1
|
Oe Y, Tanaka T, Takahashi N. The Many Faces of Protease-Activated Receptor 2 in Kidney Injury. Biomedicines 2025; 13:414. [PMID: 40002827 PMCID: PMC11852827 DOI: 10.3390/biomedicines13020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Protease-activated receptor 2 (PAR2) is a seven-transmembrane, G-protein-coupled receptor that is activated by coagulation proteases such as factor VIIa and factor Xa and other serine proteases. It is a potential therapeutic target for kidney injury, as it enhances inflammatory and fibrotic responses via the nuclear factor-kappa B and mitogen-activated protein kinase cascades. The body of knowledge regarding the role of PAR2 in kidney disease is currently growing, and its role in various kidney disease models, such as acute kidney injury, renal fibrosis, diabetic kidney disease, aging, and thrombotic microangiopathy, has been reported. Here, we review the literature to better understand the various aspects of PAR2 in kidney disease.
Collapse
Affiliation(s)
- Yuji Oe
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai 980-0845, Japan
| |
Collapse
|
2
|
Xiao M, Tang D, Luan S, Hu B, Gong W, Pommer W, Dai Y, Yin L. Dysregulated coagulation system links to inflammation in diabetic kidney disease. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1270028. [PMID: 38143793 PMCID: PMC10748384 DOI: 10.3389/fcdhc.2023.1270028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Diabetic kidney disease (DKD) is a significant contributor to end-stage renal disease worldwide. Despite extensive research, the exact mechanisms responsible for its development remain incompletely understood. Notably, patients with diabetes and impaired kidney function exhibit a hypercoagulable state characterized by elevated levels of coagulation molecules in their plasma. Recent studies propose that coagulation molecules such as thrombin, fibrinogen, and platelets are interconnected with the complement system, giving rise to an inflammatory response that potentially accelerates the progression of DKD. Remarkably, investigations have shown that inhibiting the coagulation system may protect the kidneys in various animal models and clinical trials, suggesting that these systems could serve as promising therapeutic targets for DKD. This review aims to shed light on the underlying connections between coagulation and complement systems and their involvement in the advancement of DKD.
Collapse
Affiliation(s)
- Mengyun Xiao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Donge Tang
- Shenzhen People’s Hospital/The Second Clinical School of Jinan University, Shenzhen, Guangdong, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Bo Hu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wenyu Gong
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wolfgang Pommer
- KfH Kuratoriumfuer Dialyse und Nierentransplantatione.V., Bildungszentrum, Neu-Isenburg, Germany
| | - Yong Dai
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Oh H, Park HE, Song MS, Kim H, Baek JH. The Therapeutic Potential of Anticoagulation in Organ Fibrosis. Front Med (Lausanne) 2022; 9:866746. [PMID: 35652066 PMCID: PMC9148959 DOI: 10.3389/fmed.2022.866746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Fibrosis, also known as organ scarring, describes a pathological stiffening of organs or tissues caused by increased synthesis of extracellular matrix (ECM) components. In the past decades, mounting evidence has accumulated showing that the coagulation cascade is directly associated with fibrotic development. Recent findings suggest that, under inflammatory conditions, various cell types (e.g., immune cells) participate in the coagulation process causing pathological outcomes, including fibrosis. These findings highlighted the potential of anticoagulation therapy as a strategy in organ fibrosis. Indeed, preclinical and clinical studies demonstrated that the inhibition of blood coagulation is a potential intervention for the treatment of fibrosis across all major organs (e.g., lung, liver, heart, and kidney). In this review, we aim to summarize our current knowledge on the impact of components of coagulation cascade on fibrosis of various organs and provide an update on the current development of anticoagulation therapy for fibrosis.
Collapse
|
4
|
Oe Y, Miyazaki M, Takahashi N. Coagulation, Protease-Activated Receptors, and Diabetic Kidney Disease: Lessons from eNOS-Deficient Mice. TOHOKU J EXP MED 2021; 255:1-8. [PMID: 34511578 DOI: 10.1620/tjem.255.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) dysfunction is known to exacerbate the progression and prognosis of diabetic kidney disease (DKD). One of the mechanisms through which this is achieved is that low eNOS levels are associated with hypercoagulability, which promotes kidney injury. In the extrinsic coagulation cascade, the tissue factor (factor III) and downstream coagulation factors, such as active factor X (FXa), exacerbate inflammation through activation of the protease-activated receptors (PARs). Recently, it has been shown that the lack of or reduced eNOS expression in diabetic mice, as a model of advanced DKD, increases renal tissue factor levels and PAR1 and 2 expression in their kidneys. Furthermore, pharmaceutical inhibition or genetic deletion of coagulation factors or PARs ameliorated inflammation in DKD in mice lacking eNOS. In this review, we summarize the relationship between eNOS, coagulation, and PARs and propose a novel therapeutic option for the management of patients with DKD.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine
| | - Mariko Miyazaki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences
| |
Collapse
|
5
|
Effectiveness and safety of rivaroxaban versus warfarin in Taiwanese patients with end-stage renal disease and nonvalvular atrial fibrillation: A real-world nationwide cohort study. PLoS One 2021; 16:e0249940. [PMID: 33831130 PMCID: PMC8031437 DOI: 10.1371/journal.pone.0249940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The optimal anticoagulant for end-stage renal disease patients for stroke prophylaxis is unknown. The efficacy and safety of warfarin in this population are debatable. In addition, real-world evidence of direct oral anticoagulants in patients with end-stage renal disease is limited. The aim of this study was to evaluate the clinical outcomes of rivaroxaban compared with warfarin in Taiwanese patients with end-stage renal disease with nonvalvular atrial fibrillation in a real-world setting. METHODS AND RESULTS This was a retrospective population-based cohort study conducted using Taiwan's National Health Insurance Research Database. Patients with nonvalvular atrial fibrillation and end-stage renal disease who started on rivaroxaban or warfarin between February 2013 and September 2017 were eligible to participate in the study. The inverse probability of treatment weighting approach was used to balance baseline characteristics. Bleeding and thromboembolic outcomes were compared using competing risk analyses. The study population consisted of 3358 patients (173 and 3185 patients on rivaroxaban and warfarin, respectively). In the rivaroxaban group, 50.8%, 38.7%, and 10.4% of the patients received 10, 15, and 20 mg of the drug, respectively. The cumulative incidence of major bleeding was similar between the two groups; however, the gastrointestinal bleeding rate was lower in the rivaroxaban group (adjusted subdistribution hazard ratio [SHR]: 0.56, 95% confidence interval [CI]: 0.34-0.91) than in the warfarin group. Furthermore, the composite risk of ischemic stroke or systemic embolism was significantly lower in the rivaroxaban group (adjusted SHR: 0.36, 95% CI: 0.17-0.79). Similar findings were observed for patients who received 10 mg of rivaroxaban. CONCLUSIONS In Taiwanese patients with end-stage renal disease and nonvalvular atrial fibrillation, rivaroxaban may be associated with a similar risk of major bleeding but a lower risk of thromboembolism compared with warfarin. The potential benefit of 10 mg of rivaroxaban in this population requires further investigation.
Collapse
|
6
|
Camm AJ, Atar D. Use of Non-vitamin K Antagonist Oral Anticoagulants for Stroke Prevention across the Stroke Spectrum: Progress and Prospects. Thromb Haemost 2021; 121:716-730. [PMID: 33412613 DOI: 10.1055/s-0040-1721665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Multiple randomized controlled trials and many real-world evidence studies have consistently shown that non-vitamin K antagonist oral anticoagulants (NOACs) are preferable to vitamin K antagonists for thromboembolic stroke prevention in the majority of patients with atrial fibrillation (AF). However, their role in the management of patients with AF and comorbidities, as well as in other patient populations with a high risk of stroke, such as patients with prior embolic stroke of undetermined source (ESUS) and those with atherosclerosis, is less clear. There is now increasing evidence suggesting that NOACs have a beneficial effect in the prevention of stroke in patients with AF and comorbidities, such as renal impairment and diabetes. In addition, while studies investigating the efficacy and safety of NOACs for the prevention of secondary stroke in patients with a history of ESUS demonstrated neutral results, subanalyses suggested potential benefits in certain subgroups of patients with ESUS. One NOAC, rivaroxaban, has also recently been found to be effective in reducing the risk of stroke in patients with chronic cardiovascular disease including coronary artery disease and peripheral artery disease, further broadening the patient groups that may benefit from NOACs. In this article, we will review recent evidence for the use of NOACs across the stroke spectrum in detail, and discuss the progress and future prospects in the different stroke areas.
Collapse
Affiliation(s)
- A John Camm
- Division of Cardiac and Vascular Sciences, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Dan Atar
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway.,University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Abstract
Increasing evidence suggests that renal inflammation contributes to the pathogenesis and progression of diabetic kidney disease (DKD) and that anti-inflammatory therapies might have renoprotective effects in DKD. Immune cells and resident renal cells that activate innate immunity have critical roles in triggering and sustaining inflammation in this setting. Evidence from clinical and experimental studies suggests that several innate immune pathways have potential roles in the pathogenesis and progression of DKD. Toll-like receptors detect endogenous danger-associated molecular patterns generated during diabetes and induce a sterile tubulointerstitial inflammatory response via the NF-κB signalling pathway. The NLRP3 inflammasome links sensing of metabolic stress in the diabetic kidney to activation of pro-inflammatory cascades via the induction of IL-1β and IL-18. The kallikrein-kinin system promotes inflammatory processes via the generation of bradykinins and the activation of bradykinin receptors, and activation of protease-activated receptors on kidney cells by coagulation enzymes contributes to renal inflammation and fibrosis in DKD. In addition, hyperglycaemia leads to protein glycation and activation of the complement cascade via recognition of glycated proteins by mannan-binding lectin and/or dysfunction of glycated complement regulatory proteins. Data from preclinical studies suggest that targeting these innate immune pathways could lead to novel therapies for DKD.
Collapse
|
8
|
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
|
9
|
Rivaroxaban, a specific FXa inhibitor, improved endothelium-dependent relaxation of aortic segments in diabetic mice. Sci Rep 2019; 9:11206. [PMID: 31371788 PMCID: PMC6672013 DOI: 10.1038/s41598-019-47474-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Activated factor X (FXa) plays a central role in the coagulation cascade, while it also mediates vascular function through activation of protease-activated receptors (PARs). Here, we examined whether inhibition of FXa by rivaroxaban, a direct FXa inhibitor, attenuates endothelial dysfunction in streptozotocin (STZ)-induced diabetic mice. Induction of diabetes increased the expression of a major FXa receptor, PAR2, in the aorta (P < 0.05). Administration of rivaroxaban (10 mg/kg/day) to diabetic wild-type (WT) mice for 3 weeks attenuated endothelial dysfunction as determined by acetylcholine-dependent vasodilation compared with the control (P < 0.001), without alteration of blood glucose level. Rivaroxaban promoted eNOSSer1177 phosphorylation in the aorta (P < 0.001). Induction of diabetes to PAR2-deficient (PAR2−/−) mice did not affect endothelial function and eNOSSer1177 phosphorylation in the aorta compared with non-diabetic PAR2−/− mice. FXa or a PAR2 agonist significantly impaired endothelial function in aortic rings obtained from WT mice, but not in those from PAR2−/− mice. FXa promoted JNK phosphorylation (P < 0.01) and reduced eNOSSer1177 phosphorylation (P < 0.05) in human coronary artery endothelial cells (HCAEC). FXa-induced endothelial dysfunction in aortic rings (P < 0.001) and eNOSSer1177 phosphorylation (P < 0.05) in HCAEC were partially ameliorated by a JNK inhibitor. Rivaroxaban ameliorated diabetes-induced endothelial dysfunction. Our results suggest that FXa or PAR2 is a potential therapeutic target.
Collapse
|
10
|
Protease-activated receptor 2 protects against VEGF inhibitor-induced glomerular endothelial and podocyte injury. Sci Rep 2019; 9:2986. [PMID: 30814628 PMCID: PMC6393426 DOI: 10.1038/s41598-019-39914-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 02/02/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) inhibitors cause glomerular injury. We have recently shown that activation of protease-activated receptor 2 (PAR2) by factor Xa exacerbated diabetic kidney disease. However, the role of PAR2 in glomerular injury induced by VEGF blockade is not known. Herein, we investigated the effect of the lack of PAR2 on VEGF inhibitor-induced glomerular injury. Although administering an anti-VEGF antibody by itself did not show renal phenotype in wild type mice, its administration to mice lacking endothelial nitric oxide synthase (eNOS) caused glomerular injury. Different from what we expected, administration of an anti-VEGF antibody in mice lacking PAR2 and eNOS exacerbated albuminuria and reduced the expression levels of CD31, pro-angiogenic VEGF, and angiogenesis-related chemokines in their kidneys. Podocyte injury was also evident in this model of mice lacking PAR2. Our results suggest that PAR2 is protective against VEGF inhibitor-induced glomerular endothelial and podocyte injury.
Collapse
|
11
|
Horinouchi Y, Ikeda Y, Fukushima K, Imanishi M, Hamano H, Izawa-Ishizawa Y, Zamami Y, Takechi K, Miyamoto L, Fujino H, Ishizawa K, Tsuchiya K, Tamaki T. Renoprotective effects of a factor Xa inhibitor: fusion of basic research and a database analysis. Sci Rep 2018; 8:10858. [PMID: 30022146 PMCID: PMC6052035 DOI: 10.1038/s41598-018-29008-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/04/2018] [Indexed: 01/25/2023] Open
Abstract
Renal tubulointerstitial injury, an inflammation-associated condition, is a major cause of chronic kidney disease (CKD). Levels of activated factor X (FXa), a blood coagulation factor, are increased in various inflammatory diseases. Therefore, we investigated the protective effects of an FXa inhibitor against renal tubulointerstitial injury using unilateral ureteral obstruction (UUO) mice (a renal tubulointerstitial fibrosis model) and the Food and Drug Administration Adverse Events Reporting System (FAERS) database. The renal expression levels of FX and the FXa receptors protease-activated receptor (PAR)-1 and PAR-2 were significantly higher in UUO mice than in sham-operated mice. UUO-induced tubulointerstitial fibrosis and extracellular matrix expression were suppressed in UUO mice treated with the FXa inhibitor edoxaban. Additionally, edoxaban attenuated UUO-induced macrophage infiltration and inflammatory molecule upregulation. In an analysis of the FAERS database, there were significantly fewer reports of tubulointerstitial nephritis for patients treated with FXa inhibitors than for patients not treated with inhibitors. These results suggest that FXa inhibitors exert protective effects against CKD by inhibiting tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Hirofumi Hamano
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
12
|
Pappa E, Vastardis H, Mermelekas G, Gerasimidi-Vazeou A, Zoidakis J, Vougas K. Saliva Proteomics Analysis Offers Insights on Type 1 Diabetes Pathology in a Pediatric Population. Front Physiol 2018; 9:444. [PMID: 29755368 PMCID: PMC5932525 DOI: 10.3389/fphys.2018.00444] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/10/2018] [Indexed: 12/13/2022] Open
Abstract
The composition of the salivary proteome is affected by pathological conditions. We analyzed by high resolution mass spectrometry approaches saliva samples collected from children and adolescents with type 1 diabetes and healthy controls. The list of more than 2000 high confidence protein identifications constitutes a comprehensive characterization of the salivary proteome. Patients with good glycemic regulation and healthy individuals have comparable proteomic profiles. In contrast, a significant number of differentially expressed proteins were identified in the saliva of patients with poor glycemic regulation compared to patients with good glycemic control and healthy children. These proteins are involved in biological processes relevant to diabetic pathology such as endothelial damage and inflammation. Moreover, a putative preventive therapeutic approach was identified based on bioinformatic analysis of the deregulated salivary proteins. Thus, thorough characterization of saliva proteins in diabetic pediatric patients established a connection between molecular changes and disease pathology. This proteomic and bioinformatic approach highlights the potential of salivary diagnostics in diabetes pathology and opens the way for preventive treatment of the disease.
Collapse
Affiliation(s)
- Eftychia Pappa
- Department of Operative Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Heleni Vastardis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Mermelekas
- Proteomics Laboratory, Foundation of Biomedical Research of the Academy of Athens, Athens, Greece
| | | | - Jerome Zoidakis
- Proteomics Laboratory, Foundation of Biomedical Research of the Academy of Athens, Athens, Greece
| | - Konstantinos Vougas
- Proteomics Laboratory, Foundation of Biomedical Research of the Academy of Athens, Athens, Greece
| |
Collapse
|
13
|
Vinnikov I, Shahzad K, Bock F, Ranjan S, Wolter J, Kashif M, Oh J, Bierhaus A, Nawroth P, Kirschfink M, Conway E, Madhusudhan T, Isermann B, Wang H. The lectin-like domain of thrombomodulin ameliorates diabetic glomerulopathy via complement inhibition. Thromb Haemost 2017; 108:1141-53. [DOI: 10.1160/th12-07-0460] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/28/2012] [Indexed: 12/28/2022]
Abstract
SummaryCoagulation and complement regulators belong to two interactive systems constituting emerging mechanisms of diabetic nephropathy. Thrombomodulin (TM) regulates both coagulation and complement activation, in part through discrete domains. TM’s lectin like domain dampens complement activation, while its EGF-like domains independently enhance activation of the anticoagulant and cytoprotective serine protease protein C (PC). A protective effect of activated PC in diabetic nephropathy is established. We hypothesised that TM controls diabetic nephropathy independent of PC through its lectin-like domain by regulating complement. Diabetic nephropathy was analysed in mice lacking TM’s lectin-like domain (TMLeD/LeD) and controls (TMwt/wt). Albuminuria (290 μg/mg vs. 166 μg/mg, p=0.03) and other indices of experimental diabetic nephropathy were aggravated in diabetic TMLeD/LeDmice. Complement deposition (C3 and C5b-9) was markedly increased in glomeruli of diabetic TMLeD/LeDmice. Complement inhibition with enoxaparin ameliorated diabetic nephropathy in TMLeD/LeDmice (e.g. albuminuria 85 μg/mg vs. 290 μg/mg, p <0.001). In vitroTM’s lectin-like domain cell-autonomously prevented glucose-induced complement activation on endothelial cells and –notably –on podocytes. Podocyte injury, which was enhanced in diabetic TMLeD/LeDmice, was reduced following complement inhibition with enoxaparin. The current study identifies a novel mechanism regulating complement activation in diabetic nephropathy. TM’s lectin-like domain constrains glucose-induced complement activation on endothelial cells and podocytes and ameliorates albuminuria and glomerular damage in mice.
Collapse
|
14
|
Park MK, Cho MK, Kang SA, Kim BY, Yu HS. The induction of the collagen capsule synthesis by Trichinella spiralis is closely related to protease-activated receptor 2. Vet Parasitol 2016; 230:56-61. [PMID: 27884442 DOI: 10.1016/j.vetpar.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/20/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
The muscle-stage larvae of the parasite Trichinella spiralis have the ability to survive within host muscle tissue by virtue of the formation a nurse cell-parasite complex, which is surrounded by collagen. The formation of the complex is initiated by excretory-secretory (ES) proteins produced by the parasite. To determine the mechanisms underlying collagen capsule formation, we investigated the expression levels of several types of collagen genes and TGF-βI signaling-related genes (Smad2 and Smad3) in muscle cells. Synthesis of type I, IV, and VI collagen, which are major constituents of the collagen capsule, significantly increased during T. spiralis infection. In addition, we found that expression of the protease-activated receptor 2 (PAR2) gene was significantly increased during this period. Expression levels of the collagen genes and TGF-βI, Smad2, and Smad3 were induced by ES proteins and a PAR2 agonist, whereas their enhanced expression levels were reduced by a PAR2 antagonist and serine protease inhibitors. To evaluate the involvement of PAR2 during T. spiralis infection in vivo, we infected wild-type and PAR2 knockout (KO) mice with T. spiralis. Expression levels of type I, IV, and VI collagen genes and TGF-βI signaling-related genes (Smad2 and Smad3) were also decreased in the PAR2 KO mice. Phosphorylation of Smad2/3, which was increased by T. spiralis infection, was significantly diminished in the PAR2 KO mice. In conclusion, ES proteins containing serine protease most likely activate collagen synthesis via PAR2 and TGF-βI signaling, and this event could influence collagen capsule formation.
Collapse
Affiliation(s)
- Mi Kyung Park
- Department of Parasitology School of Medicine, Pusan National University, and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Yangsan, Republic of Korea
| | - Min Kyoung Cho
- Department of Parasitology School of Medicine, Pusan National University, and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Yangsan, Republic of Korea
| | - Shin Ae Kang
- Department of Parasitology School of Medicine, Pusan National University, and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Yangsan, Republic of Korea
| | - Bo Young Kim
- Department of Parasitology School of Medicine, Pusan National University, and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Yangsan, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology School of Medicine, Pusan National University, and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Yangsan, Republic of Korea.
| |
Collapse
|
15
|
Oe Y, Hayashi S, Fushima T, Sato E, Kisu K, Sato H, Ito S, Takahashi N. Coagulation Factor Xa and Protease-Activated Receptor 2 as Novel Therapeutic Targets for Diabetic Nephropathy. Arterioscler Thromb Vasc Biol 2016; 36:1525-33. [PMID: 27283743 DOI: 10.1161/atvbaha.116.307883] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The role of hypercoagulability in the pathogenesis of diabetic nephropathy (DN) remains elusive. We recently reported the increased infiltration of macrophages expressing tissue factor in diabetic kidney glomeruli; tissue factor activates coagulation factor X (FX) to FXa, which in turn stimulates protease-activated receptor 2 (PAR2) and causes inflammation. APPROACH AND RESULTS Here, we demonstrated that diabetes mellitus increased renal FX mRNA, urinary FXa activity, and FX expression in glomerular macrophages. Administration of an oral FXa inhibitor, edoxaban, ameliorated DN with concomitant reductions in the expression of PARs (Par1 and Par2) and of proinflammatory and profibrotic genes. Diabetes mellitus induced PAR2, and lack of Par2 ameliorated DN. FXa or PAR2 agonist increased inflammatory cytokines in endothelial cells and podocytes in vitro. CONCLUSIONS We conclude that enhanced FXa and PAR2 exacerbate DN and that both are promising targets for preventing DN. Alleviating inflammation is probably more important than inhibiting coagulation per se when treating kidney diseases using anticoagulants.
Collapse
Affiliation(s)
- Yuji Oe
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Sakiko Hayashi
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Tomofumi Fushima
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Emiko Sato
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Kiyomi Kisu
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Hiroshi Sato
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Sadayoshi Ito
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Nobuyuki Takahashi
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.).
| |
Collapse
|
16
|
Characterization and Functions of Protease-Activated Receptor 2 in Obesity, Diabetes, and Metabolic Syndrome: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3130496. [PMID: 27006943 PMCID: PMC4781943 DOI: 10.1155/2016/3130496] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
Proteinase-activated receptor 2 (PAR2) is a cell surface receptor activated by serine proteinases or specific synthetic compounds. Interest in PAR2 as a pharmaceutical target for various diseases is increasing. Here we asked two questions relevant to endothelial dysfunction and diabetes: How is PAR2 function affected in blood vessels? What role does PAR2 have in promoting obesity, diabetes, and/or metabolic syndrome, specifically via the endothelium and adipose tissues? We conducted a systematic review of the published literature in PubMed and Scopus (July 2015; search terms: par2, par-2, f2lr1, adipose, obesity, diabetes, and metabolic syndrome). Seven studies focused on PAR2 and vascular function. The obesity, diabetes, or metabolic syndrome animal models differed amongst studies, but each reported that PAR2-mediated vasodilator actions were preserved in the face of endothelial dysfunction. The remaining studies focused on nonvascular functions and provided evidence supporting the concept that PAR2 activation promoted obesity. Key studies showed that PAR2 activation regulated cellular metabolism, and PAR2 antagonists inhibited adipose gain and metabolic dysfunction in rats. We conclude that PAR2 antagonists for treatment of obesity indeed show early promise as a therapeutic strategy; however, endothelial-specific PAR2 functions, which may offset mechanisms that produce vascular dysfunction in diabetes, warrant additional study.
Collapse
|
17
|
Madhusudhan T, Kerlin BA, Isermann B. The emerging role of coagulation proteases in kidney disease. Nat Rev Nephrol 2015; 12:94-109. [PMID: 26592189 DOI: 10.1038/nrneph.2015.177] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A role of coagulation proteases in kidney disease beyond their function in normal haemostasis and thrombosis has long been suspected, and studies performed in the past 15 years have provided novel insights into the mechanisms involved. The expression of protease-activated receptors (PARs) in renal cells provides a molecular link between coagulation proteases and renal cell function and revitalizes research evaluating the role of haemostasis regulators in renal disease. Renal cell-specific expression and activity of coagulation proteases, their regulators and their receptors are dynamically altered during disease processes. Furthermore, renal inflammation and tissue remodelling are not only associated, but are causally linked with altered coagulation activation and protease-dependent signalling. Intriguingly, coagulation proteases signal through more than one receptor or induce formation of receptor complexes in a cell-specific manner, emphasizing context specificity. Understanding these cell-specific signalosomes and their regulation in kidney disease is crucial to unravelling the pathophysiological relevance of coagulation regulators in renal disease. In addition, the clinical availability of small molecule targeted anticoagulants as well as the development of PAR antagonists increases the need for in-depth knowledge of the mechanisms through which coagulation proteases might regulate renal physiology.
Collapse
Affiliation(s)
- Thati Madhusudhan
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Strasse 44, Magdeburg D-39120, Germany
| | - Bryce A Kerlin
- Center for Clinical and Translational Research, Nationwide Children's Hospital, 700 Children's Drive, W325 Columbus, Ohio 43205, USA
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Strasse 44, Magdeburg D-39120, Germany
| |
Collapse
|
18
|
Zuo P, Zhou Q, Zuo Z, Wang X, Chen L, Ma G. Effects of the factor Xa inhibitor, fondaparinux, on the stability of atherosclerotic lesions in apolipoprotein E-deficient mice. Circ J 2015; 79:2499-508. [PMID: 26346031 DOI: 10.1253/circj.cj-15-0285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Atherosclerosis is a progressive inflammatory disease that can lead to sudden cardiac events by plaque rupture and subsequent thrombosis. Factor Xa (FXa) not only occupies a crucial position in the coagulation cascade responsible for thrombin generation, but also has pro-inflammatory effects. The hypothesis that Fondaparinux, the selective FXa inhibitor, attenuates plaque progression and promotes stability of atherosclerotic lesions was assessed. METHODS AND RESULTS Fondaparinux (5 mg/kg body weight/day) or 0.9% saline was intraperitoneally administered for 4 weeks to apolipoprotein E-deficient mice (n=12 per group) with established atherosclerotic lesions in the innominate arteries. Fondaparinux did not remarkably decrease the progression of atherosclerosis development in apolipoprotein E-deficient mice, but increased the thickness of fibrous cap (P=0.049) and decreased the ratio of necrotic core (P=0.001) significantly. Moreover, Fondaparinux reduced the staining against Mac-2 (P=0.017), α-SMA (P=0.002), protease-activated receptor (PAR)-1 (P=0.001), PAR-2 (P=0.003), CD-31 (P=0.024), MMP-9 (P=0.000), MMP-13(P=0.011), VCAM-1 (P=0.041) and the mRNA expression of inflammatory mediators (P<0.05) significantly, such as interleukin (IL)-6, MCP-1, IFN-γ, TNF-α, IL-10 and Egr-1. CONCLUSIONS Fondaparinux, the selective FXa inhibitor, can promote the stability of atherosclerotic lesions in apolipoprotein E-deficient mice, possibly through inhibiting expression of the inflammatory mediators in plaque and reduced synthesis of MMP-9 and MMP-13.
Collapse
Affiliation(s)
- Pengfei Zuo
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University
| | | | | | | | | | | |
Collapse
|
19
|
Miller CG, Pozzi A, Zent R, Schwarzbauer JE. Effects of high glucose on integrin activity and fibronectin matrix assembly by mesangial cells. Mol Biol Cell 2014; 25:2342-50. [PMID: 24943838 PMCID: PMC4142608 DOI: 10.1091/mbc.e14-03-0800] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aberrant accumulation of collagen IV defines diabetic nephropathy. It is shown here that high glucose increases fibronectin matrix assembly by activating integrin receptors on kidney cells. Collagen IV accumulation depends on this fibronectin matrix. Targeting fibronectin matrix may be a useful therapy to stem matrix accumulation in the diabetic kidney. The filtration unit of the kidney is the glomerulus, a capillary network supported by mesangial cells and extracellular matrix (ECM). Glomerular function is compromised in diabetic nephropathy (DN) by uncontrolled buildup of ECM, especially type IV collagen, which progressively occludes the capillaries. Increased levels of the ECM protein fibronectin (FN) are also present; however, its role in DN is unknown. Mesangial cells cultured under high glucose conditions provide a model system for studying the effect of elevated glucose on deposition of FN and collagen IV. Imaging of mesangial cell cultures and analysis of detergent-insoluble matrix show that, under high glucose conditions, mesangial cells assembled significantly more FN matrix, independent of FN protein levels. High glucose conditions induced protein kinase C–dependent β1 integrin activation, and FN assembly in normal glucose was increased by stimulation of integrin activity with Mn2+. Collagen IV incorporation into the matrix was also increased under high glucose conditions and colocalized with FN fibrils. An inhibitor of FN matrix assembly prevented collagen IV deposition, demonstrating dependence of collagen IV on FN matrix. We conclude that high glucose induces FN assembly, which contributes to collagen IV accumulation. Enhanced assembly of FN might facilitate dysregulated ECM accumulation in DN.
Collapse
Affiliation(s)
- Charles G Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232Department of Medicine, Veterans Affairs Medical Center, Nashville, TN 37212
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232Department of Medicine, Veterans Affairs Medical Center, Nashville, TN 37212Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | | |
Collapse
|
20
|
Carrillo-Sepulveda MA, Matsumoto T, Nunes KP, Webb RC. Therapeutic implications of peptide interactions with G-protein-coupled receptors in diabetic vasculopathy. Acta Physiol (Oxf) 2014; 211:20-35. [PMID: 24640957 DOI: 10.1111/apha.12281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/22/2013] [Accepted: 03/12/2014] [Indexed: 12/16/2022]
Abstract
The dramatic worldwide increase in the prevalence of diabetes has generated an attempt by the scientific community to identify strategies for its treatment and prevention. Vascular dysfunction is a hallmark of diabetes and frequently leads to the development of atherosclerosis, coronary disease-derived myocardial infarction, stroke, peripheral arterial disease and diabetic 'triopathy' (retinopathy, nephropathy and neuropathy). These vascular complications, developing in an increasingly younger cohort of patients with diabetes, contribute to morbidity and mortality. Despite the development of new anti-diabetic or anti-hyperglycaemic drugs, vascular complications remain to be a problem. This warrants a need for new therapeutic strategies to tackle diabetic vasculopathy. There is a growing body of evidence showing that peptide-binding G-protein-coupled receptors (peptide-binding GPCRs) play an important role in the pathophysiology of vascular dysfunction during diabetes. Thus, in this review, we discuss some of the peptide-binding GPCRs involved in the regulation of vascular function that have potential to be a therapeutic target in the treatment of diabetic vasculopathy.
Collapse
Affiliation(s)
| | - T. Matsumoto
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku Tokyo Japan
| | - K. P. Nunes
- Department of Physiology; Georgia Regents University; Augusta GA USA
- Department of Cell and Regenerative Biology; School of Medicine and Public Health; University of Wisconsin; Madison WI USA
| | - R. C. Webb
- Department of Physiology; Georgia Regents University; Augusta GA USA
| |
Collapse
|
21
|
Yiu WH, Wong DWL, Chan LYY, Leung JCK, Chan KW, Lan HY, Lai KN, Tang SCW. Tissue kallikrein mediates pro-inflammatory pathways and activation of protease-activated receptor-4 in proximal tubular epithelial cells. PLoS One 2014; 9:e88894. [PMID: 24586431 PMCID: PMC3931644 DOI: 10.1371/journal.pone.0088894] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 01/13/2014] [Indexed: 12/11/2022] Open
Abstract
Tissue kallikrein (KLK1) expression is up-regulated in human diabetic kidney tissue and induced by high glucose (HG) in human proximal tubular epithelial cells (PTEC). Since the kallikrein-kinin system (KKS) has been linked to cellular inflammatory process in many diseases, it is likely that KLK1 expression may mediate the inflammatory process during the development of diabetic nephropathy. In this study, we explored the role of KLK1 in tubular pro-inflammatory responses under the diabetic milieu. Recombinant KLK1 stimulated the production of inflammatory cytokines in PTEC via the activation of p42/44 and p38 MAPK signaling pathways. Molecular knockdown of endogenous KLK1 expression by siRNA transfection in PTEC attenuated advanced glycation end-products (AGE)-induced IL-8 and ICAM-1 productions in vitro. Interestingly, exposure of PTEC to KLK1 induced the expression of protease-activated receptors (PARs). There was a 2.9-fold increase in PAR-4, 1.4-fold increase in PAR-1 and 1.2-fold increase in PAR-2 mRNA levels. Activation of PAR-4 by a selective agonist was found to elicit the pro-inflammatory and pro-fibrotic phenotypes in PTEC while blockade of the receptor by specific antagonist attenuated high glucose-induced IL-6, CCL-2, CTGF and collagen IV expression. Calcium mobilization by the PAR-4 agonist in PTEC was desensitized by pretreatment with KLK1. Consistent with these in vitro findings, there was a markedly up-regulation of tubular PAR-4 expression in human diabetic renal cortical tissues. Together, these results suggest that up-regulation of KLK1 in tubular epithelial cells may mediate pro-inflammatory pathway and PAR activation during diabetic nephropathy and provide a new therapeutic target for further investigation.
Collapse
Affiliation(s)
- Wai Han Yiu
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Dickson W. L. Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Loretta Y. Y. Chan
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Joseph C. K. Leung
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Kwok Wah Chan
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kar Neng Lai
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Sydney C. W. Tang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
22
|
Ono T. [Roles of coagulation pathway and factor Xa in chronic kidney disease (CKD)]. YAKUGAKU ZASSHI 2013; 132:449-53. [PMID: 22465921 DOI: 10.1248/yakushi.132.449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considering that fibrin deposition is observed in glomerulonephritis as well as in diabetic nephropathy, we performed studies to clarify the roles of the coagulation pathway and the active type of coagulation factor X (factor Xa) in the development of chronic kidney disease (CKD) using animal models. Factor Xa activates various cell types through protease-activated receptor 2 (PAR2). Several in vitro studies have demonstrated that PAR2 can mediate factor Xa signaling, but not thrombin signaling. Coagulation processes proceed together with the extracellular matrix (ECM) accumulation through factor V expression in rat Thy-1 nephritis. DX-9065a, a factor Xa inhibitor, suppresses this type of glomerulonephritis. The factor Xa inhibitor danaparoid ameliorated proteinuria, cellular proliferation, and fibrin deposition in lipopolysaccharide (LPS)-triggered activation of High IgA (HIGA) strain of ddY mice. Another factor Xa inhibitor, fondaparinux, suppressed urinary protein, glomerular hypertrophy, and connective tissue growth factor (CTGF), and ECM protein deposition together with angiogenesis in diabetic db/db mice. Finally, in the model of peritoneal fibrosis, fondaparinux treatment decreased the thickness of submesothelial fibrotic tissue and angiogenesis. In consideration of the results to potential human therapy, factor Xa regulation may be promising for the treatment of the aggravation in glomerulonephritis and of the early phase of diabetic nephropathy. In the near future, novel factor Xa inhibitors with the characteristics of oral administration and biliary elimination may appear in the clinical use for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Takahiko Ono
- Division of Nephrology, Shimada Municipal Hospital, Shizuoka, Japan.
| |
Collapse
|
23
|
Coagulation and coagulation signalling in fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1018-27. [PMID: 23298546 DOI: 10.1016/j.bbadis.2012.12.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 12/29/2022]
Abstract
Following tissue injury, a complex and coordinated wound healing response comprising coagulation, inflammation, fibroproliferation and tissue remodelling has evolved to nullify the impact of the original insult and reinstate the normal physiological function of the affected organ. Tissue fibrosis is thought to result from a dysregulated wound healing response as a result of continual local injury or impaired control mechanisms. Although the initial insult is highly variable for different organs, in most cases, uncontrolled or sustained activation of mesenchymal cells into highly synthetic myofibroblasts leads to the excessive deposition of extracellular matrix proteins and eventually loss of tissue function. Coagulation was originally thought to be an acute and transient response to tissue injury, responsible primarily for promoting haemostasis by initiating the formation of fibrin plugs to enmesh activated platelets within the walls of damaged blood vessels. However, the last 20years has seen a major re-evaluation of the role of the coagulation cascade following tissue injury and there is now mounting evidence that coagulation plays a critical role in orchestrating subsequent inflammatory and fibroproliferative responses during normal wound healing, as well as in a range of pathological contexts across all major organ systems. This review summarises our current understanding of the role of coagulation and coagulation initiated signalling in the response to tissue injury, as well as the contribution of uncontrolled coagulation to fibrosis of the lung, liver, kidney and heart. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|
24
|
Kawanami D, Matoba K, Kanazawa Y, Ishizawa S, Yokota T, Utsunomiya K. Thrombin induces MCP-1 expression through Rho-kinase and subsequent p38MAPK/NF-κB signaling pathway activation in vascular endothelial cells. Biochem Biophys Res Commun 2011; 411:798-803. [PMID: 21787749 DOI: 10.1016/j.bbrc.2011.07.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 12/31/2022]
Abstract
Thrombin has been shown to increase expression of chemokines such as monocyte chemoattractant protein 1 (MCP-1) in endothelial cells, leading to the development of atherosclerosis. However, the precise mechanism of this induction remains unknown. In the present study, we investigated whether the small G protein RhoA, and its effector, Rho-kinase are involved in MCP-1 induction by thrombin in endothelial cells. Y-27632, a specific Rho-kinase inhibitor, potently inhibited MCP-1 induction by thrombin. Y-27632 significantly decreased the chemotactic activity of thrombin-stimulated supernatants of endothelial cells on monocytes. Importantly, fasudil, a specific Rho-kinase inhibitor, attenuated MCP-1 gene expression in the aorta of db/db mice. Y-27632 attenuated thrombin-mediated phosphorylation of p38MAPK and p65, indicating that Rho-kinase mediates thrombin-induced MCP-1 expression through p38MAPK and NF-κB activation. Our findings demonstrate that the Rho/Rho-kinase signaling pathway plays a critical role in thrombin-mediated MCP-1 expression and function, and suggest that Rho/Rho-kinase may be an important target in the development of new therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Daiji Kawanami
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|