1
|
Bose D, Roy L, Chatterjee S. Peptide therapeutics in the management of metastatic cancers. RSC Adv 2022; 12:21353-21373. [PMID: 35975072 PMCID: PMC9345020 DOI: 10.1039/d2ra02062a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer remains a leading health concern threatening lives of millions of patients worldwide. Peptide-based drugs provide a valuable alternative to chemotherapeutics as they are highly specific, cheap, less toxic and easier to synthesize compared to other drugs. In this review, we have discussed various modes in which peptides are being used to curb cancer. Our review highlights specially the various anti-metastatic peptide-based agents developed by targeting a plethora of cellular factors. Herein we have given a special focus on integrins as targets for peptide drugs, as these molecules play key roles in metastatic progression. The review also discusses use of peptides as anti-cancer vaccines and their efficiency as drug-delivery tools. We hope this work will give the reader a clear idea of the mechanisms of peptide-based anti-cancer therapeutics and encourage the development of superior drugs in the future.
Collapse
Affiliation(s)
- Debopriya Bose
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| | - Laboni Roy
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| | - Subhrangsu Chatterjee
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| |
Collapse
|
2
|
Klepach A, Tran H, Ahmad Mohammed F, ElSayed ME. Characterization and impact of peptide physicochemical properties on oral and subcutaneous delivery. Adv Drug Deliv Rev 2022; 186:114322. [PMID: 35526665 DOI: 10.1016/j.addr.2022.114322] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Peptides, an emerging modality within the biopharmaceutical industry, are often delivered subcutaneously with evolving prospects on oral delivery. Barrier biology within the subcutis or gastrointestinal tract is a significant challenge in limiting absorption or otherwise disrupting peptide disposition. Aspects of peptide pharmacokinetic performance and ADME can be mitigated with careful molecular design that tailors for properties such as effective size, hydrophobicity, net charge, proteolytic stability, and albumin binding. In this review, we endeavor to highlight effective techniques in qualifying physicochemical properties of peptides and discuss advancements of in vitro models of subcutaneous and oral delivery. Additionally, we will delineate empirical findings around the relationship of these physicochemical properties and in vivo (animal or human) impact. We conclude that robust peptide characterization methods and in vitro techniques with demonstrated correlations to in vivo data are key routines to incorporate in the drug discovery and development to improve the probability of technical and commercial success of peptide therapeutics.
Collapse
|
3
|
Malviya R, Verma S, Sundram S. Advancement and Strategies for the Development of Peptide-Drug Conjugates: Pharmacokinetic Modulation, Role and Clinical Evidence Against Cancer Management. Curr Cancer Drug Targets 2021; 22:286-311. [PMID: 34792003 DOI: 10.2174/1568009621666211118111506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Currently, many new treatment strategies are being used for the management of cancer. Among them, chemotherapy based on peptides has been of great interest due to the unique features of peptides. This review discusses the role of peptide and peptides analogues in the treatment of cancer, with special emphasis on their pharmacokinetic modulation and research progress. Low molecular weight, targeted drug delivery, enhanced permeability, etc., of the peptide-linked drug conjugates, lead to an increase in the effectiveness of cancer therapy. Various peptides have recently been developed as drugs and vaccines with an altered pharmacokinetic parameter which has subsequently been assessed in different phases of the clinical study. Peptides have made a great impact in the area of cancer therapy and diagnosis. Targeted chemotherapy and drug delivery techniques using peptides are emerging as excellent tools in minimizing problems with conventional chemotherapy. It can be concluded that new advances in using peptides to treat different types of cancer have been shown by different clinical studies indicating that peptides could be used as an ideal therapeutic method in treating cancer due to the novel advantages of peptides. The development of identifying and synthesizing novel peptides could provide a promising choice to patients with cancer.
Collapse
Affiliation(s)
- Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| | - Swati Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| | - Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| |
Collapse
|
4
|
Wang C, Xiong M, Yang C, Yang D, Zheng J, Fan Y, Wang S, Gai Y, Lan X, Chen H, Zheng L, Huang K. PEGylated and Acylated Elabela Analogues Show Enhanced Receptor Binding, Prolonged Stability, and Remedy of Acute Kidney Injury. J Med Chem 2020; 63:16028-16042. [PMID: 33290073 DOI: 10.1021/acs.jmedchem.0c01913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute kidney injury (AKI), mostly caused by renal ischemia-reperfusion (I/R) injury and nephrotoxins, is characterized by rapid deterioration in renal-functions without effective drug treatment available. Through activation of a G protein-coupled receptor APJ, a furin-cleaved fragment of Elabela (ELA[22-32], E11), an endogenous APJ ligand, protects against renal I/R injury. However, the poor plasma stability and relatively weak APJ-binding ability of E11 limit its application. To address these issues, we rationally designed and synthesized a set of E11 analogues modified by palmitic acid (Pal) or polyethylene glycol; improved plasma stability and APJ-binding capacity of these analogues were achieved. In cultured renal tubular cells, these analogues protected against hypoxia-reperfusion or cisplatin-caused injury. For renal I/R-injured mice, these analogues showed improved reno-protective effects than E11; notably, Pal-E11 showed therapeutic effects at 24 h post I/R injury. These results present ELA analogues as potential therapeutic options in managing AKI.
Collapse
Affiliation(s)
- Chao Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Chen Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Dong Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Jiaojiao Zheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yu Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shun Wang
- Department of Blood Transfusion, Wuhan Hospital of Traditional and Western Medicine, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
5
|
AcGly-Phe-Asn(OH) and AcGly-Phe-Asn(NH 2) tripeptides selectively affect the proliferation rate of MDA-MB 231 and HuDe cells. Mol Biol Rep 2020; 47:4009-4014. [PMID: 32277441 DOI: 10.1007/s11033-020-05417-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
There is increasing interest in the bioactivity of peptides carrying out antiproliferative, antihypertensive, antimicrobial, antioxidant, anticholesterolemic, opioid, and antidiabetic activities. The bioavailability of peptides depends on how readily they are digested by endopeptidases and their ability to pass through cell membranes, features that are determined by the peptide's chemical and physical structure. On the basis of structures present in peptides that have biological activity, particularly antiproliferative activity, the tripeptides AcGly-Phe-Asn(OH) and AcGly-Phe-Asn(NH2) have been designed and synthesized, then tested for their antiproliferative activity on human breast adenocarcinoma cells (MDA-MB 231) and human dermal fibroblasts (HuDe). The results show that the peptides significantly affect the proliferation of MDA-MB 231 and HuDe cells, with differentiated response between tumor and normal cells, and thus indicate that C-terminal amidation plays a role. Interestingly, the activity of both peptides in dermal fibroblasts follows the characteristic biphasic pattern of hormesis, a dose-response relationship.
Collapse
|
6
|
Liu B, Yan W. Lipophilization of EGCG and effects on antioxidant activities. Food Chem 2018; 272:663-669. [PMID: 30309596 DOI: 10.1016/j.foodchem.2018.08.086] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
A green, fast, and efficient method for synthesizing lipophilic epigallocatechin gallate (EGCG) derivatives was set up for the first time. EGCG was lipophilized by esterification in order to promote its application in lipid products and to possibly enhance its bioactivity. A high conversion of EGCG was achieved. Three monoesters of the EGCG derivatives were confirmed by high performance liquid chromatography-mass spectrometry, and the predominant one was identified as 4'-O-palmitoyl EGCG by nuclear magnetic resonance. The EGCG derivatives exhibited good radical scavenging capacities. In lard the solubility of EGCG derivatives was enhanced 470 times compared to EGCG, and they exhibited excellent antioxidative activity in the oil. These results indicate that the palmitoylated EGCG derivatives may be used as potent antioxidants in lipophilic medium, such as edible oils and fatty foods. In addition, this method can be applied to commercial application, producing antioxidants to substitute for synthetic ones like tert-butylhydroquinone.
Collapse
Affiliation(s)
- Bingbing Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Weidong Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Targeted Delivery of Cell Penetrating Peptide Virus-like Nanoparticles to Skin Cancer Cells. Sci Rep 2018; 8:8499. [PMID: 29855618 PMCID: PMC5981617 DOI: 10.1038/s41598-018-26749-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023] Open
Abstract
Skin cancer or cutaneous carcinoma, is a pre-eminent global public health problem with no signs of plateauing in its incidence. As the most common treatments for skin cancer, surgical resection inevitably damages a patient’s appearance, and chemotherapy has many side effects. Thus, the main aim of this study was to screen for a cell penetrating peptide (CPP) for the development of a targeting vector for skin cancer. In this study, we identified a CPP with the sequence NRPDSAQFWLHH from a phage displayed peptide library. This CPP targeted the human squamous carcinoma A431 cells through an interaction with the epidermal growth factor receptor (EGFr). Methyl-β-cyclodextrin (MβCD) and chlorpromazine hydrochloride (CPZ) inhibited the internalisation of the CPP into the A431 cells, suggesting the peptide entered the cells via clathrin-dependent endocytosis. The CPP displayed on hepatitis B virus-like nanoparticles (VLNPs) via the nanoglue successfully delivered the nanoparticles into A431 cells. The present study demonstrated that the novel CPP can serve as a ligand to target and deliver VLNPs into skin cancer cells.
Collapse
|
8
|
Seek & Destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg Med Chem 2017; 26:2797-2806. [PMID: 28893601 DOI: 10.1016/j.bmc.2017.08.052] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
Accounting for 16 million new cases and 9 million deaths annually, cancer leaves a great number of patients helpless. It is a complex disease and still a major challenge for the scientific and medical communities. The efficacy of conventional chemotherapies is often poor and patients suffer from off-target effects. Each neoplasm exhibits molecular signatures - sometimes in a patient specific manner - that may completely differ from the organ of origin, may be expressed in markedly higher amounts and/or in different location compared to the normal tissue. Although adding layers of complexity in the understanding of cancer biology, this cancer-specific signature provides an opportunity to develop targeting agents for early detection, diagnosis, and therapeutics. Chimeric antibodies, recombinant proteins or synthetic polypeptides have emerged as excellent candidates for specific homing to peripheral and central nervous system cancers. Specifically, peptide ligands benefit from their small size, easy and affordable production, high specificity, and remarkable flexibility regarding their sequence and conjugation possibilities. Coupled to imaging agents, chemotherapies and/or nanocarriers they have shown to increase the on-site delivery, thus allowing better tumor mass contouring in imaging and increased efficacy of the chemotherapies associated with reduced adverse effects. Therefore, some of the peptides alone or in combination have been tested in clinical trials to treat patients. Peptides have been well-tolerated and shown absence of toxicity. This review aims to offer a view on tumor targeting peptides that are either derived from natural peptide ligands or identified using phage display screening. We also include examples of peptides targeting the high-grade malignant tumors of the central nervous system as an example of the complex therapeutic management due to the tumor's location. Peptide vaccines are outside of the scope of this review.
Collapse
|
9
|
Łepek T, Kwiatkowska A, Couture F, Ly K, Desjardins R, Dory Y, Prahl A, Day R. Macrocyclization of a potent PACE4 inhibitor: Benefits and limitations. Eur J Cell Biol 2017; 96:476-485. [DOI: 10.1016/j.ejcb.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 01/09/2023] Open
|
10
|
Blanco‐Míguez A, Gutiérrez‐Jácome A, Pérez‐Pérez M, Pérez‐Rodríguez G, Catalán‐García S, Fdez‐Riverola F, Lourenço A, Sánchez B. From amino acid sequence to bioactivity: The biomedical potential of antitumor peptides. Protein Sci 2016; 25:1084-95. [PMID: 27010507 PMCID: PMC4941772 DOI: 10.1002/pro.2927] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/25/2022]
Abstract
Chemoprevention is the use of natural and/or synthetic substances to block, reverse, or retard the process of carcinogenesis. In this field, the use of antitumor peptides is of interest as, (i) these molecules are small in size, (ii) they show good cell diffusion and permeability, (iii) they affect one or more specific molecular pathways involved in carcinogenesis, and (iv) they are not usually genotoxic. We have checked the Web of Science Database (23/11/2015) in order to collect papers reporting on bioactive peptide (1691 registers), which was further filtered searching terms such as "antiproliferative," "antitumoral," or "apoptosis" among others. Works reporting the amino acid sequence of an antiproliferative peptide were kept (60 registers), and this was complemented with the peptides included in CancerPPD, an extensive resource for antiproliferative peptides and proteins. Peptides were grouped according to one of the following mechanism of action: inhibition of cell migration, inhibition of tumor angiogenesis, antioxidative mechanisms, inhibition of gene transcription/cell proliferation, induction of apoptosis, disorganization of tubulin structure, cytotoxicity, or unknown mechanisms. The main mechanisms of action of those antiproliferative peptides with known amino acid sequences are presented and finally, their potential clinical usefulness and future challenges on their application is discussed.
Collapse
Affiliation(s)
- Aitor Blanco‐Míguez
- ESEI ‐ Escuela Superior De Ingeniería Informática, Edificio Politécnico, Campus Universitario as Lagoas S/N, Universidad De VigoOurense32004Spain
| | - Alberto Gutiérrez‐Jácome
- ESEI ‐ Escuela Superior De Ingeniería Informática, Edificio Politécnico, Campus Universitario as Lagoas S/N, Universidad De VigoOurense32004Spain
| | - Martín Pérez‐Pérez
- ESEI ‐ Escuela Superior De Ingeniería Informática, Edificio Politécnico, Campus Universitario as Lagoas S/N, Universidad De VigoOurense32004Spain
| | - Gael Pérez‐Rodríguez
- ESEI ‐ Escuela Superior De Ingeniería Informática, Edificio Politécnico, Campus Universitario as Lagoas S/N, Universidad De VigoOurense32004Spain
| | - Sandra Catalán‐García
- Asturias, INDRA Software LabsC/Jimena Fernández De La Vega, 140 P. Científico Tecnológico, EdGijón33203Spain
| | - Florentino Fdez‐Riverola
- ESEI ‐ Escuela Superior De Ingeniería Informática, Edificio Politécnico, Campus Universitario as Lagoas S/N, Universidad De VigoOurense32004Spain
| | - Anália Lourenço
- ESEI ‐ Escuela Superior De Ingeniería Informática, Edificio Politécnico, Campus Universitario as Lagoas S/N, Universidad De VigoOurense32004Spain
- Centre of Biological Engineering, University of MinhoCampus De GualtarBraga4710‐057Portugal
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy ProductsInstituto De Productos Lácteos De Asturias (IPLA), Consejo Superior De Investigaciones Científicas (CSIC)VillaviciosaAsturiasSpain
| |
Collapse
|
11
|
Laguerre M, Bayrasy C, Panya A, Weiss J, McClements DJ, Lecomte J, Decker EA, Villeneuve P. What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Crit Rev Food Sci Nutr 2015; 55:183-201. [PMID: 24915410 DOI: 10.1080/10408398.2011.650335] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The polar paradox states that polar antioxidants are more active in bulk lipids than their nonpolar counterparts, whereas nonpolar antioxidants are more effective in oil-in-water emulsion than their polar homologs. However, recent results, showing that not all antioxidants behave in a manner proposed by this hypothesis in oil and emulsion, lead us to revisit the polar paradox and to put forward new concepts, hypotheses, and theories. In bulk oil, new evidences have been brought to demonstrate that the crucial site of oxidation is not the air-oil interface, as postulated by the polar paradox, but association colloids formed with traces of water and surface active molecules such as phospholipids. The role of these association colloids on lipid oxidation and its inhibition by antioxidant is also addressed as well as the complex influence of the hydrophobicity on the ability of antioxidants to protect lipids from oxidation. In oil-in water emulsion, we have covered the recently discovered non linear (or cut-off) influence of the hydrophobicity on antioxidant capacity. For the first time, different mechanisms of action are formulated in details to try to account for this nonlinear effect. As suggested by the great amount of biological studies showing a cut-off effect, this phenomenon could be widespread in dispersed lipid systems including emulsions and liposomes as well as in living systems such as cultured cells. Works on the cut-off effect paves the way for the determination of the critical chain length which corresponds to the threshold beyond which antioxidant capacity suddenly collapses. The systematic search for this new physico-chemical parameter will allow designing novel phenolipids and other amphiphilic antioxidants in a rational fashion. Finally, in both bulk oils and emulsions, we feel that it is now time for a paradigm shift from the polar paradox to the next theories.
Collapse
|
12
|
Trier S, Linderoth L, Bjerregaard S, Strauss HM, Rahbek UL, Andresen TL. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement. Eur J Pharm Biopharm 2015; 96:329-37. [PMID: 26347924 DOI: 10.1016/j.ejpb.2015.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/24/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022]
Abstract
Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate its influence on intestinal cell translocation and membrane interaction. We find that acylation drastically increases in vitro intestinal peptide flux and confers a transient permeability enhancing effect on the cell layer. The analogues permeabilize model lipid membranes, indicating that the effect is due to a solubilization of the cell membrane, similar to transcellular oral permeation enhancers. The effect is dependent on pH, with larger effect at lower pH, and is impacted by acylation chain length and position. Compared to the unacylated peptide backbone, N-terminal acylation with a short chain provides 6- or 9-fold increase in peptide translocation at pH 7.4 and 5.5, respectively. Prolonging the chain length appears to hamper translocation, possibly due to self-association or aggregation, although the long chain acylated analogues remain superior to the unacylated peptide. For K(18)-acylation a short chain provides a moderate improvement, whereas medium and long chain analogues are highly efficient, with a 12-fold increase in permeability compared to the unacylated peptide backbone, on par with currently employed oral permeation enhancers. For K(18)-acylation the medium chain acylation appears to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may decrease the permeability. In conclusion, acylated sCT acts as its own in vitro intestinal permeation enhancer, with reversible effects on Caco-2 cells, indicating that acylation of sCT may represent a promising tool to increase intestinal permeability without adding oral permeation enhancers.
Collapse
Affiliation(s)
- Sofie Trier
- Dept. of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Building 423, Produktionstorvet, DK-2800 Kgs. Lyngby, Denmark; Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark
| | - Lars Linderoth
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark
| | - Simon Bjerregaard
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark
| | - Holger M Strauss
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark
| | - Ulrik L Rahbek
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark
| | - Thomas L Andresen
- Dept. of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Building 423, Produktionstorvet, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
13
|
Abdel-Hamid NM, Mohafez OM, Nazmy MH, Farhan A, Thabet K. The effect of co-administration of Lawsonia inermis extract and octreotide on experimental hepatocellular carcinoma. Environ Health Prev Med 2015; 20:195-203. [PMID: 25726025 PMCID: PMC4434234 DOI: 10.1007/s12199-015-0451-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To investigate the effect of Lawsonia inermis total methanolic extract (LIE) and octreotide (OC) on hepatocellular carcinoma (HCC) progression, depending on somatostatin receptor 2 (SSTR-2) and Alfa fetoprotein (AFP) perturbations. METHODS Sixty albino mice, divided into five groups (12/each); all except control were injected with single diethyl nitrosamine (DENA) dose of 90 mg/kg body weight, intraperitoneally (IP). DENA group was killed at the last day of week 18. LIE group was given 200 mg/100 ml drinking water from first day of DENA injection until end of week 18. OC group received OC (0.1 mg/kg body weight, twice daily by subcutaneous injection, SC from the first day of week 17 till end of week 18. LIE + OC was given medications till the last day of week 18. Serum AFP, liver tissue SSTR-2 mRNA, its protein expression, reduced glutathione (GSH) and malondialdehyde (MDA) were analyzed. RESULTS A significant increase in plasma AFP and hepatic mRNA, associated to liver tissue neoplastic changes, SSTR-2 expression and MDA with decreased hepatic GSH were observed in DENA group. These changes were significantly improved by LIE and/or OC. CONCLUSIONS LIE and/or OC treatment has effective chemopreventive action due to their ability to alleviate oxidative stress, desensitizing cellular growth receptor to SST.
Collapse
Affiliation(s)
- N M Abdel-Hamid
- Biochemistry Department, Colleges of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt,
| | | | | | | | | |
Collapse
|
14
|
Trier S, Linderoth L, Bjerregaard S, Andresen TL, Rahbek UL. Acylation of Glucagon-like peptide-2: interaction with lipid membranes and in vitro intestinal permeability. PLoS One 2014; 9:e109939. [PMID: 25295731 PMCID: PMC4190408 DOI: 10.1371/journal.pone.0109939] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022] Open
Abstract
Background Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation as well as increasing enzymatic stability without disrupting biological potency. Acylation has furthermore been shown to increase interactions with the lipid membranes of mammalian cells. The extent to which such interactions hinder or benefit delivery of acylated peptide drugs across cellular barriers such as the intestinal epithelia is currently unknown. The present study investigates the effect of acylating peptide drugs from a drug delivery perspective. Purpose We hypothesize that the membrane interaction is an important parameter for intestinal translocation, which may be used to optimize the acylation chain length for intestinal permeation. This work aims to characterize acylated analogues of the intestinotrophic Glucagon-like peptide-2 by systematically increasing acyl chain length, in order to elucidate its influence on membrane interaction and intestinal cell translocation in vitro. Results Peptide self-association and binding to both model lipid and cell membranes was found to increase gradually with acyl chain length, whereas translocation across Caco-2 cells depended non-linearly on chain length. Short and medium acyl chains increased translocation compared to the native peptide, but long chain acylation displayed no improvement in translocation. Co-administration of a paracellular absorption enhancer was found to increase translocation irrespective of acyl chain length, whereas a transcellular enhancer displayed increased synergy with the long chain acylation. Conclusions These results show that membrane interactions play a prominent role during intestinal translocation of an acylated peptide. Acylation benefits permeation for shorter and medium chains due to increased membrane interactions, however, for longer chains insertion in the membrane becomes dominant and hinders translocation, i.e. the peptides get ‘stuck’ in the cell membrane. Applying a transcellular absorption enhancer increases the dynamics of membrane insertion and detachment by fluidizing the membrane, thus facilitating its effects primarily on membrane associated peptides.
Collapse
Affiliation(s)
- Sofie Trier
- Dept. of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kgs. Lyngby, Denmark; Diabetes Research Unit, Novo Nordisk, Maaloev, Denmark
| | | | | | - Thomas Lars Andresen
- Dept. of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
15
|
Asante V, Mortier J, Wolber G, Koksch B. Impact of fluorination on proteolytic stability of peptides: a case study with α-chymotrypsin and pepsin. Amino Acids 2014; 46:2733-44. [DOI: 10.1007/s00726-014-1819-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
|
16
|
Mäde V, Bellmann-Sickert K, Kaiser A, Meiler J, Beck-Sickinger AG. Position and length of fatty acids strongly affect receptor selectivity pattern of human pancreatic polypeptide analogues. ChemMedChem 2014; 9:2463-74. [PMID: 25156249 DOI: 10.1002/cmdc.201402235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Indexed: 12/25/2022]
Abstract
Pancreatic polypeptide (PP) is a satiety-inducing gut hormone targeting predominantly the Y4 receptor within the neuropeptide Y multiligand/multireceptor family. Palmitoylated PP-based ligands have already been reported to exert prolonged satiety-inducing effects in animal models. Here, we suggest that other lipidation sites and different fatty acid chain lengths may affect receptor selectivity and metabolic stability. Activity tests revealed significantly enhanced potency of long fatty acid conjugates on all four Y receptors with a preference of position 22 over 30 at Y1 , Y2 and Y5 receptors. Improved Y receptor selectivity was observed for two short fatty acid analogues. Moreover, [K(30)(E-Prop)]hPP2-36 (15) displayed enhanced stability in blood plasma and liver homogenates. Thus, short chain lipidation of hPP at key residue 30 is a promising approach for anti-obesity therapy because of maintained selectivity and a sixfold increased plasma half-life.
Collapse
Affiliation(s)
- Veronika Mäde
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Brüderstraße 34, 04103 Leipzig (Germany), Fax: (+49) 341-97-36909
| | | | | | | | | |
Collapse
|
17
|
Langel K, Lindberg S, Copolovici D, Arukuusk P, Sillard R, Langel Ű. Novel Fatty Acid Modifications of Transportan 10. Int J Pept Res Ther 2010. [DOI: 10.1007/s10989-010-9224-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Salem JH, Humeau C, Chevalot I, Harscoat-Schiavo C, Vanderesse R, Blanchard F, Fick M. Effect of acyl donor chain length on isoquercitrin acylation and biological activities of corresponding esters. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.10.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Côté J, Savard M, Bovenzi V, Bélanger S, Morin J, Neugebauer W, Larouche A, Dubuc C, Gobeil F. Novel kinin B1 receptor agonists with improved pharmacological profiles. Peptides 2009; 30:788-95. [PMID: 19150636 DOI: 10.1016/j.peptides.2008.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
Abstract
There is some evidence to suggest that inducible kinin B1 receptors (B1R) may play beneficial and protecting roles in cardiovascular-related pathologies such as hypertension, diabetes, and ischemic organ diseases. Peptide B1R agonists bearing optimized pharmacological features (high potency, selectivity and stability toward proteolysis) hold promise as valuable therapeutic agents in the treatment of these diseases. In the present study, we used solid-phase methodology to synthesize a series of novel peptide analogues based on the sequence of Sar[dPhe(8)]desArg(9)-bradykinin, a relatively stable peptide agonist with moderate affinity for the human B1R. We evaluated the pharmacological properties of these peptides using (1) in vitro competitive binding experiments on recombinant human B1R and B2R (for index of selectivity determination) in transiently transfected human embryonic kidney 293 cells (HEK-293T cells), (2) ex vivo vasomotor assays on isolated human umbilical veins expressing endogenous human B1R, and (3) in vivo blood pressure tests using anesthetized lipopolysaccharide-immunostimulated rabbits. Key chemical modifications at the N-terminus, the positions 3 and 5 on Sar[dPhe(8)]desArg(9)-bradykinin led to potent analogues. For example, peptides 18 (SarLys[Hyp(3),Cha(5), dPhe(8)]desArg(9)-bradykinin) and 20 (SarLys[Hyp(3),Igl(5), dPhe(8)]desArg(9)-bradykinin) outperformed the parental molecule in terms of affinity, functional potency and duration of action in vitro and in vivo. These selective agonists should be valuable in future animal and human studies to investigate the potential benefits of B1R activation.
Collapse
Affiliation(s)
- Jérôme Côté
- Department of Pharmacology, Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bulaj G, Green BR, Lee HK, Robertson CR, White K, Zhang L, Sochanska M, Flynn SP, Scholl EA, Pruess TH, Smith MD, White HS. Design, Synthesis, and Characterization of High-Affinity, Systemically-Active Galanin Analogues with Potent Anticonvulsant Activities. J Med Chem 2008; 51:8038-47. [DOI: 10.1021/jm801088x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Grzegorz Bulaj
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Brad R. Green
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Hee-Kyoung Lee
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Charles R. Robertson
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Karen White
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Liuyin Zhang
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Marianna Sochanska
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Sean P. Flynn
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Erika Adkins Scholl
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Timothy H. Pruess
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Misty D. Smith
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - H. Steve White
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| |
Collapse
|
21
|
Watt HL, Kharmate G, Kumar U. Biology of somatostatin in breast cancer. Mol Cell Endocrinol 2008; 286:251-61. [PMID: 18308465 DOI: 10.1016/j.mce.2008.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 01/02/2008] [Accepted: 01/15/2008] [Indexed: 01/29/2023]
Abstract
The biological effects of the neuropeptide somatostatin (SST) are mediated via a family of five somatostatin receptors (SSTRs) belonging to a family of G-protein-coupled receptors (GPCRs). SSTR regulate the secretion of hormones, growth factors, neurotransmission and cell growth in receptor-specific manner. In addition, SST plays an inhibitory role in several mammary cancer models. These effects are mediated both indirectly through inhibition of hormones and growth factors which promote tumor growth as well as directly via SSTRs present on tumor cells to inhibit mitogenic signaling of growth factor receptor kinases leading to growth arrest and induction of apoptosis. Here, we present an overview on the role of SST and its analogs in breast cancer.
Collapse
Affiliation(s)
- Heather L Watt
- Department of Medicine, Royal Victoria Hospital, McGill University, Canada
| | | | | |
Collapse
|
22
|
Jin Z, Mori Y, Hamilton JP, Olaru A, Sato F, Yang J, Ito T, Kan T, Agarwal R, Meltzer SJ. Hypermethylation of the somatostatin promoter is a common, early event in human esophageal carcinogenesis. Cancer 2008; 112:43-9. [PMID: 17999418 DOI: 10.1002/cncr.23135] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The promoter of somatostatin (SST), a primary inhibitor of gastrin-stimulated gastric acid secretion, is hypermethylated in 80% of human colon cancers. The aim of the current study was to investigate whether and at what stage promoter hypermethylation of SST is involved in human esophageal carcinogenesis. METHODS SST promoter hypermethylation was examined by real-time methylation-specific polymerase chain reaction (PCR) (MSP) in 260 human esophageal tissue specimens. Real-time reverse-transcriptase PCR and MSP were also performed on esophageal cancer cell lines before and after treatment with 5-aza-2'-deoxycytidine (5-Aza-dC). RESULTS SST hypermethylation showed highly discriminative receiver-operator characteristic curve profiles, clearly distinguishing esophageal squamous cell carcinomas (ESCC) and esophageal adenocarcinomas (EAC) from normal esophagus (NE) (P < .01). Both SST methylation frequency and normalized methylation value (NMV) were significantly higher in Barrett metaplasia without dysplasia or EAC (BE), low-grade and high-grade (HGD) dysplasia occurring in BE, EAC, and ESCC than in NE (P < .01). SST hypermethylation frequency was significantly lower in NE (9%) than in BE (70%), HGD (71.4%), or EAC (71.6%), whereas 14 (53.8%) of 26 ESCCs exhibited SST hypermethylation. There was a significant relation between SST hypermethylation and BE segment length, a known clinical risk factor for neoplastic progression. Demethylation of KYSE220 ESCC and OE33 EAC cells with 5-Aza-dC reduced SST methylation and increased SST mRNA expression. SST mRNA levels in native unmethylated EACs were significantly higher than in native methylated EACs (P < .05). CONCLUSIONS SST promoter hypermethylation is a common event in human esophageal carcinomas and is related to early neoplastic progression in Barrett esophagus.
Collapse
Affiliation(s)
- Zhe Jin
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang H, Schneider SE, Bray BL, Friedrich PE, Tvermoes NA, Mader CJ, Whight SR, Niemi TE, Silinski P, Picking T, Warren M, Wring SA. Process Development of TRI-999, a Fatty-Acid-Modified HIV Fusion Inhibitory Peptide. Org Process Res Dev 2007. [DOI: 10.1021/op7002198] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Huyi Zhang
- Process Research and Development, Analytical Chemistry, and Drug Metabolism and Pharmacokinetics, Trimeris, Inc., Morrisville, North Carolina 27560, U.S.A
| | - Stephen E. Schneider
- Process Research and Development, Analytical Chemistry, and Drug Metabolism and Pharmacokinetics, Trimeris, Inc., Morrisville, North Carolina 27560, U.S.A
| | - Brian L. Bray
- Process Research and Development, Analytical Chemistry, and Drug Metabolism and Pharmacokinetics, Trimeris, Inc., Morrisville, North Carolina 27560, U.S.A
| | - Paul E. Friedrich
- Process Research and Development, Analytical Chemistry, and Drug Metabolism and Pharmacokinetics, Trimeris, Inc., Morrisville, North Carolina 27560, U.S.A
| | - Nicolai A. Tvermoes
- Process Research and Development, Analytical Chemistry, and Drug Metabolism and Pharmacokinetics, Trimeris, Inc., Morrisville, North Carolina 27560, U.S.A
| | - Catherine J. Mader
- Process Research and Development, Analytical Chemistry, and Drug Metabolism and Pharmacokinetics, Trimeris, Inc., Morrisville, North Carolina 27560, U.S.A
| | - Sheila R. Whight
- Process Research and Development, Analytical Chemistry, and Drug Metabolism and Pharmacokinetics, Trimeris, Inc., Morrisville, North Carolina 27560, U.S.A
| | - Toivo E. Niemi
- Process Research and Development, Analytical Chemistry, and Drug Metabolism and Pharmacokinetics, Trimeris, Inc., Morrisville, North Carolina 27560, U.S.A
| | - Peter Silinski
- Process Research and Development, Analytical Chemistry, and Drug Metabolism and Pharmacokinetics, Trimeris, Inc., Morrisville, North Carolina 27560, U.S.A
| | - Tony Picking
- Process Research and Development, Analytical Chemistry, and Drug Metabolism and Pharmacokinetics, Trimeris, Inc., Morrisville, North Carolina 27560, U.S.A
| | - Marquitta Warren
- Process Research and Development, Analytical Chemistry, and Drug Metabolism and Pharmacokinetics, Trimeris, Inc., Morrisville, North Carolina 27560, U.S.A
| | - Stephen A. Wring
- Process Research and Development, Analytical Chemistry, and Drug Metabolism and Pharmacokinetics, Trimeris, Inc., Morrisville, North Carolina 27560, U.S.A
| |
Collapse
|
24
|
Prasad S, Mathur A, Jaggi M, Singh AT, Mukherjee R. Substance P analogs containing alpha,alpha-dialkylated amino acids with potent anticancer activity. J Pept Sci 2007; 13:544-8. [PMID: 17617800 DOI: 10.1002/psc.886] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Six analogs (peptides 1-6) of the potent substance P (SP) derivative known as 'Antagonist D' were synthesized by substituting constrained amino acids Aib or Acp (cycloleucine, 1-amino cyclopentane carboxylic acid) at different positions in the Antagonist D sequence: D-Arg(1)-Pro(2)-Lys(3)-Pro(4)-D-Phe(5)-Gln(6)-D-Trp(7)-Phe(8)-D-Trp(9)-Leu(10)-Leu(11)-NH(2). In the preliminary in vitro antiproliferative screening of the analogs on different human cancer cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, peptide 1 was found to be the most active. Further, peptide 1 was butanoylated (analog 5) or octanoylated (analog 6) at the N-terminus. SP analogs 1, 5, and 6 were evaluated in vivo in a xenograft model of human primary colon tumor (PTC) cell line in athymic nude mice and were found to cause tumor regression. This study investigates if the use of the constrained amino acids Aib and Acp in the designed SP analogs can retain the in vitro and in vivo anticancer activities, which could be useful in cancer therapy and drug targeting. Further, the strategy of incorporation of Aib or Acp in biologically active peptides can be exploited in determining the receptor-bound conformation and in transforming these bioactive peptides into pharmacologically useful drugs.
Collapse
Affiliation(s)
- Sudhanand Prasad
- Dabur Research Foundation, 22 Site IV, Sahibabad, Ghaziabad 201010, India.
| | | | | | | | | |
Collapse
|
25
|
Werle M, Bernkop-Schnürch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 2006; 30:351-67. [PMID: 16622600 DOI: 10.1007/s00726-005-0289-3] [Citation(s) in RCA: 486] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/16/2005] [Indexed: 10/24/2022]
Abstract
Due to the obvious advantages of long-acting peptide and protein drugs, strategies to prolong plasma half life time of such compounds are highly on demand. Short plasma half life times are commonly due to fast renal clearance as well as to enzymatic degradation occurring during systemic circulation. Modifications of the peptide/protein can lead to prolonged plasma half life times. By shortening the overall amino acid amount of somatostatin and replacing L: -analogue amino acids with D: -amino acids, plasma half life time of the derivate octreotide was 1.5 hours in comparison to only few minutes of somatostatin. A PEG(2,40 K) conjugate of INF-alpha-2b exhibited a 330-fold prolonged plasma half life time compared to the native protein. It was the aim of this review to provide an overview of possible strategies to prolong plasma half life time such as modification of N- and C-terminus or PEGylation as well as methods to evaluate the effectiveness of drug modifications. Furthermore, fundamental data about most important proteolytic enzymes of human blood, liver and kidney as well as their cleavage specificity and inhibitors for them are provided in order to predict enzymatic cleavage of peptide and protein drugs during systemic circulation.
Collapse
Affiliation(s)
- M Werle
- ThioMatrix GmbH, Research Center Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
26
|
Prasad S, Mathur A, Sharma R, Gupta N, Ahuja R, Jaggi M, Singh AT, Mukherjee R. Octapeptide Analogs of Somatostatin Containing α,α-Dialkylated Amino Acids with Potent Anticancer Activity. Int J Pept Res Ther 2006. [DOI: 10.1007/s10989-005-9005-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Zarandi M, Varga JL, Schally AV, Horvath JE, Toller GL, Kovacs M, Letsch M, Groot K, Armatis P, Halmos G. Lipopeptide antagonists of growth hormone-releasing hormone with improved antitumor activities. Proc Natl Acad Sci U S A 2006; 103:4610-5. [PMID: 16537407 PMCID: PMC1450219 DOI: 10.1073/pnas.0511348103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antagonists of growth hormone-releasing hormone (GHRH) synthesized previously inhibit proliferation of various human cancers, but derivatisation with fatty acids could enhance their clinical efficacy. We synthesized a series of antagonists of GHRH(1-29)NH(2) acylated at the N terminus with monocarboxylic or alpha,omega-dicarboxylic acids containing six to sixteen carbon atoms. These peptides are analogs of prior potent antagonists JV-1-36, JV-1-38, and JV-1-65 with phenylacetyl group at their N terminus. Several new analogs, including MZ-J-7-46 and MZ-J-7-30, more effectively inhibited GHRH-induced GH release in vitro in a superfused rat pituitary system than their parent compound JV-1-36 and had increased binding affinities to rat pituitary GHRH receptors, but they showed weaker inhibition of GH release in vivo than JV-1-36. All antagonists acylated with fatty acids containing 8-14 carbon atoms inhibited the proliferation of MiaPaCa-2 human pancreatic cancer cells in vitro better than JV-1-36 or JV-1-65. GHRH antagonist MZ-J-7-114 (5 mug/day) significantly suppressed the growth of PC-3 human androgen-independent prostate cancers xenografted into nude mice and reduced serum IGF-I levels, whereas antagonist JV-1-38 had no effect at the dose of 10 mug/day. GHRH antagonists including MZ-J-7-46 and MZ-J-7-114 acylated with octanoic acid and MZ-J-7-30 and MZ-J-7-110 acylated with 1,12-dodecanedicarboxylic acid represent relevant improvements over earlier antagonists. These and previous results suggest that this class of GHRH antagonists might be effective in the treatment of various cancers.
Collapse
Affiliation(s)
- Marta Zarandi
- *Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699; and
| | - Jozsef L. Varga
- *Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699; and
| | - Andrew V. Schally
- *Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699; and
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125-1624
- To whom correspondence should be addressed. E-mail:
| | - Judit E. Horvath
- *Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699; and
| | - Gabor L. Toller
- *Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699; and
| | - Magdolna Kovacs
- *Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699; and
| | - Markus Letsch
- *Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699; and
| | - Kate Groot
- *Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699; and
| | - Patricia Armatis
- *Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699; and
| | - Gabor Halmos
- *Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699; and
| |
Collapse
|
28
|
Prasad S, Mathur A, Gupta N, Jaggi M, Singh AT, Rajendran P, Sanna VK, Datta K, Mukherjee R. Bombesin analogs containing α-amino-isobutyric acid with potent anticancer activity. J Pept Sci 2006; 13:54-62. [PMID: 17031871 DOI: 10.1002/psc.799] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Six octapeptide bombesin (BN) analogs were synthesized by substituting alpha-aminoisobutyric acid (Aib), in place of Ala9 or Gly11, or both, in the [D-Phe6, desMet14]-BN (6-14) sequence: D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Leu13-NH2 (P0). Additionally, Leu13 was replaced with isoleucine in two analogs and one of the analogs was butanoylated at the N-terminus. The antiproliferative activity of the analogs was tested in vitro on human pancreatic (MiaPaCa-2) and colon cancer (SW620, HT29 and PTC) cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The analogs demonstrated anticancer activity in the above cell lines at concentrations ranging from 0.01 nM to 1 microM. One of the analogs, P6, was evaluated for in vivo tumor regression in a xenograft model of human primary colon cancer in athymic nude mice and was found to cause significant reduction in tumor volume. NMR and molecular dynamics (MD) simulation studies for this analog revealed the presence of a mixed 3(10)/alpha-helical structure. This study demonstrates that the designed BN analogs retain their anticancer activity after the incorporation of the constrained amino acid, Aib, and are potential molecules for future use in cancer therapy and drug targeting.
Collapse
Affiliation(s)
- Sudhanand Prasad
- Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad 201010, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yuan L, Wang J, Shen WC. Reversible Lipidization Prolongs the Pharmacological Effect, Plasma Duration, and Liver Retention of Octreotide. Pharm Res 2005; 22:220-7. [PMID: 15783069 DOI: 10.1007/s11095-004-1189-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Octreotide (OCT) was reversibly lipidized to improve the pharmacological effect and to increase the plasma half-life and the liver retention of OCT for greater therapeutic potential in the treatment of liver cancers such as hepatocellular carcinoma. METHODS OCT was chemically modified using reversible aqueous lipidization (REAL) technology. REAL-modified OCT (REAL-OCT) was characterized with high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. A single dose of OCT or REAL-OCT or vehicle only was subcutaneously administered to male Sprague-Dawley rats, and the plasma growth hormone (GH) levels were measured after an intravenous injection of 2.5 microg/kg of growth hormone releasing factor (GRF) to assess the ability of REAL-OCT on GH inhibition. Radio-iodinated Tyr3-OCT (TOC) and REAL-TOC were used for pharmacokinetic studies. RESULTS At 0.1 mg/kg, REAL-OCT inhibited the GRF-induced GH surge in rats for a greater than 24-h period in comparison to the 6-h period for OCT. The distribution and elimination half-life for 125I-REAL-TOC were 1.4 h and 6.6 h, respectively, which were significantly longer than those of 125I-TOC. Sustained high blood concentrations and reduced in vivo degradation were observed for 125I-REAL-TOC. In addition, 125I-REAL-TOC appeared to be targeted to the liver with persistent high liver retention. CONCLUSIONS REAL-OCT has a significantly enhanced pharmacological effect, and this is most likely due to the favorable changes in the pharmacokinetic parameters upon lipidization. The observed liver targeting effect of REAL-TOC suggests that REAL-OCT might be advantageous over OCT in treating liver cancers.
Collapse
Affiliation(s)
- Liyun Yuan
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
30
|
Dasgupta P. Somatostatin analogues: multiple roles in cellular proliferation, neoplasia, and angiogenesis. Pharmacol Ther 2004; 102:61-85. [PMID: 15056499 DOI: 10.1016/j.pharmthera.2004.02.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Angiogenesis, the development of new blood vessels is a crucial process both for tumor growth and metastatic dissemination. Additionally, dysregulation in angiogenesis has been implicated in the pathogenesis of cardiovascular disease, proliferative retinopathy, diabetic nephropathy, and rheumatoid arthritis (RA). The neuropeptide somatostatin has been shown to be a powerful inhibitor of neovascularization in several experimental models. Furthermore, somatostatin receptors (sst) are expressed on endothelial cells; particularly, sst2 has been found to be uniquely up-regulated during the angiogenic switch, from quiescent to proliferative endothelium. The present manuscript reviews the anti-angiogenic activity of somatostatin and its analogues in neoplastic and nonneoplastic disease. The role of sst subtypes particularly sst2 in mediating its angioinhibitory activity is described. Somatostatin agonists may also exert their anti-angiogenic activity indirectly by inhibition of growth factors like vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis or through its immunomodulatory effects. However, the therapeutic utility of somatostatin agonists as anti-angiogenic drugs in these diseases remains confusing because of conflicting results from different studies. More basic research, as well as patient-oriented studies, is required to firmly establish the clinical potential of somatostatin agonists in therapeutic angiogenesis. The currently available somatostatin agonists have high affinity of sst2 with lower affinities for sst3 and sst5. The emergence of novel somatostatin agonists especially bispecific analogues (agonists targeting multiple cellular receptors) and conjugates (synthesized by chemically linking somatostatin analogues with other antineoplastic agents) with improved receptor specificity signify a new generation of anti-angiogenics, which may represent novel strategies in the treatment of neovascularization-related diseases.
Collapse
Affiliation(s)
- Piyali Dasgupta
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Room 2068A, MRC-2 East, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
31
|
Wang Q, Graham K, Schauer T, Fietz T, Mohammed A, Liu X, Hoffend J, Haberkorn U, Eisenhut M, Mier W. Pharmacological properties of hydrophilic and lipophilic derivatives of octreotate. Nucl Med Biol 2004; 31:21-30. [PMID: 14741567 DOI: 10.1016/s0969-8051(03)00099-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Derivatives of somatostatin (SST) represent the most important peptides for receptor targeting in oncological applications. Whereas the pharmacophor in somatostatin receptor-affine substances has been thoroughly investigated, the influence of modifications at the N-terminal has not yet been systematically studied. In order to investigate the influence of hydrophilic versus lipophilic modifications at the N-terminal end, a series of homologous derivatives of Tyr3-octreotate modified with oligomers of ethylene glycol or fatty acids were synthesized. For this purpose, Tyr3-octreotate was assembled using solid phase peptide synthesis and the fatty acids or oligomers of ethylene glycol were conjugated to the N-terminal end. The oligomers of ethylene glycol were activated by 4-nitrophenylchloroformate to obtain carbamate-linked hydrophilic compounds. The receptor affinities of these compounds were determined by competition experiments with [125I]Tyr3-octreotide on rat cortex membranes. The hydrophilic derivatives and the short chain lipophilic derivatives revealed IC50 values between 0.66 +/- 0.02 nM and 2.16 +/- 0.31 nM respectively. After labeling with (125)I the organ distribution of selected derivatives was investigated in Lewis rats bearing the rat pancreatic tumor CA20948. All of the compounds showed high tumor uptake. The peptides conjugated to oligomers of ethylene glycol showed low uptake into the liver and kidneys. Increasing the length of the fatty acids resulted in a remarkable decrease in kidney uptake. In conclusion, the systematic modifications at the N-terminal result in a low effect on the receptor affinity but allow the modulation of the pharmacokinetic properties of octreotide derivatives.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nuclear Medicine, University Clinics, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wan L, Chen YH, Chang TW. Improving pharmacokinetic properties of adrenocorticotropin by site-specific lipid modification. J Pharm Sci 2003; 92:1882-92. [PMID: 12950006 DOI: 10.1002/jps.10442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although many peptides are potentially good therapeutic agents for treating various diseases, only a few have been developed for limited applications. A major shortcoming is that peptides have generally very short serum half lives. In the present study, we use adrenocorticotropin (ACTH) as a model and explore the potential of combining site-specific amino acid substitution and lipid modification to increase the circulating half-lives of peptides. Phe39 of ACTH was substituted by Cys, which has a free sulfhydryl group that can react specifically with iodoacetamide derivatives of lipophilic groups. The biological activities of lipophilized ACTH(F39C)s were higher than native ACTH. Lipophilized ACTH(F39C)s bound more tightly to human serum albumin and cell membranes in vitro and had longer serum half-lives in vivo than native ACTH. These results indicate that the pharmacokinetic properties of peptides can be improved by site-specific substitution with cysteine residues and subsequent conjugation with lipophilic moieties.
Collapse
Affiliation(s)
- Lei Wan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 300
| | | | | |
Collapse
|