution New Research Engine, Techno-Alliance Building, Osaka University, Yamadaoka 2-8, 565-0871, Suita, JAPAN
| | - Yuki Kanzaki
- Osaka City University: Osaka Shiritsu Daigaku, Department of Chemistry and Molecular Materials Science, Graduate School of Science, Sugimoto 3-3-138, Sumiyoshi-ku, 558-8585, Osaka, JAPAN
| | - Kazunobu Sato
- Osaka City University: Osaka Shiritsu Daigaku, Department of Chemistry and Molecular Materials Science, Graduate School of Science, Sugimoto 3-3-138, Sumiyoshi-ku, 558-8585, Osaka, JAPAN
| | - Takeji Takui
- Osaka City University: Osaka Shiritsu Daigaku, Department of Chemistry and Molecular Materials Science, Graduate School of Science, Sugimoto 3-3-138, Sumiyoshi-ku, 558-8585, Oskaa, JAPAN
| | - Yasushi Morita
- Aichi Institute of Technology: Aichi Kogyo Daigaku, Department of Applied Chemistry, Faculty of Engineering, Yachigusa 1247, Yakusa, 470-0392, Toyota, JAPAN
| |
Collapse
|
13
|
Zhao J, Li X, Han YF. Air-/Heat-Stable Crystalline Carbon-Centered Radicals Derived from an Annelated N-Heterocyclic Carbene. J Am Chem Soc 2021; 143:14428-14432. [PMID: 34469133 DOI: 10.1021/jacs.1c06464] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Organic radicals are open-shell species and have been extensively applied to functional materials due to their unique physicochemical properties with unpaired electrons; however, most of them are highly reactive and short-lived. Herein, a series of stable radicals were readily accessed in two steps from a bis(imino)acenaphthene-supported N-heterocyclic carbene (IPr(BIAN)) through enhancing the delocalization of spin density. The IPr(BIAN)-based radicals 3a-c, obtained by reduction of the corresponding iminium salts 2a-c with KC8, have been spectroscopically and crystallographically (3a,c) characterized. DFT calculations indicate that increasing the electron-withdrawing properties of the para substituent on the carbene carbon atom results in the spin density evolving from the acenaphthene ring to the phenyl ring. The IPr(BIAN)-based radicals 3a-c show excellent stability: they have half-lives of 1 week in well-aerated solutions and feature a high thermal decomposition temperature up to 200 °C.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
14
|
Kubo T. Syntheses and Properties of Open-Shell π-Conjugated Molecules. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
15
|
Budy H, Kaese T, Bolte M, Lerner H, Wagner M. A Chemiluminescent Tetraaryl Diborane(4) Tetraanion. Angew Chem Int Ed Engl 2021; 60:19397-19405. [PMID: 34161639 PMCID: PMC8456833 DOI: 10.1002/anie.202106980] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Two subvalent, redox-active diborane(4) anions, [3]4- and [3]2- , carrying exceptionally high negative charge densities are reported: Reduction of 9-methoxy-9-borafluorene with Li granules without stirring leads to the crystallization of the B(sp3 )-B(sp2 ) diborane(5) anion salt Li[5]. [5]- contains a 2,2'-biphenyldiyl-bridged B-B core, a chelating 2,2'-biphenyldiyl moiety, and a MeO substituent. Reduction of Li[5] with Na metal gives the Na+ salt of the tetraanion [3]4- in which two doubly reduced 9-borafluorenyl fragments are linked via a B-B single bond. Comproportionation of Li[5] and Na4 [3] quantitatively furnishes the diborane(4) dianion salt Na2 [3], the doubly boron-doped congener of 9,9'-bis(fluorenylidene). Under acid catalysis, Na2 [3] undergoes a formal Stone-Wales rearrangement to yield a dibenzo[g,p]chrysene derivative with B=B core. Na2 [3] shows boron-centered nucleophilicity toward n-butyl chloride. Na4 [3] produces bright blue chemiluminescence when exposed to air.
Collapse
Affiliation(s)
- Hendrik Budy
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Thomas Kaese
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Michael Bolte
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Matthias Wagner
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| |
Collapse
|
16
|
Budy H, Kaese T, Bolte M, Lerner H, Wagner M. A Chemiluminescent Tetraaryl Diborane(4) Tetraanion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hendrik Budy
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Thomas Kaese
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
17
|
Murata T, Yamamoto Y, Ueda A, Ise T, Shiomi D, Sato K, Takui T, Morita Y. Synthesis and Physical Properties of Trioxotriangulene Having Methoxy and Hydroxy Groups at α-Positions: Electronic and Steric Effects of Substituent Groups and Intramolecular Hydrogen Bonds. J Org Chem 2021; 86:10154-10165. [PMID: 34282916 DOI: 10.1021/acs.joc.1c00880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New 4,8,12-trioxotriangulene (TOT) neutral radical derivatives having three methoxy and hydroxy groups at the α-positions were synthesized, and the substituent effects on the electronic spin and redox properties were elucidated in the theoretical and experimental methods. Due to the small SOMO coefficients at the α-positions of TOT, the methoxy groups in the TOT neutral radical had negligible effects on the electronic spin structure and redox ability. On the other hand, methoxy groups greatly increased the LUMO energy having large coefficients at α-positions and, thus, caused a remarkable negative-potential shift of the redox wave of anion species involving the dianion and trianion species. Converting the methoxy groups to hydroxy groups caused a dramatic change in the electronic structure of TOT, where the intramolecular hydrogen bonds between hydroxy groups and oxo groups strongly attracted a minus charge on the TOT skeleton. The HOMO energy of the monoanion species was significantly reduced, causing a blue shift of the HOMO-LUMO transition and an anodic shift of the redox potential. In addition, due to the steric repulsion smaller than that of the methoxy group, the hydroxy derivative showed a more planar molecular structure and a strong π-stacking ability.
Collapse
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology,1247 Yachigusa, Yakusa, Toyota, Aichi 470-0392, Japan
| | - Yosuke Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Akira Ueda
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tomoaki Ise
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Daisuke Shiomi
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology,1247 Yachigusa, Yakusa, Toyota, Aichi 470-0392, Japan
| |
Collapse
|
18
|
Ito H, Murata T, Fujisaki M, Tsuji R, Morita Y. High Capacity and Energy Density Organic Lithium-Ion Battery Based on Buckypaper with Stable π-Radical. CHEMSUSCHEM 2021; 14:1377-1387. [PMID: 33403780 DOI: 10.1002/cssc.202002851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Owing to an increasing demand on high performance and rare-metal free energy storage systems, organic rechargeable battery has attracted much attention. To increase the capacity of the whole battery, we have fabricated coin-type buckypaper cells composed of a trioxotriangulene neutral radical derivative (H3 TOT) and single-walled carbon nanotubes as a cathode and lithium metal plate as an anode without current collector. The cells exhibited a stable charge-discharge behavior even at a 90 wt % H3 TOT content with a high-rate performance of 10 C originating from high electrical conductivity of H3 TOT. Furthermore, based on the four-stage redox ability of H3 TOT, the H3 TOT 90 wt % cathode showed a high capacity of approximately 260 mAh g-1 and a high energy density of 546 Wh g-1 . In view of the simple fabrication of the cathode and excellent performance, TOT-based buckypaper will open a new strategy for the flexible cells for next-generation energy storages.
Collapse
Affiliation(s)
- Hiroshi Ito
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| | - Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| | - Megumi Fujisaki
- Material Solutions New Research Engine, KANEKA Corporation, Techno-Alliance Building, Osaka University, Yamadaoka 2-8, Suita, Osaka, Japan
| | - Ryotaro Tsuji
- Material Solutions New Research Engine, KANEKA Corporation, Techno-Alliance Building, Osaka University, Yamadaoka 2-8, Suita, Osaka, Japan
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| |
Collapse
|
19
|
|
20
|
Xu X, Chen Q, Narita A. Synthesis and Characterization of Dibenzo[<i>hi,st</i>]ovalene as a Highly Fluorescent Polycyclic Aromatic Hydrocarbon and Its π-Extension to Circumpyrene. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiushang Xu
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University
| | - Qiang Chen
- Max Planck Institute for Polymer Research
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University
- Max Planck Institute for Polymer Research
| |
Collapse
|
21
|
Oka K, Löfgren R, Emanuelsson R, Nishide H, Oyaizu K, Strømme M, Sjödin M. Conducting Redox Polymer as Organic Anode Material for Polymer‐Manganese Secondary Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.202000711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kouki Oka
- Department of Applied Chemistry and Research Institute for Science and EngineeringWaseda University 3-4-1 Okubo, Shinjuku Tokyo 165-8555 Japan
- Nanotechnology and Functional MaterialsMaterials Science and Engineering The Ångström LaboratoryUppsala University Box 534, SE-751 21 Uppsala Sweden
| | - Rebecka Löfgren
- Nanotechnology and Functional MaterialsMaterials Science and Engineering The Ångström LaboratoryUppsala University Box 534, SE-751 21 Uppsala Sweden
| | - Rikard Emanuelsson
- Nanotechnology and Functional MaterialsMaterials Science and Engineering The Ångström LaboratoryUppsala University Box 534, SE-751 21 Uppsala Sweden
| | - Hiroyuki Nishide
- Department of Applied Chemistry and Research Institute for Science and EngineeringWaseda University 3-4-1 Okubo, Shinjuku Tokyo 165-8555 Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry and Research Institute for Science and EngineeringWaseda University 3-4-1 Okubo, Shinjuku Tokyo 165-8555 Japan
| | - Maria Strømme
- Nanotechnology and Functional MaterialsMaterials Science and Engineering The Ångström LaboratoryUppsala University Box 534, SE-751 21 Uppsala Sweden
| | - Martin Sjödin
- Nanotechnology and Functional MaterialsMaterials Science and Engineering The Ångström LaboratoryUppsala University Box 534, SE-751 21 Uppsala Sweden
| |
Collapse
|
22
|
Ji L, Shi J, Wei J, Yu T, Huang W. Air-Stable Organic Radicals: New-Generation Materials for Flexible Electronics? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908015. [PMID: 32583945 DOI: 10.1002/adma.201908015] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 05/28/2023]
Abstract
In the last few years, air-stable organic radicals and radical polymers have attracted tremendous attention due to their outstanding performance in flexible electronic devices, including transistors, batteries, light-emitting diodes, thermoelectric and photothermal conversion devices, and among many others. The main issue of radicals from laboratory studies to real-world applications is that the number of known air-stable radicals is very limited, and the radicals that have been used as materials are even less. Here, the known and newly developed air-stable organic radicals are summarized, generalizing the way of observing air-stable radicals. The special electric and photophysical properties of organic radicals and radical polymers are interpreted, which give radicals a wide scope for various of potential applications. Finally, the exciting applications of radicals that have been achieved in flexible electronic devices are summarized. The aim herein is to highlight the recent achievements in radicals in chemistry, materials science, and flexible electronics, and further bridge the gap between these three disciplines.
Collapse
Affiliation(s)
- Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Junqing Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Juan Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
23
|
Murata T, Koide T, Nobukuni H, Tsuji R, Morita Y. 2D Coordination Network of Trioxotriangulene with Multiple Redox Abilities and Its Rechargeable Battery Performance. Int J Mol Sci 2020; 21:ijms21134723. [PMID: 32630686 PMCID: PMC7369800 DOI: 10.3390/ijms21134723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022] Open
Abstract
A three-fold symmetric trioxotriangulene derivative with three pyridyl groups as coordinating sites was designed and synthesized. In a cyclic voltammetry measurement, the trioxotriangulene skeleton exhibited a multi-stage redox ability from neutral radical to radical tetra-anion species. In the zinc complex of monoanion species, three pyridyl groups coordinated to the zinc ion to build up a two-dimensional coordination network with a cavity larger than 12 Å in diameter. This complex was utilized as a cathode active material of a lithium ion battery, and it exhibited a capacity of ca. 60 mAh g-1 per the weight of the active material with a stable cycling performance up to 1000 cycles. This work shows that the coordination network formed by the trioxotriangulene-based ligand was effective in the improvement of cycle performance of the organic rechargeable battery.
Collapse
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa 1247, Yakusa, Toyota, Aichi 470-0392, Japan; (T.K.); (H.N.)
- Correspondence: (T.M.); (Y.M.)
| | - Taro Koide
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa 1247, Yakusa, Toyota, Aichi 470-0392, Japan; (T.K.); (H.N.)
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Hirofumi Nobukuni
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa 1247, Yakusa, Toyota, Aichi 470-0392, Japan; (T.K.); (H.N.)
| | - Ryotaro Tsuji
- Material Solutions New Research Engine, KANEKA Corporation, Suita, Osaka 565-0871, Japan;
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa 1247, Yakusa, Toyota, Aichi 470-0392, Japan; (T.K.); (H.N.)
- Correspondence: (T.M.); (Y.M.)
| |
Collapse
|
24
|
Yoshikawa T, Doi T, Nakai H. Finite-temperature-based time-dependent density-functional theory method for static electron correlation systems. J Chem Phys 2020; 152:244111. [PMID: 32610978 DOI: 10.1063/1.5144527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this study, we developed a time-dependent density-functional theory (TDDFT) with a finite-temperature (FT) scheme, denoted as FT-TDDFT. We introduced the concept of fractional occupation numbers for random phase approximation equation and evaluated the excited-state electronic entropy terms with excited-state occupation number. The orbital occupation numbers for the excited state were evaluated from the change in the ground-state electron configuration with excitation and deexcitation coefficients. Furthermore, we extended the FT formulation to the time-dependent density-functional tight-binding (TDDFTB) method for larger systems, denoted as FT-TDDFTB. Numerical assessment for the FT-(TD)DFT method showed smooth potential curves for double-bond rotation of ethylene in both ground and excited states. Excited-state calculations based on the FT-TDDFTB method were applied to the uniform π-stacking columns composed of trioxotriangulene, possessing neutral radicals in strong correlation systems.
Collapse
Affiliation(s)
- Takeshi Yoshikawa
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Toshiki Doi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
25
|
Tada K, Kawakami T, Tanaka S, Okumura M, Yamaguchi K. Clarification of the Relationship between the Magnetic and Conductive Properties of Infinite Chains in Trioxotriangulene Radical Crystals by Spin‐Projected DFT/Plane‐Wave Calculations. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kohei Tada
- Research Institute of Electrochemical EnergyDepartment of Energy and Environment (RIECEN)National Institute of Advanced Industrial Science and Technology (AIST) Ikeda Osaka 563‐8577 Japan
| | - Takashi Kawakami
- Department of ChemistryGraduate School of ScienceOsaka University Toyonaka Osaka 560‐0043 Japan
- Riken Center for Computational Science Kobe Hyogo 650‐0047 Japan
| | - Shingo Tanaka
- Research Institute of Electrochemical EnergyDepartment of Energy and Environment (RIECEN)National Institute of Advanced Industrial Science and Technology (AIST) Ikeda Osaka 563‐8577 Japan
| | - Mitsutaka Okumura
- Department of ChemistryGraduate School of ScienceOsaka University Toyonaka Osaka 560‐0043 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto University Kyoto 615‐8245 Japan
| | - Kizashi Yamaguchi
- Riken Center for Computational Science Kobe Hyogo 650‐0047 Japan
- The Institute of Scientific and Industrial ResearchOsaka University Ibaraki Osaka 567‐0047 Japan
- NanoScience Design CenterOsaka University Toyonaka Osaka 560‐8531 Japan
| |
Collapse
|
26
|
Starikov AG, Starikova AA, Minyaev RM, Minkin VI, Boldyrev AI. o-Quinone phenalenyl derivatives as expedient ligands for the design of magnetically active metal complexes: A computational study. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Murata T, Asakura N, Ukai S, Ueda A, Kanzaki Y, Sato K, Takui T, Morita Y. Intramolecular Magnetic Interaction of Spin-Delocalized Neutral Radicals through m-Phenylene Spacers. Chempluschem 2020; 84:680-685. [PMID: 31944024 DOI: 10.1002/cplu.201800662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/06/2019] [Indexed: 11/10/2022]
Abstract
A new diradical having two 4,8,10-trioxotriangulene (TOT) neutral radical units linked through an m-phenylene moiety was synthesized and characterized by ESR measurements. An electrochemical study showed that the diradical undergoes two one-electron reductions to generate corresponding dianion species, suggesting the electronic interaction between two TOT units through the π-conjugated spacer. A strong intramolecular interaction between the two TOT units gives rise to the spin-projected small hyperfine couplings in comparison with those of the monomer. Furthermore, the temperature dependent ESR measurement revealed that the dimer behaves as an S=1 species in the ground state with a ferromagnetic interaction of 2 J/kB =+7±3 K.
Collapse
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| | - Noriaki Asakura
- Department of Applied Chemistry Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| | - Shusaku Ukai
- Department of Applied Chemistry Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| | - Akira Ueda
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Yuki Kanzaki
- Department of Chemistry and Molecular Materials Science Graduate School of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science Graduate School of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science Graduate School of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, Japan
| | - Yasushi Morita
- Department of Applied Chemistry Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| |
Collapse
|
28
|
Murata T, Yokoyama M, Ueda A, Kanzaki Y, Shiomi D, Sato K, Takui T, Morita Y. Synthesis of Trioxotriangulene Stable Neutral π-Radicals Having Alkyl Substituent Groups, and Their Effects on Electronic-spin and π-Stacking Structures. CHEM LETT 2020. [DOI: 10.1246/cl.190761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa, Toyota, Aichi 470-0392, Japan
| | - Masaaki Yokoyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akira Ueda
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yuki Kanzaki
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Daisuke Shiomi
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa, Toyota, Aichi 470-0392, Japan
| |
Collapse
|
29
|
Minkin VI, Starikov AG, Starikova AA, Gapurenko OA, Minyaev RM, Boldyrev AI. Electronic structure and magnetic properties of the triangular nanographenes with radical substituents: a DFT study. Phys Chem Chem Phys 2020; 22:1288-1298. [DOI: 10.1039/c9cp05922a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DFT modeling of triangular polycyclic hydrocarbons bearing radicals provided insights into dependence of electronic ground states on their structural peculiarities
Collapse
Affiliation(s)
- Vladimir I. Minkin
- Institute of Physical and Organic Chemistry at Southern Federal University
- Rostov-on-Don
- Russia
| | - Andrey G. Starikov
- Institute of Physical and Organic Chemistry at Southern Federal University
- Rostov-on-Don
- Russia
| | - Alyona A. Starikova
- Institute of Physical and Organic Chemistry at Southern Federal University
- Rostov-on-Don
- Russia
| | - Olga A. Gapurenko
- Institute of Physical and Organic Chemistry at Southern Federal University
- Rostov-on-Don
- Russia
| | - Ruslan M. Minyaev
- Institute of Physical and Organic Chemistry at Southern Federal University
- Rostov-on-Don
- Russia
| | - Alexander I. Boldyrev
- Institute of Physical and Organic Chemistry at Southern Federal University
- Rostov-on-Don
- Russia
- Department of Chemistry and Biochemistry
- Utah State University
| |
Collapse
|
30
|
Holt CJ, Wentworth KJ, Johnson RP. A Short and Efficient Synthesis of the [3]Triangulene Ring System. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Carter J. Holt
- Department of Chemistry University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - Katelyn J. Wentworth
- Department of Chemistry University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - Richard P. Johnson
- Department of Chemistry University of New Hampshire 23 Academic Way Durham NH 03824 USA
| |
Collapse
|
31
|
Ito H, Murata T, Miyata T, Morita M, Tsuji R, Morita Y. Air-Stable Thin Films with High and Anisotropic Electrical Conductivities Composed of a Carbon-Centered Neutral π-Radical. ACS OMEGA 2019; 4:17569-17575. [PMID: 31656931 PMCID: PMC6812104 DOI: 10.1021/acsomega.9b02700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/26/2019] [Indexed: 05/20/2023]
Abstract
Air-stable thin films (50-720 nm thickness) composed of a carbon-centered neutral π-radical with high and anisotropic electrical conductivities were fabricated by vapor deposition of 4,8,12-trioxotriangulene (TOT). The thin films were air-stable over 15 months and were the aggregate of TOT microcrystals, in which a one-dimensional π-stacking column was formed through the strong singly occupied molecular orbital (SOMO)-SOMO interaction with two-electron-multicenter bond among the spin-delocalized π-planes. The orientations of the one-dimensional column of TOT were changed depending on the deposition rate and substrates, where face-on-oriented thin films were epitaxially grown on the graphite 0001 surface, and edge-on-oriented thin films were grown on glass, SiO2, and indium tin oxide substrates under a high-deposition rate condition. The films showed high electrical conductivities of 2.5 × 10-2 and 5.9 × 10-5 S cm-1 along and perpendicular to the π-stacking column, respectively, for an edge-on oriented thin film.
Collapse
Affiliation(s)
- Hiroshi Ito
- Department
of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Tsuyoshi Murata
- Department
of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Takahiro Miyata
- Department
of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Miwa Morita
- Department
of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Ryotaro Tsuji
- Material
Solutions New Research Engine, KANEKA Corporation, Suita, Osaka 565-0871, Japan
| | - Yasushi Morita
- Department
of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| |
Collapse
|
32
|
Holt CJ, Wentworth KJ, Johnson RP. A Short and Efficient Synthesis of the [3]Triangulene Ring System. Angew Chem Int Ed Engl 2019; 58:15793-15796. [DOI: 10.1002/anie.201907226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Carter J. Holt
- Department of Chemistry University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - Katelyn J. Wentworth
- Department of Chemistry University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - Richard P. Johnson
- Department of Chemistry University of New Hampshire 23 Academic Way Durham NH 03824 USA
| |
Collapse
|
33
|
Ribar P, Šolomek T, Juríček M. Gram-Scale Synthesis and Supramolecular Complex of Precursors of Clar's Hydrocarbon Triangulene. Org Lett 2019; 21:7124-7128. [PMID: 31414815 PMCID: PMC6737831 DOI: 10.1021/acs.orglett.9b02683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We present to date the most efficient
gram-scale synthesis of triangulene-4,8-dione and 12-hydroxytriangulene-4,8-dione,
the precursors of Clar’s hydrocarbon, in overall yields >50%.
The direct dihydroprecursors of triangulene, obtained upon reduction
of triangulene-4,8-dione, were stabilized in a supramolecular complex
with a tetracationic cyclophane ExBox4+ and characterized
by single-crystal X-ray crystallography. This result represents the
first step in an endeavor to stabilize the fragile core of triangulene
in an inclusion complex in solution and solid state.
Collapse
Affiliation(s)
- Peter Ribar
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Tomáš Šolomek
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Michal Juríček
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland.,Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
34
|
Murata T, Kotsuki K, Murayama H, Tsuji R, Morita Y. Metal-free electrocatalysts for oxygen reduction reaction based on trioxotriangulene. Commun Chem 2019. [DOI: 10.1038/s42004-019-0149-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
35
|
Kubo T. Synthesis, Physical Properties, and Reactivity of Persistent π-Conjugated Carbon-Centered Radicals. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|
36
|
Tahara T, Suzuki S, Kozaki M, Shiomi D, Sugisaki K, Sato K, Takui T, Miyake Y, Hosokoshi Y, Nojiri H, Okada K. Triplet Diradical-Cation Salts Consisting of the Phenothiazine Radical Cation and a Nitronyl Nitroxide. Chemistry 2019; 25:7201-7209. [PMID: 30924188 DOI: 10.1002/chem.201900513] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 11/11/2022]
Abstract
The spin-spin and magnetic properties of two (nitronyl nitroxide)-(di-p-anisylamine-phenothiazine) diradical cation salts, (DAA-PTZ)+ -NN⋅MBr4 - (M=Ga, Fe), have been investigated. These diradical-cation species were prepared by the cross-coupling of iodophenothiazine DAA-PTZ-I with NN-AuPPh3 followed by oxidation with the thianthrenium radical cation (TA+ ⋅MBr4 - ). These salts were found to be highly stable under aerobic conditions. For the GaBr4 salt, large ferromagnetic intramolecular and small antiferromagnetic intermolecular interactions (J1 /kB =+320 K and J2 /kB =-2 K, respectively) were observed. The magnetic property of the Fe3+ salt was analyzed by using a six-spin model assuming identical intramolecular exchange interaction (J3 /kB =+320 K) and the other exchange interactions (J4 /kB =-7 K and J5 /kB =-4 K). A significant color change was observed in the UV/Vis/NIR absorption spectra upon electrochemical oxidation of the doublet DAA-PTZ-NN to the triplet (DAA-PTZ)+ -NN.
Collapse
Affiliation(s)
- Takuma Tahara
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Osaka, 558-8585, Japan
| | - Shuichi Suzuki
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Osaka, 558-8585, Japan.,Present address: Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Masatoshi Kozaki
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Osaka, 558-8585, Japan
| | - Daisuke Shiomi
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Osaka, 558-8585, Japan
| | - Kenji Sugisaki
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Osaka, 558-8585, Japan
| | - Kazunobu Sato
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Osaka, 558-8585, Japan
| | - Takeji Takui
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Osaka, 558-8585, Japan
| | - Yota Miyake
- Department of Physical Science, Osaka Prefecture University, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yuko Hosokoshi
- Department of Physical Science, Osaka Prefecture University, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyuki Nojiri
- Institute for Materials Research, Tohoku University, Aoba-ku, Sendai Miyagi, 980-8577, Japan
| | - Keiji Okada
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Osaka, 558-8585, Japan.,Osaka City University Advanced Research Institute, for Natural Science and Technology (OCARINA), Sumiyoshi-ku, Osaka, Osaka, 558-8585, Japan
| |
Collapse
|
37
|
Affiliation(s)
- Kenichi Kato
- Department of ChemistryGraduate School of ScienceKyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
38
|
Kato K, Osuka A. Platforms for Stable Carbon‐Centered Radicals. Angew Chem Int Ed Engl 2019; 58:8978-8986. [DOI: 10.1002/anie.201900307] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Kenichi Kato
- Department of ChemistryGraduate School of ScienceKyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
39
|
Enozawa H, Ukai S, Ito H, Murata T, Morita Y. Colored Ionic Liquid Based on Stable Polycyclic Anion Salt Showing Halochromism with HCl Vapor. Org Lett 2019; 21:2161-2165. [PMID: 30896176 DOI: 10.1021/acs.orglett.9b00468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A sodium salt of a polycyclic trioxotriangulene (TOT) anion with six triethylene glycol chains exhibiting the formation of a colored ionic liquid at room temperature was synthesized. The ionic liquid is air- and water-stable, reflecting thermodynamic stabilization of a charge-delocalized TOT anion. Upon protonation of the TOT anion, the salt shows halochromic behaviors in solution and even in the neat liquid state with HCl vapor. The ionic liquid shows no morphological change with the chromism, presumably as a result of poor intermolecular interactions between π skeletons.
Collapse
Affiliation(s)
- Hideo Enozawa
- Department of Applied Chemistry, Faculty of Engineering , Aichi Institute of Technology , Toyota , Aichi 470-0392 , Japan
| | - Shusaku Ukai
- Department of Applied Chemistry, Faculty of Engineering , Aichi Institute of Technology , Toyota , Aichi 470-0392 , Japan
| | - Hiroshi Ito
- Department of Applied Chemistry, Faculty of Engineering , Aichi Institute of Technology , Toyota , Aichi 470-0392 , Japan
| | - Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering , Aichi Institute of Technology , Toyota , Aichi 470-0392 , Japan
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering , Aichi Institute of Technology , Toyota , Aichi 470-0392 , Japan
| |
Collapse
|
40
|
Murata T, Kariyazono K, Ukai S, Ueda A, Kanzaki Y, Shiomi D, Sato K, Takui T, Morita Y. Trioxotriangulene with carbazole: a donor–acceptor molecule showing strong near-infrared absorption exceeding 1000 nm. Org Chem Front 2019. [DOI: 10.1039/c9qo00663j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A donor–acceptor type trioxotriangulene neutral radical derivative having three carbazolyl groups as electron-donors was newly synthesized, and exhibited a strong near-infrared photo absorption over 1000 nm.
Collapse
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry
- Faculty of Engineering
- Aichi Institute of Technology
- Toyota
- Japan
| | - Kazuki Kariyazono
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Shusaku Ukai
- Department of Applied Chemistry
- Faculty of Engineering
- Aichi Institute of Technology
- Toyota
- Japan
| | - Akira Ueda
- Department of Chemistry
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Yuki Kanzaki
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Daisuke Shiomi
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Yasushi Morita
- Department of Applied Chemistry
- Faculty of Engineering
- Aichi Institute of Technology
- Toyota
- Japan
| |
Collapse
|
41
|
Kanzaki Y, Mitani S, Shiomi D, Morita Y, Takui T, Sato K. Microscopic Behavior of Active Materials Inside a TCNQ-Based Lithium-Ion Rechargeable Battery by in Situ 2D ESR Measurements. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43631-43640. [PMID: 30461254 DOI: 10.1021/acsami.8b14967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Real-time spectroscopic measurements in rechargeable batteries are important to understand the electrochemistry of the batteries at the molecular level and improve relevant functionalities. We have applied in situ two-dimensional (2D) electron spin resonance (ESR) spectroscopy to a well-known organic lithium-ion battery, which is composed of 7,7,8,8-tetracyanoquinodimethane (TCNQ) as the cathode-active material and a lithium metal anode electrode. The TCNQ rechargeable battery is suitable for investigating electrochemistry in the battery in terms of behavior of electron spin at microscopic levels on both the cathode and anode electrodes. We have discussed two-stage oxidation/reduction reactions of TCNQ, Li deposited/stripped process and their resulting dendritic and/or mossy microstructures, clearly elucidating the cause of the cell capacity degradation upon the charge-discharge cycles. The observed in situ ESR spectra showed that the degradation of the cell capacity was due to the elution of the active molecules, which caused the increase of ion conductivity by the substitution of the electrolyte solution for the adsorbed active materials on the conductive carbon surface. To discriminate paramagnetic species during the charge-discharge process, the generalized 2D correlation spectroscopy has been applied to characterize time-dependent in situ ESR spectra. The correlation analysis with in situ ESR helps us identify the paramagnetic species occurring in the battery cell in a straightforward manner.
Collapse
Affiliation(s)
| | | | | | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering , Aichi Institute of Technology , Yachigusa 1247 , Yakusa, Toyota 470-0392 , Japan
| | | | | |
Collapse
|
42
|
Kertesz M. Pancake Bonding: An Unusual Pi‐Stacking Interaction. Chemistry 2018; 25:400-416. [DOI: 10.1002/chem.201802385] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/14/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Miklos Kertesz
- Chemistry Department and Institute of Soft Matter Georgetown University 37th and O Streets NW Washington, DC 20057-1227 USA
| |
Collapse
|
43
|
Murata T, Yamada C, Furukawa K, Morita Y. Mixed valence salts based on carbon-centered neutral radical crystals. Commun Chem 2018. [DOI: 10.1038/s42004-018-0048-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|