1
|
Ziegert Z, Dietz M, Hill M, McBride M, Painter E, Elias MH, Staley C. Targeting quorum sensing for manipulation of commensal microbiota. BMC Biotechnol 2024; 24:106. [PMID: 39696328 PMCID: PMC11653937 DOI: 10.1186/s12896-024-00937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024] Open
Abstract
Bacteria communicate through the accumulation of autoinducer (AI) molecules that regulate gene expression at critical densities in a process called quorum sensing (QS). Extensive work using simple systems and single strains of bacteria have revealed a role for QS in the regulation of virulence factors and biofilm formation; however, less is known about QS dynamics among communities, especially in vivo. In this review, we summarize the diversity of QS signals as well as their ability to influence "non-target" behaviors among species that have receptors but not synthases for those signals. We highlight host-microbe interactions facilitated by QS and describe cross-talk between QS and the mammalian endocrine and immune systems, as well as host surveillance of QS. Further, we describe emerging evidence for the role of QS in non-infectious, chronic, microbially associated diseases including inflammatory bowel diseases and cancers. Finally, we describe potential therapeutic approaches that involve leveraging QS signals as well as quorum quenching approaches to block signaling in vivo to mitigate deleterious consequences to the host. Ultimately, QS offers a previously underexplored target that may be leveraged for precision modification of the microbiota without deleterious bactericidal consequences.
Collapse
Affiliation(s)
- Zachary Ziegert
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Matthew Dietz
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Max Hill
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Marjais McBride
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Elizabeth Painter
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Mikael H Elias
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Christopher Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
2
|
Wu L, Luo Y. Bacterial Quorum-Sensing Systems and Their Role in Intestinal Bacteria-Host Crosstalk. Front Microbiol 2021; 12:611413. [PMID: 33584614 PMCID: PMC7876071 DOI: 10.3389/fmicb.2021.611413] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Quorum-sensing (QS) system is a rapidly developing field in which we are gradually expanding our understanding about how bacteria communicate with each other and regulate their activities in bacterial sociality. In addition to collectively modifying bacterial behavior, QS-related autoinducers may also be embedded in the crosstalk between host and parasitic microbes. In this review, we summarize current studies on QS in the intestinal microbiome field and its potential role in maintaining homeostasis under physiological conditions. Additionally, we outline the canonical autoinducers and their related QS signal-response systems by which several pathogens interact with the host under pathological conditions, with the goal of better understanding intestinal bacterial sociality and facilitating novel antimicrobial therapeutic strategies.
Collapse
Affiliation(s)
- Liang Wu
- Department of Rheumatology and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Institute of Immunology and Inflammation, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Institute of Immunology and Inflammation, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Payne SM, Mey AR, Wyckoff EE. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments. Microbiol Mol Biol Rev 2016; 80:69-90. [PMID: 26658001 PMCID: PMC4711184 DOI: 10.1128/mmbr.00046-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats.
Collapse
Affiliation(s)
- Shelley M Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Alexandra R Mey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth E Wyckoff
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus. J Microbiol 2012; 50:320-5. [PMID: 22538662 DOI: 10.1007/s12275-012-2056-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/10/2012] [Indexed: 12/19/2022]
Abstract
The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability.
Collapse
|
5
|
Kim SP, Lee GW, Kim CM, Shin SH. Coordinate Regulation ofVibrio vulnificusHeme Receptor HupA Expression by Cyclic AMP-receptor Protein and Ferric Uptake Regulator. ACTA ACUST UNITED AC 2012. [DOI: 10.4167/jbv.2012.42.4.294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sun-Pyo Kim
- Department of Emergence Medicine, Chosun University Medical School, Gwangju, Korea
| | - Gang-Wook Lee
- Department of Emergence Medicine, Chosun University Medical School, Gwangju, Korea
| | - Choon-Mee Kim
- Research Center for Resistant Cells, Chosun University Medical School, Gwangju, Korea
| | - Sung-Heui Shin
- Research Center for Resistant Cells, Chosun University Medical School, Gwangju, Korea
- Department of Microbiology, Chosun University Medical School, Gwangju, Korea
| |
Collapse
|
6
|
LuxS mediates iron-dependent biofilm formation, competence, and fratricide in Streptococcus pneumoniae. Infect Immun 2011; 79:4550-8. [PMID: 21875962 DOI: 10.1128/iai.05644-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During infection, Streptococcus pneumoniae exists mainly in sessile biofilms rather than in planktonic form, except during sepsis. The capacity to form biofilms is believed to be important for nasopharyngeal colonization as well as disease pathogenesis, but relatively little is known about the regulation of this process. Here, we investigated the effect of exogenous iron [Fe(III)] as well as the role of luxS (encoding S-ribosylhomocysteine lyase) on biofilm formation by S. pneumoniae D39. Fe(III) strongly enhanced biofilm formation at concentrations of ≥50 μM, while Fe(III) chelation with deferoxamine was inhibitory. Importantly, Fe(III) also upregulated the expression of luxS in wild-type D39. A luxS-deficient mutant (D39luxS) failed to form a biofilm, even with Fe(III) supplementation, whereas a derivative overexpressing luxS (D39luxS+) exhibited enhanced biofilm formation capacity and could form a biofilm without added Fe(III). D39luxS exhibited reduced expression of the major Fe(III) transporter PiuA, and the cellular [Fe(III)] was significantly lower than that in D39; in contrast, D39luxS+ had a significantly higher cellular [Fe(III)] than the wild type. The release of extracellular DNA, which is an important component of the biofilm matrix, also was directly related to luxS expression. Similarly, genetic competence, as measured by transformation frequency as well as the expression of competence genes comD, comX, comW, cglA, and dltA and the murein hydrolase cbpD, which is associated with fratricide-dependent DNA release, all were directly related to luxS expression levels and were further upregulated by Fe(III). Moreover, mutagenesis of cbpD blocked biofilm formation. We propose that competence, fratricide, and biofilm formation are closely linked in pneumococci, and that luxS is a central regulator of these processes. We also propose that the stimulatory effects of Fe(III) on all of these parameters are due to the upregulation of luxS expression, and that LuxS provides for a positive Fe(III)-dependent amplification loop by increasing iron uptake.
Collapse
|