1
|
Iskuzhina L, Batasheva S, Kryuchkova M, Rozhin A, Zolotykh M, Mingaleeva R, Akhatova F, Stavitskaya A, Cherednichenko K, Rozhina E. Advances in the Toxicity Assessment of Silver Nanoparticles Derived from a Sphagnum fallax Extract for Monolayers and Spheroids. Biomolecules 2024; 14:611. [PMID: 38927015 PMCID: PMC11202274 DOI: 10.3390/biom14060611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 06/28/2024] Open
Abstract
The production of nanomaterials through environmentally friendly methods is a top priority in the sustainable development of nanotechnology. This paper presents data on the synthesis of silver nanoparticles using an aqueous extract of Sphagnum fallax moss at room temperature. The morphology, stability, and size of the nanoparticles were analyzed using various techniques, including transmission electron microscopy, Doppler laser velocimetry, and UV-vis spectroscopy. In addition, Fourier transform infrared spectroscopy was used to analyze the presence of moss metabolites on the surface of nanomaterials. The effects of different concentrations of citrate-stabilized and moss extract-stabilized silver nanoparticles on cell viability, necrosis induction, and cell impedance were compared. The internalization of silver nanoparticles into both monolayers and three-dimensional cells spheroids was evaluated using dark-field microscopy and hyperspectral imaging. An eco-friendly method for the synthesis of silver nanoparticles at room temperature is proposed, which makes it possible to obtain spherical nanoparticles of 20-30 nm in size with high bioavailability and that have potential applications in various areas of human life.
Collapse
Affiliation(s)
- Liliya Iskuzhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
- Institute for Regenerative Medicine, Sechenov University, Trubetskaya Str. 8/2, 119992 Moscow, Russia
| | - Marina Kryuchkova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Artem Rozhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Mariya Zolotykh
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Rimma Mingaleeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia; (A.S.); (K.C.)
| | - Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia; (A.S.); (K.C.)
| | - Elvira Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| |
Collapse
|
2
|
Mihailescu M, Miclea LC, Pleava AM, Tarba N, Scarlat EN, Negoita RD, Moisescu MG, Savopol T. Method for nanoparticles uptake evaluation based on double labeled fluorescent cells scanned in enhanced darkfield microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:2796-2810. [PMID: 37342715 PMCID: PMC10278607 DOI: 10.1364/boe.490136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023]
Abstract
We present a method that integrates the standard imaging tools for locating and detecting unlabeled nanoparticles (NPs) with computational tools for partitioning cell volumes and NPs counting within specified regions to evaluate their internal traffic. The method uses enhanced dark field CytoViva optical system and combines 3D reconstructions of double fluorescently labeled cells with hyperspectral images. The method allows the partitioning of each cell image into four regions: nucleus, cytoplasm, and two neighboring shells, as well as investigations across thin layers adjacent to the plasma membrane. MATLAB scripts were developed to process the images and to localize NPs in each region. Specific parameters were computed to assess the uptake efficiency: regional densities of NPs, flow densities, relative accumulation indices, and uptake ratios. The results of the method are in line with biochemical analyses. It was shown that a sort of saturation limit for intracellular NPs density is reached at high extracellular NPs concentrations. Higher NPs densities were found in the proximity of the plasma membranes. A decrease of the cell viability with increasing extracellular NPs concentration was observed and explained the negative correlation of the cell eccentricity with NPs number.
Collapse
Affiliation(s)
- Mona Mihailescu
- Holographic Imaging and Processing Laboratory, Physics Department, Politehnica University Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
- Centre for Research in Fundamental Sciences Applied in Engineering, Politehnica University Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Luminita C Miclea
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Ana M Pleava
- CAMPUS Research Center, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Nicolae Tarba
- Doctoral School of Automatic Control and Computers, Physics Department, Faculty of Applied Sciences, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Eugen N Scarlat
- Holographic Imaging and Processing Laboratory, Physics Department, Politehnica University Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Raluca D Negoita
- Applied Sciences Doctoral School, Politehnica University of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Mihaela G Moisescu
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Tudor Savopol
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| |
Collapse
|
3
|
Akhatova F, Konnova S, Kryuchkova M, Batasheva S, Mazurova K, Vikulina A, Volodkin D, Rozhina E. Comparative Characterization of Iron and Silver Nanoparticles: Extract-Stabilized and Classical Synthesis Methods. Int J Mol Sci 2023; 24:ijms24119274. [PMID: 37298231 DOI: 10.3390/ijms24119274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Synthesis of silver nanoparticles using extracts from plants is an advantageous technological alternative to the traditional colloidal synthesis due to its simplicity, low cost, and the inclusion of environmentally friendly processes to obtain a new generation of antimicrobial compounds. The work describes the production of silver and iron nanoparticles using sphagnum extract as well as traditional synthesis. Dynamic light scattering (DLS) and laser doppler velocimetry methods, UV-visible spectroscopy, transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), dark-field hyperspectral microscopy, and Fourier-transform infrared spectroscopy (FT-IR) were used to study the structure and properties of synthesized nanoparticles. Our studies demonstrated a high antibacterial activity of the obtained nanoparticles, including the formation of biofilms. Nanoparticles synthesized using sphagnum moss extracts likely have high potential for further research.
Collapse
Affiliation(s)
- Farida Akhatova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Svetlana Konnova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Marina Kryuchkova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Svetlana Batasheva
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Kristina Mazurova
- Department of Physical and Colloid Chemistry, Russian State University of Oil and Gas (National Research University), Leninsky Prospect 65, 119991 Moscow, Russia
| | - Anna Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Dmitry Volodkin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Elvira Rozhina
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia
- Department of Biological Education, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia
| |
Collapse
|
4
|
Beach JM, Kryuchkova M, Fakhrullin R, Mazurova K, Stavitskaya A, Cheatham BJ, Fakhrullin R. Size-Dependent Oscillation in Optical Spectra from Fly Ash Cenospheres: Particle Sizing Using Darkfield Hyperspectral Interferometry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2023. [DOI: 10.1246/bcsj.20220272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- James M. Beach
- CytoViva Inc., 570 Devall Drive Ste 301, Auburn Alabama 36832, USA
| | - Marina Kryuchkova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russian Federation
| | - Ramil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russian Federation
| | - Kristina Mazurova
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, 119991, Russian Federation
| | - Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, 119991, Russian Federation
| | | | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russian Federation
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, 119991, Russian Federation
| |
Collapse
|
5
|
Nanomechanical Atomic Force Microscopy to Probe Cellular Microplastics Uptake and Distribution. Int J Mol Sci 2022; 23:ijms23020806. [PMID: 35054990 PMCID: PMC8775627 DOI: 10.3390/ijms23020806] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
The concerns regarding microplastics and nanoplastics pollution stimulate studies on the uptake and biodistribution of these emerging pollutants in vitro. Atomic force microscopy in nanomechanical PeakForce Tapping mode was used here to visualise the uptake and distribution of polystyrene spherical microplastics in human skin fibroblast. Particles down to 500 nm were imaged in whole fixed cells, the nanomechanical characterization allowed for differentiation between internalized and surface attached plastics. This study opens new avenues in microplastics toxicity research.
Collapse
|
6
|
Ishmukhametov I, Batasheva S, Fakhrullin R. Identification of micro- and nanoplastics released from medical masks using hyperspectral imaging and deep learning. Analyst 2022; 147:4616-4628. [DOI: 10.1039/d2an01139e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, dark-field microscopy-based hyperspectral imaging augmented with deep learning data analysis was applied for effective visualisation, detection and identification of microplastics released from polypropylene medical masks.
Collapse
Affiliation(s)
- Ilnur Ishmukhametov
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| | - Svetlana Batasheva
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| |
Collapse
|
7
|
Forskolin-Loaded Halloysite Nanotubes as Osteoconductive Additive for the Biopolymer Tissue Engineering Scaffolds. Polymers (Basel) 2021; 13:polym13223949. [PMID: 34833247 PMCID: PMC8619346 DOI: 10.3390/polym13223949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023] Open
Abstract
Here we report the use of forskolin-modified halloysite nanotubes (HNTs) as a dopant for biopolymer porous hydrogel scaffolds to impart osteoinductive properties. Forskolin is a labdane diterpenoid isolated from the Indian Coleus plant. This small molecule is widely used as a supplement in molecular biology for cell differentiation. It has been reported in some earlier publications that forskolin can activate osteodifferentiation process by cyclic adenosine monophosphate (c-AMP) signalling activation in stem cells. In presented study it was demonstrated that forskolin release from halloysite-doped scaffolds induced the osteodifferentiation of equine mesenchymal stem cells (MSCs) in vitro without addition of any specific growth factors. The reinforcement of mechanical properties of cells and intercellular space during the osteodifferentiation was demonstrated using atomic force microscopy (AFM). These clay-doped scaffolds may find applications to accelerate the regeneration of horse bone defects by inducing the processes of osteodifferentiation of endogenous MSCs.
Collapse
|
8
|
Liu J, Hua Z, Liu C. Compact dark-field confocal microscopy based on an annular beam with orbital angular momentum. OPTICS LETTERS 2021; 46:5591-5594. [PMID: 34780413 DOI: 10.1364/ol.439711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
This study proposes a dark-field confocal microscopy (DFCM) based on fiber-mode excitation-assisted orbital angular momentum annular beam generation with a two-mode fiber to avoid diffraction distortion. The application of optical fibers compresses the DFCM volume, providing new ideas for system miniaturization. System adjustment difficulty is reduced and feasibility is verified by imaging 2D and 3D samples. High imaging contrast is achieved by fully blocking the reflected light and annular illumination with a steady central dark-spot within a propagation distance of 3 m. The application of our scheme can be further extended to detect subsurface defects in optical components and high-contrast biological imaging.
Collapse
|
9
|
Label-free identification of microplastics in human cells: dark-field microscopy and deep learning study. Anal Bioanal Chem 2021; 414:1297-1312. [PMID: 34718837 DOI: 10.1007/s00216-021-03749-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
The development of an automatic method of identifying microplastic particles within live cells and organisms is crucial for high-throughput analysis of their biodistribution in toxicity studies. State-of-the-art technique in the data analysis tasks is the application of deep learning algorithms. Here, we propose the approach of polystyrene microparticle classification differing only in pigmentation using enhanced dark-field microscopy and a residual neural network (ResNet). The dataset consisting of 11,528 particle images has been collected to train and evaluate the neural network model. Human skin fibroblasts treated with microplastics were used as a model to study the ability of ResNet for classifying particles in a realistic biological experiment. As a result, the accuracy of the obtained classification algorithm achieved up to 93% in cell samples, indicating that the technique proposed will be a potent alternative to time-consuming spectral-based methods in microplastic toxicity research.
Collapse
|
10
|
Mouzykantov AA, Rozhina EV, Fakhrullin RF, Gomzikova MO, Zolotykh MA, Chernova OA, Chernov VM. Extracellular Vesicles from Mycoplasmas Can Penetrate Eukaryotic Cells In Vitro and Modulate the Cellular Proteome. Acta Naturae 2021; 13:82-88. [PMID: 35127151 PMCID: PMC8807532 DOI: 10.32607/actanaturae.11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/09/2021] [Indexed: 11/26/2022] Open
Abstract
The extracellular vesicles (EVs) produced by bacteria transport a wide range of compounds, including proteins, DNA and RNA, mediate intercellular interactions, and may be important participants in the mechanisms underlying the persistence of infectious agents. This study focuses on testing the hypothesis that the EVs of mycoplasmas, the smallest prokaryotes capable of independent reproduction, combined in the class referred to as Mollicutes, can penetrate into eukaryotic cells and modulate their immunoreactivity. To verify this hypothesis, for the first time, studies of in vitro interaction between human skin fibroblasts and vesicles isolated from Acholeplasma laidlawii (the ubiquitous mycoplasma that infects higher eukaryotes and is the main contaminant of cell cultures and vaccines) were conducted using confocal laser scanning microscopy and proteome profiling, employing a combination of 2D-DIGE and MALDI-TOF/TOF, the Mascot mass-spectrum analysis software and the DAVID functional annotation tool. These studies have revealed for the first time that the extracellular vesicles of A. laidlawii can penetrate into eukaryotic cells in vitro and modulate the expression of cellular proteins. The molecular mechanisms behind the interaction of mycoplasma vesicles with eukaryotic cells and the contribution of the respective nanostructures to the molecular machinery of cellular permissiveness still remain to be elucidated. The study of these aspects is relevant both for fundamental research into the "logic of life" of the simplest prokaryotes, and the practical development of efficient control over hypermutable bacteria infecting humans, animals and plants, as well as contaminating cell cultures and vaccines.
Collapse
Affiliation(s)
- A. A. Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, 420111 Russia
| | | | | | | | | | - O. A. Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, 420111 Russia
| | - V. M. Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, 420111 Russia
| |
Collapse
|
11
|
Fakhrullin R, Nigamatzyanova L, Fakhrullina G. Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145478. [PMID: 33571774 DOI: 10.1016/j.scitotenv.2021.145478] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Nanoscale contaminants (including engineered nanoparticles and nanoplastics) pose a significant threat to organisms and environment. Rapid and non-destructive detection and identification of nanosized materials in cells, tissues and organisms is still challenging, although a number of conventional methods exist. These approaches for nanoparticles imaging and characterisation both inside the cytoplasm and on the cell or tissue outer surfaces, such as electron or scanning probe microscopies, are unquestionably potent tools, having excellent resolution and supplemented with chemical analysis capabilities. However, imaging and detection of nanomaterials in situ, in wet unfixed and even live samples, such as living isolated cells, microorganisms, protozoans and miniature invertebrates using electron microscopy is practically impossible, because of the elaborate sample preparation requiring chemical fixation, contrast staining, matrix embedding and exposure into vacuum. Atomic force microscopy, in several cases, can be used for imaging and mechanical analysis of live cells and organisms under ambient conditions, however this technique allows for investigation of surfaces. Therefore, a different approach allowing for imaging and differentiation of nanoscale particles in wet samples is required. Dark-field microscopy as an optical microscopy technique has been popular among researchers, mostly for imaging relatively large specimens. In recent years, the so-called "enhanced dark field" microscopy based on using higher numerical aperture light condensers and variable numerical aperture objectives has emegred, which allows for imaging of nanoscale particles (starting from 5 nm nanospheres) using almost conventional optical microscopy methodology. Hyperspectral imaging can turn a dark-field optical microscope into a powerful chemical characterisation tool. As a result, this technique is becoming popular in environmental nanotoxicology studies. In this Review Article we introduce the reader into the methodology of enhanced dark-field and dark-field-based hyperspectral microscopy, covering the most important advances in this rapidly-expanding area of environmental nanotoxicology.
Collapse
Affiliation(s)
- Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation.
| | - Läysän Nigamatzyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Gölnur Fakhrullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| |
Collapse
|
12
|
Rozhina E, Ishmukhametov I, Nigamatzyanova L, Akhatova F, Batasheva S, Taskaev S, Montes C, Lvov Y, Fakhrullin R. Comparative Toxicity of Fly Ash: An In Vitro Study. Molecules 2021; 26:molecules26071926. [PMID: 33808134 PMCID: PMC8038091 DOI: 10.3390/molecules26071926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/25/2023] Open
Abstract
Fly ash produced during coal combustion is one of the major sources of air and water pollution, but the data on the impact of micrometer-size fly ash particles on human cells is still incomplete. Fly ash samples were collected from several electric power stations in the United States (Rockdale, TX; Dolet Hill, Mansfield, LA; Rockport, IN; Muskogee, OK) and from a metallurgic plant located in the Russian Federation (Chelyabinsk Electro-Metallurgical Works OJSC). The particles were characterized using dynamic light scattering, atomic force, and hyperspectral microscopy. According to chemical composition, the fly ash studied was ferro-alumino-silicate mineral containing substantial quantities of Ca, Mg, and a negligible concentration of K, Na, Mn, and Sr. The toxicity of the fly ash microparticles was assessed in vitro using HeLa cells (human cervical cancer cells) and Jurkat cells (immortalized human T lymphocytes). Incubation of cells with different concentrations of fly ash resulted in a dose-dependent decrease in cell viability for all fly ash variants. The most prominent cytotoxic effect in HeLa cells was produced by the ash particles from Rockdale, while the least was produced by the fly ash from Chelyabinsk. In Jurkat cells, the lowest toxicity was observed for fly ash collected from Rockport, Dolet Hill and Muscogee plants. The fly ash from Rockdale and Chelyabinsk induced DNA damage in HeLa cells, as revealed by the single cell electrophoresis, and disrupted the normal nuclear morphology. The interaction of fly ash microparticles of different origins with cells was visualized using dark-field microscopy and hyperspectral imaging. The size of ash particles appeared to be an important determinant of their toxicity, and the smallest fly ash particles from Chelyabinsk turned out to be the most cytotoxic to Jukart cells and the most genotoxic to HeLa cells.
Collapse
Affiliation(s)
- Elvira Rozhina
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml Uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (E.R.); (I.I.); (L.N.); (F.A.); (S.B.)
| | - Ilnur Ishmukhametov
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml Uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (E.R.); (I.I.); (L.N.); (F.A.); (S.B.)
| | - Läysän Nigamatzyanova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml Uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (E.R.); (I.I.); (L.N.); (F.A.); (S.B.)
| | - Farida Akhatova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml Uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (E.R.); (I.I.); (L.N.); (F.A.); (S.B.)
| | - Svetlana Batasheva
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml Uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (E.R.); (I.I.); (L.N.); (F.A.); (S.B.)
| | - Sergey Taskaev
- Physics Department, Chelyabinsk State University, 129 Bratiev Kashirinykh St., 454001 Chelyabinsk, Russia;
| | - Carlos Montes
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA; (C.M.); (Y.L.)
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA; (C.M.); (Y.L.)
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml Uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (E.R.); (I.I.); (L.N.); (F.A.); (S.B.)
- Correspondence:
| |
Collapse
|
13
|
Shaikhulova S, Fakhrullina G, Nigamatzyanova L, Akhatova F, Fakhrullin R. Worms eat oil: Alcanivorax borkumensis hydrocarbonoclastic bacteria colonise Caenorhabditis elegans nematodes intestines as a first step towards oil spills zooremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143209. [PMID: 33160671 DOI: 10.1016/j.scitotenv.2020.143209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The environmental hazards of oil spills cannot be underestimated. Bioremediation holds promise among various approaches to tackle oil spills in soils and sediments. In particular, using oil-degrading bacteria is an efficient and self-regulating way to remove oil spills. Using animals for oil spills remediation is in its infancy, mostly due to the lack of efficient oil-degrading capabilities in eukaryotes. Here we show that Caenorhabditis elegans nematodes survive for extended periods (up to 22 days) on pure crude oil diet. Moreover, we report for the first time the use of Alcanivorax borkumensis hydrocarbonoclastic bacteria for colonisation of C. elegans intestines, which allows for effective digestion of crude oil by the nematodes. The worms fed and colonised by A. borkumensis demonstrated the similar or even better longevity, resistance against oxidative and thermal stress and reproductivity as those animals fed with Escherichia coli bacteria (normal food). Importantly, A. borkumensis-carrying nematodes were able to accumulate oil droplet from oil-contaminated soils. Artificial colonisation of soil invertebrates with oil-degrading bacteria will be an efficient way to distribute microorganisms in polluted soil, thus opening new avenues for oil spills zooremediation.
Collapse
Affiliation(s)
- Särbinaz Shaikhulova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Gӧlnur Fakhrullina
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Läysän Nigamatzyanova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Farida Akhatova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation.
| |
Collapse
|
14
|
Restoration of a XVII Century’s predella reliquary: From Physico-Chemical Characterization to the Conservation Process. FORESTS 2021. [DOI: 10.3390/f12030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report on the restoration of a XVII century’s predella reliquary, which is a part of a larger setup that includes a wall reliquary and a wooden crucified Christ, both belonging to the church of “Madre Maria SS. Assunta”, in Polizzi Generosa, Sicily, Italy. The historical/artistic and paleographic research was flanked successfully by the scientific objective characterization of the materials. The scientific approach was relevant in the definition of the steps for the restoration of the artefact. The optical microscopy was used for the identification of the wood species. Electron microscopy and elemental mapping by energy-dispersive X-ray (EDX) was successful in the identification of the layered structure for the gilded surface. The hyperspectral imaging method was successfully employed for an objective chemical mapping of the surface composition. We proved that the scientific approach is necessary for a critical and objective evaluation of the conservation state and it is a necessary step toward awareness of the historical, liturgical, spiritual and artistic value. In the second part of this work, we briefly describe the conservation protocol and the use of a weak nanocomposite glue. In particular, a sustainable approach was considered and therefore mixtures of a biopolymer from natural resources, such as funori from algae, and naturally occurring halloysite nanotubes were considered. Tensile tests provided the best composition for this green nanocomposite glue.
Collapse
|
15
|
Nigamatzyanova L, Fakhrullin R. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116337. [PMID: 33383415 DOI: 10.1016/j.envpol.2020.116337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 05/22/2023]
Abstract
Microplastics pollution is a serious ecological threat, severely affecting environments and human health. Tackling microplastics pollution requires an effective methodology to detect minute polymer particles in environmental samples and organisms. Here were report a novel methodology to visualise and identify nanoscale (down to 100 nm) and microscale synthetic commercially-available uniform spherical polymer particles using dark-field hyperspectral microscopy in visible-near infrared (400-1000 nm) wavelength range. Polystyrene particles with diameters between 100 nm-1 μm, polymethacrylate 1 μm and melamine formaldehyde 2 μm microspheres suspended in pure water samples were effectively imaged and chemically identified based on spectral signatures and image-assisted analysis. We succeeded in visualisation and spectral identification of pure and mixed nano- and microplastics in vivo employing optically-transparent Caenorhabditis elegans nematodes as a model to demonstrate the ingestion and tissue distribution of microplastics. As we demonstrate here, dark-field hyperspectral microscopy is capable for differentiating between chemically-different microplastics confined within live invertebrate intestines. Moreover, this optical technology allows for quantitative identification of microplastics ingested by nematodes. We believe that this label-free non-destructive methodology will find numerous applications in environmental nano- and microplastics detection and quantification, investigation of their biodistribution in tissues and organs and nanotoxicology.
Collapse
Affiliation(s)
- Läysän Nigamatzyanova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation.
| |
Collapse
|
16
|
Biocompatibility of magnetic nanoparticles coating with polycations using A549 cells. J Biotechnol 2020; 325:25-34. [PMID: 33285149 DOI: 10.1016/j.jbiotec.2020.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/09/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Fe3O4 nanoparticles were obtained by chemical coprecipitation of iron chloride and sodium hydroxide. The morphology and sizes of the obtained nanoparticles were characterized using laser Doppler velocimetry, transmission electron and atomic force microscopy. Then the nanoparticles were stabilized by three polycations (polyethylenimine (PEI), poly(allylamine hydrochloride) (PAH), poly(diallyldimethylammonium chloride) (PDADMAC)) to increase their biocompatibility. The cytotoxicity of the obtained polymer-stabilized nanoparticles was studied using a human lung carcinoma cell line (A549). The biodistribution of nanoparticles stabilized by polycations in human lung carcinoma cells was analyzed by transmission electron microscopy, and the toxicity of nanomaterials was evaluated using toxicity tests and flow cytometry. As a result, the most biocompatible nanoparticle-biopolymer complex was identified. PAH stabilized magnetic nanoparticles demonstrated the best biocompatibility, and the PEI-magnetic nanoparticle complex was the most toxic.
Collapse
|
17
|
Cavallaro G, Milioto S, Konnova S, Fakhrullina G, Akhatova F, Lazzara G, Fakhrullin R, Lvov Y. Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24348-24362. [PMID: 32372637 PMCID: PMC8007073 DOI: 10.1021/acsami.0c05252] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We propose a novel keratin treatment of human hair by its aqueous mixtures with natural halloysite clay nanotubes. The loaded clay nanotubes together with free keratin produce micrometer-thick protective coating on hair. First, colloidal and structural properties of halloysite/keratin dispersions and the nanotube loaded with this protein were investigated. Above the keratin isoelectric point (pH = 4), the protein adsorption into the positive halloysite lumen is favored because of the electrostatic attractions. The ζ-potential magnitude of these core-shell particles increased from -35 (in pristine form) to -43 mV allowing for an enhanced colloidal stability (15 h at pH = 6). This keratin-clay tubule nanocomposite was used for the immersion treatment of hair. Three-dimensional-measuring laser scanning microscopy demonstrated that 50-60% of the hair surface coverage can be achieved with 1 wt % suspension application. Hair samples have been exposed to UV irradiation for times up to 72 h to explore the protection capacity of this coating by monitoring the cysteine oxidation products. The nanocomposites of halloysite and keratin prevent the deterioration of human hair as evident by significant inhibition of cysteic acid. The successful hair structure protection was also visually confirmed by atomic force microscopy and dark-field hyperspectral microscopy. The proposed formulation represents a promising strategy for a sustainable medical coating on the hair, which remediates UV irradiation stress.
Collapse
Affiliation(s)
- Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze I-50121, Italy
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze I-50121, Italy
| | - Svetlana Konnova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation
| | - Gölnur Fakhrullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze I-50121, Italy
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation
- Institute for Micromanufacturing, Louisiana Tech University, 505 Tech Drive, Ruston, Louisiana 71272, United States
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, 505 Tech Drive, Ruston, Louisiana 71272, United States
| |
Collapse
|
18
|
Guryanov I, Naumenko E, Akhatova F, Lazzara G, Cavallaro G, Nigamatzyanova L, Fakhrullin R. Selective Cytotoxic Activity of Prodigiosin@halloysite Nanoformulation. Front Bioeng Biotechnol 2020; 8:424. [PMID: 32528938 PMCID: PMC7264093 DOI: 10.3389/fbioe.2020.00424] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
Prodigiosin, a bioactive secondary metabolite produced by Serratia marcescens, is an effective proapoptotic agent against various cancer cell lines, with little or no toxicity toward normal cells. The hydrophobicity of prodigiosin limits its use for medical and biotechnological applications, these limitations, however, can be overcome by using nanoscale drug carriers, resulting in promising formulations for target delivery systems with great potential for anticancer therapy. Here we report on prodigiosin-loaded halloysite-based nanoformulation and its effects on viability of malignant and non-malignant cells. We have found that prodigiosin-loaded halloysite nanotubes inhibit human epithelial colorectal adenocarcinoma (Caco-2) and human colon carcinoma (HCT116) cells proliferative activity. After treatment of Caco-2 cells with prodigiosin-loaded halloysite nanotubes, we have observed a disorganization of the F-actin structure. Comparison of this effects on malignant (Caco-2, HCT116) and non-malignant (MSC, HSF) cells suggests the selective cytotoxic and genotoxic activity of prodigiosin-HNTs nanoformulation.
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina Naumenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Palermo, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Florence, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Palermo, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Florence, Italy
| | - Läysän Nigamatzyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
19
|
Naumenko E, Fakhrullin R. Halloysite Nanoclay/Biopolymers Composite Materials in Tissue Engineering. Biotechnol J 2019; 14:e1900055. [PMID: 31556237 DOI: 10.1002/biot.201900055] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/23/2019] [Indexed: 12/29/2022]
Abstract
Biocompatible materials for the fabrication of tissue substitutes are crucially important in the advancement of modern medicinal biotechnology. These materials, to serve their function, should be similar in physical, chemical, biological, and structural properties to native tissues which they are aimed to mimic. The porosity of artificial scaffolds is essential for normal nutrient transmission to cells, gas diffusion, and cell attachment and proliferation. Nanoscale inorganic additives and dopants are widely used to improve the functional properties of the polymer materials for tissue engineering. Among these inorganic dopants, halloysite nanotubes are arguably the most perspective candidates because of their biocompatibility and functional properties allowing to enhance significantly the mechanical and chemical stability of tissue engineering scaffolds. Here, this vibrant field of biotechnology for regenerative medicine is overviewed.
Collapse
Affiliation(s)
- Ekaterina Naumenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Republic of Tatarstan, Russian Federation
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Republic of Tatarstan, Russian Federation
| |
Collapse
|
20
|
Guryanov I, Naumenko E, Konnova S, Lagarkova M, Kiselev S, Fakhrullin R. Spatial manipulation of magnetically-responsive nanoparticle engineered human neuronal progenitor cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 20:102038. [PMID: 31220595 DOI: 10.1016/j.nano.2019.102038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/18/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Here we report a detailed investigation of the interaction of neuronal progenitor cells and neurons with polyelectrolyte-stabilized magnetic iron oxide nanoparticles. Human neuronal progenitor and neurons were differentiated in vitro from fibroblast-derived induced pluripotent stem cells. The cytotoxic effects of poly(allylamine hydrochloride) were determined on human skin fibroblasts and neuronal progenitor cells. Immunocytochemical staining of lamins A/C and B in cells treated separately with poly(allylamine hydrochloride) and magnetic nanoparticles allowed to exclude these nuclear components as targets of toxic effects. We demonstrate that magnetic nanoparticles accumulated in cytoplasm and on the surface of neuronal progenitor cells neither interacted with the nuclear envelope nor penetrated into the nuclei of neuronal cells. The possibility of guidance of magnetically functionalized neuronal progenitor cells under magnetic field was demonstrated. Magnetization of progenitor cells using poly(allylaminehydrochloride)-stabilized magnetic nanoparticles allows for successful managing their in vitro localization in a monolayer.
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Ekaterina Naumenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Svetlana Konnova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Maria Lagarkova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation; Scientific-Research Institute of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Sergey Kiselev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation.
| |
Collapse
|
21
|
Rozhina E, Batasheva S, Danilushkina A, Kryuchkova M, Gomzikova M, Cherednichenko Y, Nigamatzyanova L, Akhatova F, Fakhrullin R. Kaolin alleviates the toxicity of graphene oxide for mammalian cells. MEDCHEMCOMM 2019; 10:1457-1464. [PMID: 31534660 PMCID: PMC6748275 DOI: 10.1039/c8md00633d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/04/2019] [Indexed: 11/21/2022]
Abstract
The development of novel nanoscale vehicles for drug delivery promotes the growth of interest in investigations of interaction between nanomaterials. In this paper, we report the in vitro studies of eukaryotic cell physiological response to incubation with graphene oxide and planar kaolin nanoclay. Graphene family materials, including graphene oxide (GO), hold promise for numerous applications due to their unique electronic properties. However, graphene oxide reveals toxicity to some cell lines through an unidentified mechanism. Thus, methods and agents reducing the toxicity of graphene oxide can widen its practical application. We used a colorimetric test, flow cytometry and cell index assay methods to evaluate the effects of separate and combined application of graphene oxide and kaolin on mammalian cells. We have shown that the joint application of graphene oxide and kaolin reduced the negative effects of graphene by almost 20%, most likely because of coagulation of the nanoparticles with each other, which was detected by atomic force microscopy.
Collapse
Affiliation(s)
- Elvira Rozhina
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Anna Danilushkina
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Marina Kryuchkova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Marina Gomzikova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Yuliya Cherednichenko
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Läysän Nigamatzyanova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| |
Collapse
|
22
|
Gonell F, Botas AMP, Brites CDS, Amorós P, Carlos LD, Julián-López B, Ferreira RAS. Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy. NANOSCALE ADVANCES 2019; 1:2537-2545. [PMID: 36132713 PMCID: PMC9418934 DOI: 10.1039/c8na00412a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/28/2019] [Indexed: 05/23/2023]
Abstract
Transparent upconverting hybrid nanocomposites are exciting materials for advanced applications such as 3D displays, nanosensors, solar energy converters, and fluorescence biomarkers. This work presents a simple strategy to disperse upconverting β-NaYF4:Yb3+/Er3+ or Tm3+ nanoparticles into low cost, widely used and easy-to-process polydimethylsiloxane (PDMS)-based organic-inorganic hybrids. The upconverting hybrids were shaped as monoliths, films or powders displaying in the whole volume Tm3+ or Er3+ emissions (in the violet/blue and green/red spectral regions, respectively). For the first time, hyperspectral microscopy allows the identification at the submicron scale of differences in the hybrids' emission colour, due to variations in the relative intensity of the distinct components of the upconversion spectrum. The effect is attributed to the size distribution of the agglomerates of nanoparticles, highlighting the importance of studying the emission at submicron scales, since this effect is not observable in measurements recorded in larger areas.
Collapse
Affiliation(s)
- Francisco Gonell
- Institute of Advanced Materials (INAM), Universitat Jaume I Castellón de la Plana 12006 Spain
| | - Alexandre M P Botas
- Departamento de Física and CICECO - Aveiro Institute of Materials, Universidade de Aveiro 3810-193 Aveiro Portugal
| | - Carlos D S Brites
- Departamento de Física and CICECO - Aveiro Institute of Materials, Universidade de Aveiro 3810-193 Aveiro Portugal
| | - Pedro Amorós
- Institute of Materials Science (ICMUV), University of Valencia Catedrático José Beltrán 2 46980 Paterna Valencia Spain
| | - Luís D Carlos
- Departamento de Física and CICECO - Aveiro Institute of Materials, Universidade de Aveiro 3810-193 Aveiro Portugal
| | - Beatriz Julián-López
- Institute of Advanced Materials (INAM), Universitat Jaume I Castellón de la Plana 12006 Spain
| | - Rute A S Ferreira
- Departamento de Física and CICECO - Aveiro Institute of Materials, Universidade de Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
23
|
Liu F, Guo Y, Hu Y, Zhang X, Zheng X. Intracellular dark-field imaging of ATP and photothermal therapy using a colorimetric assay based on gold nanoparticle aggregation via tetrazine/trans-cyclooctene cycloaddition. Anal Bioanal Chem 2019; 411:5845-5854. [PMID: 31278549 DOI: 10.1007/s00216-019-01966-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022]
Abstract
In this study, we developed a colorimetric ATP assay based on the ATP-induced aggregation of Au nanoparticles (AuNPs). This aggregation modified the local surface plasmon resonance (LSPR) of the AuNPs, which was used to detect and localize ATP in cells via dark-field imaging. The AuNP aggregation process involved the reaction of two types of functionalized AuNPs with each other: tetrazine-modified AuNPs (Au3-N4) and asymmetrically functionalized trans-cyclooctene-modified AuNPs (Au1-(E)-cyclooctene). This cycloaddition reaction occurs without the need for a catalyst such as the Cu ions that are used in the "click" reactions often employed in assays of this type. Initially, we asymmetrically functionalized both types of AuNPs and let them dimerize, which permitted us to explore the resulting wavelength shift in the LSPR of the AuNPs. Then, to facilitate the specific recognition of ATP, a designed DNA (DNA1) containing an ATP aptamer sequence was attached to carboxyl polystyrene microbeads (MBs). After attaching a different DNA (DNA2, which hybridizes with DNA1) to Au1-(E)-cyclooctene, the assay probe MB/DNA1/DNA2/Au1-(E)-cyclooctene (MB/Au1) was generated. While bound to MB/DNA1, the DNA2/Au1-(E)-cyclooctene cannot react with Au3-N4 due to steric hindrance from the MB. However, in the presence of ATP, the probe MB/Au1 dissociates, and the resulting free DNA2/Au1-(E)-cyclooctene can then react with the Au3-N4, leading to the formation of AuNP aggregates. Dark-field microscopy (DFM) images showed that the LSPR of the AuNPs shifted from the green region (AuNP monomers) to the orange-red region (AuNP aggregates) in the presence of intracellular ATP. Moreover, the AuNP aggregates were found to exhibit significant photothermal effects under 808-nm laser irradiation. Upon introducing the probe MB/Au1 and Au3-N4 into HeLa cells in vitro and in vivo, and then irradiating the cells with a 808-nm NIR laser, the resulting AuNP aggregates showed promising photothermal cancer therapy performance. This assay therefore has the potential to be widely used for the identification and determination of nanoparticles in biological DFM and in tumor theranostics. Graphical abstract.
Collapse
Affiliation(s)
- Fei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.,Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Shusheng Zhang Innovation Studio for Science and Technology Leader of Shandong Province, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Yingshu Guo
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Shusheng Zhang Innovation Studio for Science and Technology Leader of Shandong Province, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
| | - Yinhua Hu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Shusheng Zhang Innovation Studio for Science and Technology Leader of Shandong Province, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Xiaoru Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiangjiang Zheng
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Shusheng Zhang Innovation Studio for Science and Technology Leader of Shandong Province, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| |
Collapse
|