1
|
d'Ischia M, Manini P, Martins Z, Remusat L, O'D Alexander CM, Puzzarini C, Barone V, Saladino R. Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life? Phys Life Rev 2021; 37:65-93. [PMID: 33774429 DOI: 10.1016/j.plrev.2021.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
An interdisciplinary review of the chemical literature that points to a unifying scenario for the origin of life, referred to as the Primordial Multifunctional organic Entity (PriME) scenario, is provided herein. In the PriME scenario it is suggested that the Insoluble Organic Matter (IOM) in carbonaceous chondrites, as well as interplanetary dust particles from meteorites and comets may have played an important role in the three most critical processes involved in the origin of life, namely 1) metabolism, via a) the provision and accumulation of molecules that are the building blocks of life, b) catalysis (e.g., by templation), and c) protection of developing life molecules against radiation by excited state deactivation; 2) compartmentalization, via adsorption of compounds on the exposed organic surfaces in fractured meteorites, and 3) replication, via deaggregation, desorption and related physical phenomena. This scenario is based on the hitherto overlooked structural and physicochemical similarities between the IOM and the dark, insoluble, multifunctional melanin polymers found in bacteria and fungi and associated with the ability of these microorganisms to survive extreme conditions, including ionizing radiation. The underlying conceptual link between these two materials is strengthened by the fact that primary precursors of bacterial and fungal melanins (collectively referred to herein as allomelanins) are hydroxylated aromatic compounds like homogentisic acid and 1,8-dihydroxynaphthalene, and that similar hydroxylated aromatic compounds, including hydroxynaphthalenes, figure prominently among possible components of the organic materials on dust grains and ices in the interstellar matter, and may be involved in the formation of IOM in meteorites. Inspired by this rationale, a vis-à-vis review of the properties of IOM from various chondrites and non-nitrogenous allomelanin pigments from bacteria and fungi is provided herein. The unrecognized similarities between these materials may pave the way for a novel scenario at the origin of life, in which IOM-related complex organic polymers delivered to the early Earth are proposed to serve as PriME and were preserved and transformed in those primitive forms of life that shared the ability to synthesize melanin polymers playing an important role in the critical processes underlying the establishment of terrestrial eukaryotes.
Collapse
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Zita Martins
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Laurent Remusat
- Institut de minéralogie, de physique des matériaux et de cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, 61 rue Buffon, 75005 Paris, France
| | - Conel M O'D Alexander
- Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, NW Washington, DC 20015-1305, USA
| | - Cristina Puzzarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, Bologna, I-40126, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, I-56126, Italy
| | - Raffaele Saladino
- Biological and Ecological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis 01100 Viterbo, Italy
| |
Collapse
|
2
|
Furusho A, Akita T, Mita M, Naraoka H, Hamase K. Three-dimensional high-performance liquid chromatographic analysis of chiral amino acids in carbonaceous chondrites. J Chromatogr A 2020; 1625:461255. [PMID: 32709316 DOI: 10.1016/j.chroma.2020.461255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/26/2022]
Abstract
A three-dimensional (3D) HPLC system in combination with fluorescence derivatization has been developed for the highly sensitive and selective analysis of chiral amino acids in extraterrestrial samples. As the targets, alanine (Ala), 2-aminobutyric acid (2AB), valine (Val), norvaline (nVal) and isovaline (iVal), frequently found chiral amino acids in the carbonaceous chondrites, were selected. These amino acids were pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), and the target analytes were separated from other amino acids and organic compounds by a reversed-phase column in the first dimension. The targets were further separated from interferences by an anion-exchange column in the second dimension, and their enantiomers were separated and determined in the third dimension by a Pirkle-type enantioselective column. The present 3D-HPLC system was validated and applied to the Murchison meteorite and the Antarctic meteorites, and all of the target amino acid enantiomers were clearly observed (0.78-22.33 nmol/g in the Murchison meteorite and 1.79-78.84 nmol/g in the Antarctic meteorites) without severe interferences. The %L values of the non-proteinogenic amino acids were almost 50% in both meteorites, and even the proteinogenic amino acids were almost racemic in the Antarctic meteorites.
Collapse
Affiliation(s)
- Aogu Furusho
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higasi-ku, Fukuoka 812-8582, Japan
| | - Takeyuki Akita
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higasi-ku, Fukuoka 812-8582, Japan
| | - Masashi Mita
- KAGAMI Inc., 7-7-15 Saito-asagi, Ibaraki 567-0085, Japan
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higasi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
3
|
Simkus DN, Aponte JC, Elsila JE, Parker ET, Glavin DP, Dworkin JP. Methodologies for Analyzing Soluble Organic Compounds in Extraterrestrial Samples: Amino Acids, Amines, Monocarboxylic Acids, Aldehydes, and Ketones. Life (Basel) 2019; 9:E47. [PMID: 31174308 PMCID: PMC6617175 DOI: 10.3390/life9020047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/18/2019] [Accepted: 05/27/2019] [Indexed: 11/19/2022] Open
Abstract
Soluble organic compositions of extraterrestrial samples offer valuable insights into the prebiotic organic chemistry of the solar system. This review provides a summary of the techniques commonly used for analyzing amino acids, amines, monocarboxylic acids, aldehydes, and ketones in extraterrestrial samples. Here, we discuss possible effects of various experimental factors (e.g., extraction protocols, derivatization methods, and chromatographic techniques) in order to highlight potential influences on the results obtained from different methodologies. This detailed summary and assessment of current techniques is intended to serve as a basic guide for selecting methodologies for soluble organic analyses and to emphasize some key considerations for future method development.
Collapse
Affiliation(s)
- Danielle N Simkus
- NASA Postdoctoral Program at NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
| | - José C Aponte
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
- Department of Chemistry, Catholic University of America, Washington, D.C. 20064, USA.
| | - Jamie E Elsila
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
| | - Eric T Parker
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
| | - Daniel P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
| |
Collapse
|
4
|
Creamer JS, Mora MF, Willis PA. Enhanced Resolution of Chiral Amino Acids with Capillary Electrophoresis for Biosignature Detection in Extraterrestrial Samples. Anal Chem 2016; 89:1329-1337. [DOI: 10.1021/acs.analchem.6b04338] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jessica S. Creamer
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Maria F. Mora
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Peter A. Willis
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| |
Collapse
|
5
|
Munegumi T. Chemical Evolution of Simple Amino Acids to Asparagine under Discharge onto the Primitive Hydrosphere: Simulation Experiments Using Contact Glow Discharge. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20140164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
HAMASE K, NAKAUCHI Y, MIYOSHI Y, KOGA R, KUSANO N, ONIGAHARA H, NARAOKA H, MITA H, KADOTA Y, NISHIO Y, MITA M, LINDNER W. Enantioselective Determination of Extraterrestrial Amino Acids Using a Two-Dimensional Chiral High-Performance Liquid Chromatographic System. CHROMATOGRAPHY 2014. [DOI: 10.15583/jpchrom.2014.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Yusuke NAKAUCHI
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Yurika MIYOSHI
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Reiko KOGA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Nao KUSANO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Hiroshi NARAOKA
- Department of Earth and Planetary Sciences, Kyushu University
| | - Hajime MITA
- Department of Life, Environment and Materials Science, Fukuoka Institute of Technology
| | | | | | | | | |
Collapse
|
7
|
Meinert C, de Marcellus P, d'Hendecourt LLS, Nahon L, Jones NC, Hoffmann SV, Bredehöft JH, Meierhenrich UJ. Photochirogenesis: photochemical models on the absolute asymmetric formation of amino acids in interstellar space. Phys Life Rev 2011; 8:307-30. [PMID: 21924690 DOI: 10.1016/j.plrev.2011.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/26/2011] [Indexed: 11/25/2022]
Abstract
Proteins of all living organisms including plants, animals, and humans are made up of amino acid monomers that show identical stereochemical L-configuration. Hypotheses for the origin of this symmetry breaking in biomolecules include the absolute asymmetric photochemistry model by which interstellar ultraviolet (UV) circularly polarized light (CPL) induces an enantiomeric excess in chiral organic molecules in the interstellar/circumstellar media. This scenario is supported by a) the detection of amino acids in the organic residues of UV-photo-processed interstellar ice analogues, b) the occurrence of L-enantiomer-enriched amino acids in carbonaceous meteorites, and c) the observation of CPL of the same helicity over large distance scales in the massive star-forming region of Orion. These topics are of high importance in topical biophysical research and will be discussed in this review. Further evidence that amino acids and other molecules of prebiotic interest are asymmetrically formed in space comes from studies on the enantioselective photolysis of amino acids by UV-CPL. Also, experiments have been performed on the absolute asymmetric photochemical synthesis of enantiomer-enriched amino acids from mixtures of astrophysically relevant achiral precursor molecules using UV-circularly polarized photons. Both approaches are based on circular dichroic transitions of amino acids that will be highlighted here as well. These results have strong implications on our current understanding of how life's precursor molecules were possibly built and how life selected the left-handed form of proteinogenic amino acids.
Collapse
Affiliation(s)
- Cornelia Meinert
- Faculté des Sciences, UMR 6001 CNRS, LCMBA, University of Nice-Sophia Antipolis, 28 Avenue Valrose, 06108 Nice, France.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Shimoyama A. Complex organics in meteorites. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1997; 19:1045-1052. [PMID: 11541331 DOI: 10.1016/s0273-1177(97)00351-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Complex macromolecular organic matter is present in carbonaceous chondrites as the most abundant organic matter and may be present in interstellar dusts and comets. With this view, our studies of the complex organic matter isolated from six CM2 chondrites, namely Yamato-74662, Yamato-791198, Yamato-793321, Yamato-86720, Belgica-7904, and Murchison are introduced and discussed in the text. The complex organic matter is acid-insoluble and organic solvent-insoluble, and therefore, it was examined by heating experiments to obtain information on its chemical constituents and characteristics. Three chondrites, Yamato-74662, Yamato-791198, and Murchison which have solvent-extractable organic compounds, such as amino acids, carboxylic acid, hydrocarbons, etc. possess thermally labile organic fraction in the complex organic matter. Organic compounds detected in the pyrolyzate of the complex organic matter number over 130 of which aromatic hydrocarbons are dominant. They appeared around 300 degrees C, and disappeared at about 600 degrees C with a maximum at 400-500 degrees C during the heating. On the other hand, the other three chondrites do not have the extractable organic compounds nor a thermally labile organic fraction. The presence or absence of the fraction in the complex organic matter likely indicates the presence or absence of the solvent-extractable organic compounds and relates to thermal history of the chondrite.
Collapse
Affiliation(s)
- A Shimoyama
- Department of Chemistry, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Brinton KL, Bada JL. A reexamination of amino acids in lunar soils: implications for the survival of exogenous organic material during impact delivery. GEOCHIMICA ET COSMOCHIMICA ACTA 1996; 60:349-354. [PMID: 11541128 DOI: 10.1016/0016-7037(95)00404-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of < or = 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is < or = 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth.
Collapse
Affiliation(s)
- K L Brinton
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla 92093-0212, USA
| | | |
Collapse
|
10
|
McDonald GD, Bada JL. A search for endogenous amino acids in the Martian meteorite EETA79001. GEOCHIMICA ET COSMOCHIMICA ACTA 1995; 59:1179-1184. [PMID: 11540048 DOI: 10.1016/0016-7037(95)00033-v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Antarctic shergottite EETA79001 is believed to be an impact-ejected fragment of the planet Mars. Samples of the carbonate (white druse) and the basaltic (lithology A) components from this meteorite have been found to contain amino acids at a level of approximately 1 ppm and 0.4 ppm, respectively. The detected amino acids consist almost exclusively of the L-enantiomers of the amino acids commonly found in proteins, and are thus terrestrial contaminants. There is no indication of the presence of alpha-aminoisobutyric acid, one of the most abundant amino acids in several carbonaceous chondrites. The relative abundances of amino acids in the druse material resemble those in Antarctic ice, suggesting that the source of the amino acids may be ice meltwater. The level of amino acids in EETA79001 druse is not by itself sufficient to account for the 600-700 ppm of volatile C reported in druse samples and suggested to be from endogenous martian organic material. However, estimates of total terrestrial organic C present in the druse material based on our amino acid analyses and the organic C content of polar ice can account for most of the reported putative organic C in EETA79001 druse.
Collapse
Affiliation(s)
- G D McDonald
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla 92093, USA
| | | |
Collapse
|
11
|
Cronin JR, Cooper GW, Pizzarello S. Characteristics and formation of amino acids and hydroxy acids of the Murchison meteorite. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1995; 15:91-97. [PMID: 11539265 DOI: 10.1016/s0273-1177(99)80068-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Eight characteristics of the unique suite of amino acids and hydroxy acids found in the Murchison meteorite can be recognized on the basis of detailed molecular and isotopic analyses. The marked structural correspondence between the alpha-amino acids and alpha-hydroxy acids and the high deuterium/hydrogen ratio argue persuasively for their formation by aqueous phase Strecker reactions in the meteorite parent body from presolar, i.e., interstellar, aldehydes, ketones, ammonia, and hydrogen cyanide. The characteristics of the meteoritic suite of amino acids and hydroxy acids are briefly enumerated and discussed with regard to their consonance with this interstellar-parent body formation hypothesis. The hypothesis has interesting implications for the organic composition of both the primitive parent body and the presolar nebula.
Collapse
Affiliation(s)
- J R Cronin
- Department of Chemistry and Biochemistry, Arizona State University, Tempe 85287-1604, USA
| | | | | |
Collapse
|
12
|
Search for nucleic acid bases in antarctic carbonaceous chondrites. ORIGINS LIFE EVOL B 1989. [DOI: 10.1007/bf02388955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
|