1
|
Yamamoto S, Kindaichi S, Matsubara R, Kubono A, Giridharagopal R, Ginger DS, Mitsuishi M. Organic Electrochemical Transistors Based on Blend Films with Thermoresponsive Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501927. [PMID: 40346972 DOI: 10.1002/smll.202501927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/15/2025] [Indexed: 05/12/2025]
Abstract
Organic electrochemical transistors (OECTs) are biocompatible devices with significant potential for biosensing. Functionalizing the channel layers is essential for improving the selectivity and sensitivity of OECT-based biosensors. A straightforward one-step fabrication method for these functionalized channel layers can simplify the production process for these devices. This study developed OECT devices based on a polymer blend of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and poly(N-isopropylacrylamide) (PNIPAM) that respond to temperature changes. Structural analyses of the blended films showed that hole transport through PEDOT is maintained even after blending, and the PNIPAM is segregated at the surface. To overcome the large chain conformational change that occurs with temperature changes, a flexible poly(ethylene glycol) diglycidyl ether (PEGDE) crosslinker is used in addition to the conventional crosslinker, (3-glycidyloxypropyl)trimethoxysilane (GOPS). As a result, the PEGDE + GOPS binary crosslinker system exhibited reversible responses to temperature cycling. These results highlight two key considerations when designing a functional mixed-conductor film based on a polymer blend system: (1) vertical phase separation and (2) proper crosslinker selection.
Collapse
Affiliation(s)
- Shunsuke Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shuhei Kindaichi
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Ryosuke Matsubara
- Department of Electronics and Materials Science, Shizuoka University, Hamamatsu, 432-8561, Japan
| | - Atsushi Kubono
- Department of Electronics and Materials Science, Shizuoka University, Hamamatsu, 432-8561, Japan
| | - Rajiv Giridharagopal
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Masaya Mitsuishi
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
2
|
Ueno S, Yamauchi M, Shioya N, Matsuda H, Hasegawa T, Yamamoto K, Mizuhata Y, Yamada H. Hydrogen-Bond-Directed Supramolecular Organic Semiconductor Thin Films Realized via Thermal Precursor Approach. Angew Chem Int Ed Engl 2025:e202425188. [PMID: 40052769 DOI: 10.1002/anie.202425188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 05/13/2025]
Abstract
Flexible organic semiconductors are regarded as an important class of functional materials, enabling their fabrication via a solution-processed method. However, supramolecularly designed organic thin-film transistor (OTFT) devices using hydrogen bonds have not been sufficiently developed. This is because of the reduced solubility caused by introducing hydrogen bond sites and the difficulty in controlling molecular orientations and packing structures. Herein, we report a reasonable strategy for the formation of hydrogen-bonded semiconductor thin films of a tetrabenzoporphyrin derivative with amide groups using the thermal precursor approach. The thin films are successfully fabricated by thermal conversion of the corresponding precursor in the film state. Assembly structure with a hydrogen-bond network is revealed by the combination of X-ray diffraction and infrared p-polarized multiple-angle incidence resolution spectrometry. The OTFT devices exhibit high hole mobility of 0.25 cm2 V-1 s-1 among hydrogen-bonded OTFTs reported previously. Notably, we unveiled the high thermal stability of semiconductor films without decreasing device performance in air up to 250 °C. This strategy can become a key methodology to form hydrogen-bond-directed organic electronic devices, namely supramolecular devices.
Collapse
Affiliation(s)
- So Ueno
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Mitsuaki Yamauchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Hiroshi Matsuda
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Keitaro Yamamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Hiroko Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
3
|
Shioya N, Yoshida M, Fujii M, Eda K, Hasegawa T. Disappearance of Odd-Even Effects at the Substrate Interface of n-Alkanes. J Am Chem Soc 2024; 146:32032-32039. [PMID: 39515837 DOI: 10.1021/jacs.4c12289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The physical and chemical properties of organic compounds having alkyl chains are frequently influenced by the parity of the chain length, which is known as the odd-even effect. Understanding the molecular origin of this phenomenon is particularly important for designing materials used in organic thin-film devices. In this work, we focus on thin films of n-alkanes as the simplest model to study the odd-even effect at the substrate interface and analyze the aggregation structure using p-polarized multiple-angle incidence resolution spectrometry in combination with grazing incidence X-ray diffraction. The spectroscopic analysis shows a pronounced odd-even alternation of the molecular tilt angles in the multilayer films. In addition, high-resolution Brewster-angle transmission spectroscopy reveals that the conformation of the methyl group highly depends on whether the carbon number is even or odd. In contrast to the multilayer films, the odd-even effects do not appear in the monolayer films. We demonstrate that, in other words, the interlayer interactions of the molecules are responsible for the odd-even effects. This study also highlights the first identification of the monolayer phase of n-alkanes by using grazing incidence X-ray diffraction in combination with high-resolution infrared spectroscopy. These results not only reveal the molecular origin for the odd-even effect of n-alkanes but also provide analytical techniques for discussing the monolayer structure of various alkylated compounds on a functional group basis.
Collapse
Affiliation(s)
- Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mariko Yoshida
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masamichi Fujii
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazuo Eda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokko-dai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
4
|
Li Y, Lee Y, Fujikawa S, Shen J, Sasaki S, Matsuzaki M, Matsui N, Hosomi T, Yanagida T, Shiomi J. Ultra-Slippery Hydrophilic Surfaces by Hybrid Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63039-63048. [PMID: 39482946 PMCID: PMC11565562 DOI: 10.1021/acsami.4c15331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
Slippery solid surfaces with low droplet contact angle hysteresis (CAH) are crucial for applications in thermal management, energy harvesting, and environmental remediation. Traditionally, reducing CAH has been achieved by enhancing surface homogeneity. This work challenges this conventional approach by developing slippery yet hydrophilic surfaces through hybrid monolayers composed of hydrophilic polyethylene glycol (PEG)-silane and hydrophobic alkyl-silane molecules. These hybrid surfaces exhibited exceptionally low CAH (<2°), outperforming well-established homogeneous slippery surfaces. Molecular structural analyses suggested that the remarkable slipperiness is due to a unique spatially staggered molecular configuration, where longer PEG chains shield shorter alkyl chains, thus creating additional free volume while ensuring surface coverage. This was supported by the observation of decreased CAH with increasing temperature, highlighting the role of grafted chain mobility in enhancing slipperiness by self-smoothing and fluid-like behaviors. Furthermore, condensation experiments demonstrated the exceptional performance of the hydrophilic slippery surfaces in dew harvesting due to superior condensation nucleation, droplet coalescence, and self-sweeping efficiency. These findings offer a novel paradigm for designing advanced slippery surfaces and provide valuable insights into the molecular mechanisms governing dynamic wetting.
Collapse
Affiliation(s)
- Yuanzhe Li
- Institute
of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yaerim Lee
- Department
of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shota Fujikawa
- Department
of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Jiaxing Shen
- Department
of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shota Sasaki
- Nippon
Paint Surf Chemicals Co., Ltd., Tokyo 140-8675, Japan
| | | | - Norizumi Matsui
- Nippon
Paint Surf Chemicals Co., Ltd., Tokyo 140-8675, Japan
| | - Takuro Hosomi
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Yanagida
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Junichiro Shiomi
- Institute
of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Department
of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Sambe K, Takeda T, Hoshino N, Matsuda W, Shimada K, Tsujita K, Maruyama S, Yamamoto S, Seki S, Matsumoto Y, Akutagawa T. Carrier Transport Switching of Ferroelectric BTBT Derivative. J Am Chem Soc 2024; 146:8557-8566. [PMID: 38484118 DOI: 10.1021/jacs.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Alkylamide-substituted [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivative of BTBT-NHCOC14H29 (1), which has ferroelectric N-H···O= hydrogen-bonding network of alkylamide group and two-dimensional (2D) electric structure of BTBT π-cores, was prepared to design the external electric field-responsive organic semiconductors. The short-chain derivative of BTBT-NHCOC3H7 (1') revealed the coexistence of a 2D electronic band structure based on the herringbone BTBT arrangement and the one-dimensional (1D) hydrogen-bonding chain. 1 formed a smectic E (SmE) liquid crystal phase above 412 K and showed ferroelectric hysteresis in the electric field-polarization (P-E) curves at 403-433 K. The remanent polarization (Pr) and coercive electric field (Ec) of 1 at 408 K, 0.1 Hz were 24.0 μC cm-2 and 5.54 V μm-1, respectively. By thermal annealing of thin-film 1 at 443 K, the molecular assembly structure of 1 changed from a monolayer to a bilayer structure with high crystallinity, resulting in conducting layers of BTBT parallel to the substrate surface. The organic field-effect transistor (OFET) device with thermally annealed thin-film 1 showed p-type semiconducting behavior with the hole mobility of 1.0 × 10-3 cm2 V-1 s-1. Furthermore, device 1 showed switching behavior of semiconducting properties by electric field poling and thermal annealing cycle. The electric field response of ferroelectrics modulated the molecular orientation and conduction properties of organic semiconductors, resulting in external electric field control of carrier transport properties.
Collapse
Affiliation(s)
- Kohei Sambe
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Norihisa Hoshino
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Wakana Matsuda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Kazuki Shimada
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Kanae Tsujita
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Shingo Maruyama
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Shunsuke Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Yuji Matsumoto
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
| |
Collapse
|
6
|
Shioya N, Fang T, Fujii M, Fujiwara R, Hayashi H, Yamada H, Hasegawa T. Quantitative Analysis of Photochemical Reactions in Pentacene Precursor Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1137-1142. [PMID: 38149378 DOI: 10.1021/acs.langmuir.3c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
On-surface reactions are rapidly gaining attention as a chemical technique for synthesizing organic functional materials, such as graphene nanoribbons and molecular semiconductors. Quantitative analysis of such reactions is essential for fabricating high-quality film structures, but until our recent work using p-polarized multiple-angle incidence resolution spectrometry (pMAIRS), no analytical technique is available to quantify the reaction rate. In the present study, the pMAIRS technique is employed to analyze the photochemical reaction from 6,13-dihydro-6,13-ethanopentacene-15,16-dione to pentacene in thin films. The spectral analysis on a pMAIRS principle readily reveals the photoconversion rate accurately without other complicated calculations. Thus, this study underlines that the pMAIRS technique is a powerful tool for quantitative analysis of on-surface reactions, as well as molecular orientation.
Collapse
Affiliation(s)
- Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tao Fang
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masamichi Fujii
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ryoi Fujiwara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hironobu Hayashi
- Center for Basic Research on Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Hiroko Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
7
|
Sambe K, Takeda T, Hoshino N, Matsuda W, Miura R, Tsujita K, Maruyama S, Yamamoto S, Seki S, Matsumoto Y, Akutagawa T. Ferroelectric Organic Semiconductor: [1]Benzothieno[3,2- b][1]benzothiophene-Bearing Hydrogen-Bonding -CONHC 14H 29 Chain. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58711-58722. [PMID: 38055344 DOI: 10.1021/acsami.3c14476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
An alkylamide-substituted [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivative of BTBT-CONHC14H29 (1) and C8H17-BTBT-CONHC14H29 (2) were prepared to design the multifunctional organic materials, which can show both ferroelectric and semiconducting properties. Single-crystal X-ray structural analyses of short-chain (-CONHC3H7) derivatives revealed the coexistence of two-dimensional (2D) electronic band structures brought from a herringbone arrangement of the BTBT π core and the one-dimensional (1D) hydrogen-bonding chains of -CONHC3H7 chains. The thin films of 1 and 2 fabricated on the Si/SiO2 substrate surface have monolayer and bilayer structures, respectively, resulting in conducting layers parallel to the substrate surface, which is suitable for a channel layer of organic field-effect transistors (OFETs). The thin film of 1 indicated a hole mobility μFET = 2.4 × 10-5 cm2 V-1 s-1 and threshold voltage VTh = - 29 V, whereas that of 2 showed a μFET = 2.1 × 10-2 cm2 V-1 s-1 and threshold voltage VTh = -9.7 V. Both 1 and 2 formed the smectic E (SmE) phase above 410 and 369 K, respectively, where the existence of a hole transport pathway was confirmed in the SmE phase. The ferroelectric hysteresis behavior was observed in bulk 1 and 2 in the polarization-electric field (P-E) curves at the SmE phase. 1 showed the remanent polarization Pr = 2.3 μC cm-2 and coercive electric field Ec = 5.2 V μm-1, whereas the Pr and Ec of 2 were 3.4 μC cm-2 and 7.0 V μm-1 at the conditions of 453 K and 1 Hz. Introduction of alkylamide units into the BTBT π core has the potential to develop the external stimulus-responsive organic semiconductors brought from both ferroelectricity and semiconducting properties.
Collapse
Affiliation(s)
- Kohei Sambe
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Norihisa Hoshino
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Wakana Matsuda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Riku Miura
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kanae Tsujita
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shingo Maruyama
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shunsuke Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuji Matsumoto
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
8
|
Shimada K, Maruyama S, Miyadera T, Kaminaga K, Matsumoto Y. Reaction Dynamics of C(NH 2) 3SnI 3 Formation from Vacuum-Deposited C(NH 2) 3I and SnI 2 Bilayer Thin Films Investigated by In Situ Infrared Multiple-Angle Incidence-Resolved Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45411-45417. [PMID: 37707525 DOI: 10.1021/acsami.3c08708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Understanding the formation process of organic-inorganic halide perovskite (OIHP) thin films is important for the fabrication of high-quality thin films, which, in turn, are crucial for achieving high-performance devices. To address this challenge, we developed an in situ system of infrared multiple-angle incidence-resolved spectroscopy (IR-MAIRS) combined with a vacuum deposition system. "Orientation-free" isotropic spectra constructed from IR-MAIRS spectra enable us to perform quantitative analysis of the formation process of C(NH2)3SnI3 (GASnI3) thin films from unreacted C(NH2)3I (guanidine hydroiodide (GAI))/SnI2 bilayer structures predeposited in a vacuum. The analysis of the dependence of the GASnI3 formation rate on the reaction temperature using the Avrami model has revealed that a diffusion-controlled reaction process of GAI and SnI2 governs the formation kinetics. The present study points to the usefulness of in situ IR-MAIRS analysis in understanding the growth mechanisms of vacuum-deposited OIHP thin films and hence the potential to accelerate the development of vacuum processes for the fabrication of high-quality OIHP thin films.
Collapse
Affiliation(s)
- Kazuki Shimada
- Department of Applied Chemistry, School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Shingo Maruyama
- Department of Applied Chemistry, School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Tetsuhiko Miyadera
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Kenichi Kaminaga
- Department of Applied Chemistry, School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Yuji Matsumoto
- Department of Applied Chemistry, School of Engineering, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
9
|
Bölke S, Früh A, Trilling F, Forster M, Scherf U, Chassé T, Peisert H. Influence of Backbone Ladderization and Side Chain Variation on the Orientation of Diketopyrrolopyrrole-Based Donor-Acceptor Copolymers. Molecules 2023; 28:6435. [PMID: 37764211 PMCID: PMC10535938 DOI: 10.3390/molecules28186435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Ladder polymers with poly(diketopyrrolopyrrole) (DPP) moieties have recently attracted enormous interest for a large variety of opto-electronic applications. Since the rigidity of the backbone increases with ladderization, a strong influence on the self-organization of thin films is expected. We study the molecular orientation of DPP-based ladder polymers in about 50 nm thin films using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS). Exemplarily, for one polymer, the orientation in thicker films is qualitatively investigated by infrared spectroscopy in transmission. Further, this method allows us to rule out the effects of a possible azimuthal ordering, which would affect the analysis of the orientation by PM-IRRAS. For all polymers, the long axis of the polymer backbone is preferentially oriented parallel to the substrate surface, pointing to a high degree of ordering. It is suggested that the choice of the side chains might be a promising way to tune for face-on and edge-on orientations. The exemplarily performed investigation of interface properties on substrates with different work functions suggests that the choice of the side chains has a minor effect on the interfacial electronic interface structure.
Collapse
Affiliation(s)
- Sven Bölke
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany (A.F.)
| | - Andreas Früh
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany (A.F.)
| | - Florian Trilling
- Makromolekulare Chemie (buwMakro) und Wuppertal Center for Smart Materials and Systems (CM@S), Bergische Universität Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany (M.F.)
| | - Michael Forster
- Makromolekulare Chemie (buwMakro) und Wuppertal Center for Smart Materials and Systems (CM@S), Bergische Universität Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany (M.F.)
| | - Ullrich Scherf
- Makromolekulare Chemie (buwMakro) und Wuppertal Center for Smart Materials and Systems (CM@S), Bergische Universität Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany (M.F.)
| | - Thomas Chassé
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany (A.F.)
| | - Heiko Peisert
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany (A.F.)
| |
Collapse
|
10
|
Yokoi A, Ukai M, Yasui T, Inokuma Y, Hyeon-Deuk K, Matsuzaki J, Yoshida K, Kitagawa M, Chattrairat K, Iida M, Shimada T, Manabe Y, Chang IY, Asano-Inami E, Koya Y, Nawa A, Nakamura K, Kiyono T, Kato T, Hirakawa A, Yoshioka Y, Ochiya T, Hasegawa T, Baba Y, Yamamoto Y, Kajiyama H. Identifying high-grade serous ovarian carcinoma-specific extracellular vesicles by polyketone-coated nanowires. SCIENCE ADVANCES 2023; 9:eade6958. [PMID: 37418532 PMCID: PMC10328412 DOI: 10.1126/sciadv.ade6958] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Cancer cell-derived extracellular vesicles (EVs) have unique protein profiles, making them promising targets as disease biomarkers. High-grade serous ovarian carcinoma (HGSOC) is the deadly subtype of epithelial ovarian cancer, and we aimed to identify HGSOC-specific membrane proteins. Small EVs (sEVs) and medium/large EVs (m/lEVs) from cell lines or patient serum and ascites were analyzed by LC-MS/MS, revealing that both EV subtypes had unique proteomic characteristics. Multivalidation steps identified FRα, Claudin-3, and TACSTD2 as HGSOC-specific sEV proteins, but m/lEV-associated candidates were not identified. In addition, for using a simple-to-use microfluidic device for EV isolation, polyketone-coated nanowires (pNWs) were developed, which efficiently purify sEVs from biofluids. Multiplexed array assays of sEVs isolated by pNW showed specific detectability in cancer patients and predicted clinical status. In summary, the HGSOC-specific marker detection by pNW are a promising platform as clinical biomarkers, and these insights provide detailed proteomic aspects of diverse EVs in HGSOC patients.
Collapse
Affiliation(s)
- Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mayu Ukai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takao Yasui
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yasuhide Inokuma
- Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Kim Hyeon-Deuk
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8502, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kitagawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kunanon Chattrairat
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mikiko Iida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taisuke Shimada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yumehiro Manabe
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - I-Ya Chang
- Department of Chemistry, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eri Asano-Inami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshihiro Koya
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akihiro Nawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Tomoyasu Kato
- Department of Gynecologic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Akihiko Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Kanagawa, Inage-ku, Chiba, Chiba 263-8555, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroaki Kajiyama
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| |
Collapse
|
11
|
Shioya N, Yoshida M, Fujii M, Shimoaka T, Miura R, Maruyama S, Hasegawa T. Conformational Change of Alkyl Chains at Phase Transitions in Thin Films of an Asymmetric Benzothienothiophene Derivative. J Phys Chem Lett 2022; 13:11918-11924. [PMID: 36525547 DOI: 10.1021/acs.jpclett.2c03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Among many promising organic semiconducting materials, 2-decyl-7-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C10) shows outstanding device performances for organic field-effect transistors. This compound has a highly ordered liquid crystalline state, i.e., the smectic E (SmE) phase. Although the transition from the crystalline state to the SmE phase is believed to accompany melting of the alkyl chains, no spectroscopic evidence has been found so far. In this study, the conformational change of the decyl chains in Ph-BTBT-C10 films across the phase transition is analyzed by temperature-dependent measurements in situ using infrared spectroscopy. The spectral analysis reveals that the polycrystalline film has latent conformational disorder (the gauche conformer), the rate of which becomes more pronounced with the heat treatment. As expected, melting of the decyl chains is observed above the transition temperature to the SmE phase. This study also highlights the discovery of some key bands sensitive to the phase transitions in liquid crystalline organic semiconductors.
Collapse
Affiliation(s)
- Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mariko Yoshida
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masamichi Fujii
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takafumi Shimoaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Riku Miura
- Department of Applied Chemistry, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shingo Maruyama
- Department of Applied Chemistry, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
12
|
Miura YF, Akagi Y, Hishida D, Takeoka Y. Two-Dimensional Layered Organic-Inorganic Hybrid Perovskite Thin-Film Fabrication by Langmuir-Blodgett and Intercalation Techniques. ACS OMEGA 2022; 7:47812-47820. [PMID: 36591147 PMCID: PMC9798391 DOI: 10.1021/acsomega.2c05626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate the formation of a well-organized thin film of two-dimensional (2D) layered (C18H37NH3)2PbI4 hybrid perovskite by immersing octadecyl amine (ODA) Langmuir-Blodgett (LB) films in an aqueous solution of PbI2/HI. The immersed films exhibit a sharp absorption band at 486 nm (2.55 eV), which is assigned to the excitonic absorption. The film exhibits a bright green emission under ultraviolet light at room temperature. The photoluminescence spectrum has a distinct peak at 497 nm (2.49 eV) and is a mirror image of the absorption spectrum. X-ray diffraction (XRD) analyses reveal that the film has a bilayer-like structure with a d-spacing of 6.4 nm, which is equal to that of a (C18H37NH3)2PbI4 perovskite single crystal with a quantum well (QW) structure. Only intense peaks of the (0 0 l) (l = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24) reflections are observed in the out-of-plane XRD pattern, indicating that the c axis is vertically oriented with respect to the substrate surface, and the orientational order is remarkably high. Fourier transform infrared spectroscopy reveals that the ODA molecules are protonated in the PbI2/HI solution. These results suggest that the nitrogen atoms of the ODA molecules in the film are protonated in the PbI2/HI solution, and then, inorganic layers of the PbI6 octahedra are intercalated in the alkyl ammonium film to neutralize the positive charge and form a QW structure. Fluorescence microscopy observation reveals that the 2D layered (C18H37NH3)2PbI4 film has a relatively uniform surface, reflecting the well-organized layered structure of the base material (ODA LB film). Because the intercalation process can be applied to various metal cations and halogen anions, we believe that the proposed technique will aid in the development of highly efficient 2D layered organic-inorganic hybrid perovskite materials.
Collapse
Affiliation(s)
- Yasuhiro F. Miura
- Department
of Physics, Hamamatsu University School
of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yoshiya Akagi
- Department
of Physics, Hamamatsu University School
of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Daizo Hishida
- Department
of Materials & Life Sciences, Faculty of Science and Engineering, Sophia University, Tokyo 102-8554, Japan
| | - Yuko Takeoka
- Department
of Materials & Life Sciences, Faculty of Science and Engineering, Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
13
|
Ariga K. Liquid Interfacial Nanoarchitectonics: Molecular Machines, Organic Semiconductors, Nanocarbons, Stem Cells, and Others. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Ariga K. Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. NANOSCALE 2022; 14:10610-10629. [PMID: 35838591 DOI: 10.1039/d2nr02513b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Promoted understanding of nanotechnology has enabled the construction of functional materials with nanoscale-regulated structures. Accordingly, materials science requires one-step further innovation by coupling nanotechnology with the other materials sciences. As a post-nanotechnology concept, nanoarchitectonics has recently been proposed. It is a methodology to architect functional material systems using atomic, molecular, and nanomaterial unit-components. One of the attractive methodologies would be to develop nanoarchitectonics in a defined dimensional environment with certain dynamism, such as liquid interfaces. However, nanoarchitectonics at liquid interfaces has not been fully explored because of difficulties in direct observations and evaluations with high-resolutions. This unsatisfied situation in the nanoscale understanding of liquid interfaces may keep liquid interfaces as unexplored and attractive frontiers in nanotechnology and nanoarchitectonics. Research efforts related to materials nanoarchitectonics on liquid interfaces have been continuously made. As exemplified in this review paper, a wide range of materials can be organized and functionalized on liquid interfaces, including organic molecules, inorganic nanomaterials, hybrids, organic semiconductor thin films, proteins, and stem cells. Two-dimensional nanocarbon sheets have been fabricated by molecular reactions at dynamically moving interfaces, and metal-organic frameworks and covalent organic frameworks have been fabricated by specific interactions and reactions at liquid interfaces. Therefore, functions such as sensors, devices, energy-related applications, and cell control are being explored. In fact, the potential for the nanoarchitectonics of functional materials in two-dimensional nanospaces at liquid surfaces is sufficiently high. On the basis of these backgrounds, this short review article describes recent approaches to materials nanoarchitectonics in a liquid-based two-dimensional world, i.e., interfacial regions within a nanoscale distance from the liquid phase.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
15
|
Ariga K. Biomimetic and Biological Nanoarchitectonics. Int J Mol Sci 2022; 23:3577. [PMID: 35408937 PMCID: PMC8998553 DOI: 10.3390/ijms23073577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
A post-nanotechnology concept has been assigned to an emerging concept, nanoarchitectonics. Nanoarchitectonics aims to establish a discipline in which functional materials are fabricated from nano-scale components such as atoms, molecules, and nanomaterials using various techniques. Nanoarchitectonics opens ways to form a more unified paradigm by integrating nanotechnology with organic chemistry, supramolecular chemistry, material chemistry, microfabrication technology, and biotechnology. On the other hand, biological systems consist of rational organization of constituent molecules. Their structures have highly asymmetric and hierarchical features that allow for chained functional coordination, signal amplification, and vector-like energy and signal flow. The process of nanoarchitectonics is based on the premise of combining several different processes, which makes it easier to obtain a hierarchical structure. Therefore, nanoarchitectonics is a more suitable methodology for creating highly functional systems based on structural asymmetry and hierarchy like biosystems. The creation of functional materials by nanoarchitectonics is somewhat similar to the creation of functional systems in biological systems. It can be said that the goal of nanoarchitectonics is to create highly functional systems similar to those found in biological systems. This review article summarizes the synthesis of biomimetic and biological molecules and their functional structure formation from various viewpoints, from the molecular level to the cellular level. Several recent examples are arranged and categorized to illustrate such a trend with sections of (i) synthetic nanoarchitectonics for bio-related units, (ii) self-assembly nanoarchitectonics with bio-related units, (iii) nanoarchitectonics with nucleic acids, (iv) nanoarchitectonics with peptides, (v) nanoarchitectonics with proteins, and (vi) bio-related nanoarchitectonics in conjugation with materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| |
Collapse
|
16
|
Stereoisomer-dependent conversion of dinaphthothienothiophene precursor films. Sci Rep 2022; 12:4448. [PMID: 35292720 PMCID: PMC8924201 DOI: 10.1038/s41598-022-08505-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/08/2022] [Indexed: 11/12/2022] Open
Abstract
Soluble precursor materials of organic semiconductors are employed for fabricating solution-processable thin film devices. While the so-called precursor approach has already been tried for various organic electronic devices such as transistors and solar cells, understanding of the conversion process in the film lags far behind. Here, we report that molecular aggregation of the precursor compound significantly influences the thermal conversion reaction in the film. For this study, two stereoisomers of a dinaphthothienothiophene (DNTT) precursor that are the endo- and exo-DNTT-phenylmaleimide monoadducts are focused on. The structural change during the thermal conversion process has been investigated by a combination of infrared spectroscopy and X-ray diffraction techniques. The results show that the endo-isomer is readily converted to DNTT in the film by heating, whereas the exo-isomer exhibits no reaction at all. This reaction suppression is found to be due to the self-aggregation property of the exo-isomer accompanying the intermolecular C–H\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\cdots$$\end{document}⋯O interactions. This finding shows a new direction of controlling the on-surface reaction, as well as the importance of analyzing the film structure at the initial stage of the reaction.
Collapse
|
17
|
Tomita K, Shioya N, Shimoaka T, Wakioka M, Hasegawa T. Control of supramolecular organizations by coordination bonding in tetrapyridylporphyrin thin films. Chem Commun (Camb) 2022; 58:2116-2119. [PMID: 35040835 DOI: 10.1039/d1cc06169k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coordination bonding has been employed for the first time to control molecular orientation in thin films and is demonstrated by using tetrapyridylporphyrin. Changing the central metal ion of porphyrin controls the balance of the coordination bonding and hydrogen bonding, and edge-on orientation has been realized for the first time as well as face-on orientation. The mechanism of the film structure formation is comprehensively explained based on the electron configuration of the central metal ion.
Collapse
Affiliation(s)
- Kazutaka Tomita
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Takafumi Shimoaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Masayuki Wakioka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
18
|
Zhang X, He A, Guo R, Zhao Y, Yang L, Morita S, Xu Y, Noda I, Ozaki Y. A new approach to removing interference of moisture from FTIR spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120373. [PMID: 34547685 DOI: 10.1016/j.saa.2021.120373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
An approach is developed to remove the interference of moisture from FTIR spectra. The interference arises from two aspects: the fluctuation on the temperature of the HeNe laser and the fluctuation on the transient concentration of moisture in the light - path of an FTIR spectrometer. The temperature fluctuation on the HeNe laser produces a systematic spectral shift between single-beam sample and background spectra, which often makes spectral subtraction method invalid in removing the interference of moisture. Herein, the Carbo similarity metric (the CAB value) is used to reflect the subtle spectral shift. A database of single-beam background spectra is established based on the concept of big-data and the pigeon-hole theory. The spectral shift is corrected by selecting suitable single-beam background spectra from the database to match with the given single-beam sample spectrum according to the CAB value. The interference caused by the fluctuation of the transient concentration of moisture is removed using a comprehensive 2D-COS method. We apply the approach on two polymeric samples to retrieve high-quality spectra and reliable second derivative spectra without the interference of moisture. The present work provides a new opportunity of obtaining the reliable second derivative spectra in the spectral region masked by moisture.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Beijing CKC, PerkinElmer Inc., Beijing 100015, PR China
| | - Ying Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, PR China.
| | - Shigeaki Morita
- Department of Engineering Science, Osaka Electro-Communication University, Osaka 572-8530, Japan
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Jiangsu JITRI Molecular Engineering Inst. Co., Ltd., Suzhou, Jiangsu 215500, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; School of Biological and Environmental Sciences and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
19
|
Shimoaka T, Fukumi A, Shioya N, Hasegawa T. Perfluoroalkanes remain on water surface even after volatilization: Affinity analysis of fluorinated solvent with water surface. J Colloid Interface Sci 2021; 611:390-396. [PMID: 34959011 DOI: 10.1016/j.jcis.2021.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
Perfluoroalkyl (Rf) compounds are known to have a poor solubility for most solvents except fluorinated solvents, which is known as a fluorous property. In Langmuir (L) film studies of Rf compounds, fluorinated solvents such as perfluoro-n-alkanes are generally used as a good solvent for depositing a sample monolayer on the water surface. On the other hand, a single Rf chain with a short length such as C6F13- is known to exhibit a totally different character from a condensed matter to have a strong affinity to a water molecule on the water surface via the dipole-dipole interaction, which is known as the dipole interactive (DI) property. On considering the DI property, the solvents of perfluoro-n-alkanes would remain on water for a long time, which may disturb the formation of L film on water. In the present study, details of a liquid layer of perfluoro-n-alkanes on water are investigated by using infrared external reflection (IR ER) spectrometry. Although the perfluoro-n-alkanes are highly volatile, the relevant vibration bands did not disappear even after two hours, which means that they remain on the water surface. Fortunately, however, the remained solvent, C6F14, has been found no disturbing factor for preparation of L films.
Collapse
Affiliation(s)
- Takafumi Shimoaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Aki Fukumi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
20
|
Ariga K. Nanoarchitectonics for Analytical Science at Interfaces and with Supramolecular Nanostructures. ANAL SCI 2021; 37:1331-1348. [PMID: 33967184 DOI: 10.2116/analsci.21r003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
For materials development with high-level structural regulations, the emerging concept of nanoarchitectonics has been proposed. Analytical sciences, including sensing/detection, sensors, and related device construction, are active targets of the nanoarchitectonics approach. This review article focuses on the two features of interface and nanostructures are especially focused to discuss nanoarchitectonics for analytical science. Especially, two selected topics, (i) analyses on molecular sensing at interfaces and (ii) sensors using self-assembled supramolecular nanostructures, are exemplified in this review article. In addition to recent general examples, specific molecular recognition at the air-water interface and fabrication of sensing materials upon self-assembly of fullerene units are discussed. Descriptions of these examples indicate that nanoarchitectonics and analytical science share common benefits, and therefore, developments in both research fields should lead to synergies.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS).,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
21
|
Maruyama H, Maeda M, Fujimori A. Interfacial film conformation and its molecular arrangement of s-triazine derivatives containing three fluorocarbons without hydrophilic groups. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Ariga K, Fakhrullin R. Nanoarchitectonics on living cells. RSC Adv 2021; 11:18898-18914. [PMID: 35478610 PMCID: PMC9033578 DOI: 10.1039/d1ra03424c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
In this review article, the recent examples of nanoarchitectonics on living cells are briefly explained. Not limited to conventional polymers, functional polymers, biomaterials, nanotubes, nanoparticles (conventional and magnetic ones), various inorganic substances, metal-organic frameworks (MOFs), and other advanced materials have been used as components for nanoarchitectonic decorations for living cells. Despite these artificial processes, the cells can remain active or remain in hibernation without being killed. In most cases, basic functions of the cells are preserved and their resistances against external assaults are much enhanced. The possibilities of nanoarchitectonics on living cells would be high, equal to functional modifications with conventional materials. Living cells can be regarded as highly functionalized objects and have indispensable contributions to future materials nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University Kreml uramı 18 Kazan 42000 Republic of Tatarstan Russian Federation
| |
Collapse
|
23
|
Ozaki Y. Infrared Spectroscopy-Mid-infrared, Near-infrared, and Far-infrared/Terahertz Spectroscopy. ANAL SCI 2021; 37:1193-1212. [PMID: 33612556 DOI: 10.2116/analsci.20r008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article aims to overview infrared (IR) spectroscopy. Simultaneously, it outlines mid-infrared (MIR), near-infrared (NIR), and far-infrared (FIR) or terahertz (THz) spectroscopy separately, and compares them in terms of principles, characteristics, advantages, and applications. MIR spectroscopy is the central spectroscopic technique in the IR region, and is mainly concerned with the fundamentals of molecular vibrations. NIR spectroscopy incorporates both electronic and vibrational spectroscopy; however, in this review, I have chiefly discussed vibrational NIR spectroscopy, where bands due to overtones and combination modes appear. FIR or THz spectroscopy contains both vibrational and rotational spectroscopy. However, only vibrational FIR or THz spectroscopy has been discussed in this review. These three spectroscopy cover wide areas in their applications, making it rather difficult to describe these various topics simultaneously. Hence, I have selected three key topics: hydrogen bond studies, applications of quantum chemical calculations, and imaging. The perspective of the three spectroscopy has been discussed in the last section.
Collapse
Affiliation(s)
- Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University.,Toyota Physical and Chemical Research Institute
| |
Collapse
|
24
|
Yamagishi A, Umemura Y, Tamura K, Yajima T, Sato H. Langmuir-Blodgett Films of Chiral Perfluorinated Gelators: Effects of Chirality and Chain Length on Two-Dimensional Behavior. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Akihiko Yamagishi
- Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
- National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Yasushi Umemura
- Department of Applied Chemistry, National Defense Academy, Kanagawa 239-8686, Japan
| | - Kenji Tamura
- National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Tomoko Yajima
- Faculty of Science, Department of Chemistry, Ochanomizu University, Tokyo 112-8610, Japan
| | - Hisako Sato
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
25
|
Abdul Aziz MZ, Higashimine K, Shioya N, Shimoaka T, Hasegawa T, Sakai H, Vohra V, Murata H. Controlling the concentration gradient in sequentially deposited bilayer organic solar cells via rubbing and annealing. RSC Adv 2020; 10:37529-37537. [PMID: 35521271 PMCID: PMC9057144 DOI: 10.1039/d0ra05991a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/03/2020] [Indexed: 11/21/2022] Open
Abstract
We elucidate the formation mechanism of adequate vertical concentration gradients in sequentially deposited poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) bilayer solar cells. Using advanced analytical techniques, we clarify the origins of the enhanced photovoltaic performances of as-deposited and annealed bilayer P3HT/PCBM organic solar cells upon P3HT layer rubbing prior to PCBM deposition. Energy-dispersive X-ray spectroscopy reveals the individual effects of rubbing and annealing on the formation of adequate concentration gradients in the photoactive layers. Repetitive rubbing of P3HT strongly affects the active layer nanomorphology, forming an intermixed layer in the as-deposited devices which is retained after the annealing process. Infrared p-polarized multiple-angle incidence resolution spectrometry measurements indicate that rubbing induces a minor reorganization of the P3HT molecules in the polymer-only thin films towards face-on orientation. However, the deposition of the upper PCBM layer reverts the P3HT molecules back to their original orientation. These findings suggest that the formation of an adequate concentration gradient upon rubbing corresponds to the dominant contribution to the improved photovoltaic characteristics of rubbed bilayer organic solar cells. Using the reference low bandgap copolymer PCDTBT, we demonstrate that rubbing can be successfully applied to increase the photovoltaic performances of PCDTBT/PCBM organic solar cells. We also demonstrate that rubbing can be an efficient and versatile strategy to improve the power conversion efficiency of non-fullerene solar cells by using the reference materials in the field, PBDB-T and ITIC.
Collapse
Affiliation(s)
- Mohd Zaidan Abdul Aziz
- School of Materials Science, Japan Advanced Institute of Science and Technology Nomi Ishikawa 923-1292 Japan
| | - Koichi Higashimine
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology Nomi Ishikawa 923-1292 Japan
| | - Nobutaka Shioya
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Takafumi Shimoaka
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Takeshi Hasegawa
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Heisuke Sakai
- School of Materials Science, Japan Advanced Institute of Science and Technology Nomi Ishikawa 923-1292 Japan
| | - Varun Vohra
- Department of Engineering Science, University of Electro-Communications Chofu 182-8585 Japan
| | - Hideyuki Murata
- School of Materials Science, Japan Advanced Institute of Science and Technology Nomi Ishikawa 923-1292 Japan
| |
Collapse
|
26
|
Hama T, Ishibashi A, Kouchi A, Watanabe N, Shioya N, Shimoaka T, Hasegawa T. Quantitative Anisotropic Analysis of Molecular Orientation in Amorphous N 2O at 6 K by Infrared Multiple-Angle Incidence Resolution Spectrometry. J Phys Chem Lett 2020; 11:7857-7866. [PMID: 32894947 DOI: 10.1021/acs.jpclett.0c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The existence of molecular orientational order in nanometer-thick films of molecules has long been implied by surface potential measurements. However, direct quantitative determination of the molecular orientation is challenging, especially for metastable amorphous thin films at low temperatures. This study quantifies molecular orientation in amorphous N2O at 6 K using infrared multiple-angle incidence resolution spectrometry (IR-MAIRS). The intensity ratio of the weak antisymmetric stretching vibration band of the 14N15NO isotopomer between the in-plane and out-of-plane IR-MAIRS spectra provides an average molecular orientation angle of 65° from the surface normal. No discernible change is observed in the orientation angle when a different substrate material is used (Si and Ar) at 6 K or the Si substrate temperature is changed in the range of 6-14 K. This suggests that the transient mobility of N2O during physisorption is key in governing the molecular orientation in amorphous N2O.
Collapse
Affiliation(s)
- Tetsuya Hama
- Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Atsuki Ishibashi
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Akira Kouchi
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Naoki Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takafumi Shimoaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|