1
|
Wang H, Li H, Liu Z, Zhu Z, Cao Y. Activity of thonningianin A against Candida albicans in vitro and in vivo. Appl Microbiol Biotechnol 2024; 108:96. [PMID: 38212967 PMCID: PMC10784352 DOI: 10.1007/s00253-023-12996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Fungal infections are increasing rapidly, and antifungal agents used in clinics are limited. Therefore, novel antifungal agents with high efficiency are urgently required. In this study, we investigated the antifungal activity of thonningianin A (THA), a natural compound that is widely found in plants. We first determined the activity of THA against Candida albicans, one of the most common fungal pathogens, and found that THA showed antifungal activity against all C. albicans tested, including several fluconazole-resistant isolates. THA also inhibits the growth of non-Candida albicans species. In addition, THA displayed antibiofilm activity and could not only inhibit biofilm formation but also destroy mature biofilms. The in vivo antifungal efficacy of THA was confirmed in a Galleria mellonella infection model. Further studies revealed that THA could enhance intracellular reactive oxygen species (ROS) production and regulate the transcription of several redox-related genes. Specifically, caspase activity and expression of CaMCA1, a caspase-encoding gene in C. albicans, were remarkably increased upon THA treatment. Consistent with this, in the presence of THA, the Camca1 null mutant displayed higher survival rates and reduced caspase activity compared to the wild-type or CaMCA1-reintroduced strains, indicating an important role of CaMCA1 in the antifungal activity of THA. Taken together, our results indicate that THA possesses excellent antifungal activity and may be a promising novel antifungal candidate. KEY POINTS: • THA exhibits activity against Candida species, including fluconazole-resistant isolates • THA inhibits biofilm formation and destroys mature biofilm • Elevated ROS production and CaMCA1-mediated caspase activity are involved in the antifungal mechanisms of THA.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Hui Li
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, 200438, China
| | - ZhiWei Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - ZhenYu Zhu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - YingYing Cao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| |
Collapse
|
2
|
Eiamthaworn K, Holthaus D, Suriyaprom S, Rickerts V, Tragoolpua Y. Immunomodulation and Protective Effects of Cordyceps militaris Extract Against Candida albicans Infection in Galleria mellonella Larvae. INSECTS 2024; 15:882. [PMID: 39590481 PMCID: PMC11595007 DOI: 10.3390/insects15110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Cordyceps militaris-derived formulations are currently used for multiple purposes because of their medical properties, especially immune system modulation. This study analyzes the inhibitory effects of C. militaris aqueous extract on Candida albicans infections and the immune response in larvae of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae). Larvae exhibited melanization within 1 h of being infected with C. albicans inoculum at a concentration of 106 cells/larvae, and died within 24 h from a lethal dose. Aqueous extract of C. militaris proved to be nontoxic at concentrations of 0.25 and 0.125 mg/larvae, and had the greatest ability to prolong the survival of larvae infected with a sublethal dose of C. albicans at a concentration of 105 cells/larvae. Moreover, the number of hemocytes in the hemolymph of G. mellonella increased after infection with C. albicans and treatment with the aqueous extract of C. militaris at 1, 24, and 48 h by 1.21 × 107, 1.23 × 107, and 1.4 × 107 cells/100 µL, respectively. The highest number of hemocytes was recorded after treatment of infected G. mellonella with the extract for 48 h. Transcriptional upregulation of the immune system was observed in certain antimicrobial peptides (AMPs), showing that the relative expression of galiomicin, gallerimycin, and lysozyme genes were upregulated as early as 1 h after infection. Therefore, we conclude that C. militaris aqueous extract can modulate the immune system of G. mellonella and protect against infection from C. albicans.
Collapse
Affiliation(s)
- Kiratiya Eiamthaworn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
| | - David Holthaus
- Department of Gynecology and Obstetrics, Universitätsklinikum Schleswig-Holstein, 24105 Kiel, Germany;
- Robert Koch Institute, 13353 Berlin, Germany;
| | - Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Sethi SC, Bharati M, Kumar Y, Yadav U, Saini H, Alam P, Komath SS. The ER-Resident Ras Inhibitor 1 (Eri1) of Candida albicans Inhibits Hyphal Morphogenesis via the Ras-Independent cAMP-PKA Pathway. ACS Infect Dis 2024; 10:3528-3543. [PMID: 39119676 DOI: 10.1021/acsinfecdis.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Ras signaling and glycosylphosphatidylinositol (GPI) biosynthesis are mutually inhibitory in S. cerevisiae (Sc). The inhibition is mediated via an interaction of yeast Ras2 with the Eri1 subunit of its GPI-N-acetylglucosaminyl transferase (GPI-GnT), the enzyme catalyzing the very first GPI biosynthetic step. In contrast, Ras signaling and GPI biosynthesis in C. albicans (Ca) are mutually activated and together control the virulence traits of the human fungal pathogen. What might be the role of Eri1 in this pathogen? The present manuscript addresses this question while simultaneously characterizing the cellular role of CaEri1. It is either nonessential or required at very low levels for cell viability in C. albicans. Severe depletion of CaEri1 results in reduced GPI biosynthesis and cell wall defects. It also produces hyperfilamentation phenotypes in Spider medium as well as in bicarbonate medium containing 5% CO2, suggesting that both the Ras-dependent and Ras-independent cAMP-PKA pathways for hyphal morphogenesis are activated in these cells. Pull-down and acceptor-photobleaching FRET experiments suggest that CaEri1 does not directly interact with CaRas1 but does so through CaGpi2, another GPI-GnT subunit. We showed previously that CaGpi2 is downstream of CaEri1 in cross talk with CaRas1 and for Ras-dependent hyphal morphogenesis. Here we show that CaEri1 is downstream of all GPI-GnT subunits in inhibiting Ras-independent filamentation. CaERI1 also participates in intersubunit transcriptional cross talk within the GPI-GnT, a feature unique to C. albicans. Virulence studies using G. mellonella larvae show that a heterozygous strain of CaERI1 is better cleared by the host and is attenuated in virulence.
Collapse
Affiliation(s)
| | - Monika Bharati
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yatin Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Usha Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Harshita Saini
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Parvez Alam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Xiong EH, Zhang X, Yan H, Ward HN, Lin ZY, Wong CJ, Fu C, Gingras AC, Noble SM, Robbins N, Myers CL, Cowen LE. Functional genomic analysis of genes important for Candida albicans fitness in diverse environmental conditions. Cell Rep 2024; 43:114601. [PMID: 39126650 PMCID: PMC11416860 DOI: 10.1016/j.celrep.2024.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Fungal pathogens such as Candida albicans pose a significant threat to human health with limited treatment options available. One strategy to expand the therapeutic target space is to identify genes important for pathogen growth in host-relevant environments. Here, we leverage a pooled functional genomic screening strategy to identify genes important for fitness of C. albicans in diverse conditions. We identify an essential gene with no known Saccharomyces cerevisiae homolog, C1_09670C, and demonstrate that it encodes subunit 3 of replication factor A (Rfa3). Furthermore, we apply computational analyses to identify functionally coherent gene clusters and predict gene function. Through this approach, we predict the cell-cycle-associated function of C3_06880W, a previously uncharacterized gene required for fitness specifically at elevated temperatures, and follow-up assays confirm that C3_06880W encodes Iml3, a component of the C. albicans kinetochore with roles in virulence in vivo. Overall, this work reveals insights into the vulnerabilities of C. albicans.
Collapse
Affiliation(s)
- Emily H Xiong
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiang Zhang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huijuan Yan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Henry N Ward
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Ci Fu
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Suzanne M Noble
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
5
|
Silva AP, Cordeiro MLDS, Aquino-Martins VGDQ, de Moura Melo LF, Paiva WDS, Naliato GFDS, Theodoro RC, Meneses CHSG, Rocha HAO, Scortecci KC. Prospecting of the Antioxidant Activity from Extracts Obtained from Chañar ( Geoffroea decorticans) Seeds Evaluated In Vitro and In Vivo Using the Tenebrio molitor Model. Nutrients 2024; 16:2813. [PMID: 39275132 PMCID: PMC11396818 DOI: 10.3390/nu16172813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Geoffroea decorticans, commonly known as Chañar, is a native Chilean plant widely used in folk medicine for its expectorant, pain relief, and antinociceptive properties. This study explored the antioxidant, cytotoxic, and protective effects of its ethanolic (EE) and aqueous (EA) seed extracts against oxidative stress induced by copper sulfate, using both in vitro and in vivo approaches. Phytochemical analyses revealed the presence of phenolic compounds and flavonoids in the extracts. High-Performance Liquid Chromatography (HPLC) coupled with Gas Chromatography-Mass Spectrometry/Mass Spectrometry (GC-MS/MS) identified significant components such as phytol, alpha-tocopherol, vitexin, and rutin, with the EE being particularly rich in phytol and vitexin. Antioxidant assays-measuring the total antioxidant capacity (TAC), reducing power, DPPH radical scavenging, and copper and iron chelation-confirmed their potent antioxidant capabilities. Both extracts were non-cytotoxic and provided protection against CuSO4-induced oxidative stress in the 3T3 cell line. Additionally, the use of Tenebrio molitor as an invertebrate model underscored the extracts' antioxidant and protective potentials, especially that of the EE. In conclusion, this study highlights the significant antioxidant and protective properties of Chañar seed extracts, particularly the ethanolic extract, in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Ariana Pereira Silva
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Maria Lucia da Silva Cordeiro
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Luciana Fentanes de Moura Melo
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Weslley de Souza Paiva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Georggia Fatima da Silva Naliato
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Raquel Cordeiro Theodoro
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Carlos Henrique Salvino Gadelha Meneses
- Laboratório de Biotecnologia Vegetal (LBV), Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraiba (UEPB), Campina Grande 58429-500, PB, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Katia Castanho Scortecci
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| |
Collapse
|
6
|
Schaefer S, Vij R, Sprague JL, Austermeier S, Dinh H, Judzewitsch PR, Müller-Loennies S, Lopes Silva T, Seemann E, Qualmann B, Hertweck C, Scherlach K, Gutsmann T, Cain AK, Corrigan N, Gresnigt MS, Boyer C, Lenardon MD, Brunke S. A synthetic peptide mimic kills Candida albicans and synergistically prevents infection. Nat Commun 2024; 15:6818. [PMID: 39122699 PMCID: PMC11315985 DOI: 10.1038/s41467-024-50491-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
More than two million people worldwide are affected by life-threatening, invasive fungal infections annually. Candida species are the most common cause of nosocomial, invasive fungal infections and are associated with mortality rates above 40%. Despite the increasing incidence of drug-resistance, the development of novel antifungal formulations has been limited. Here we investigate the antifungal mode of action and therapeutic potential of positively charged, synthetic peptide mimics to combat Candida albicans infections. Our data indicates that these synthetic polymers cause endoplasmic reticulum stress and affect protein glycosylation, a mode of action distinct from currently approved antifungal drugs. The most promising polymer composition damaged the mannan layer of the cell wall, with additional membrane-disrupting activity. The synergistic combination of the polymer with caspofungin prevented infection of human epithelial cells in vitro, improved fungal clearance by human macrophages, and significantly increased host survival in a Galleria mellonella model of systemic candidiasis. Additionally, prolonged exposure of C. albicans to the synergistic combination of polymer and caspofungin did not lead to the evolution of tolerant strains in vitro. Together, this work highlights the enormous potential of these synthetic peptide mimics to be used as novel antifungal formulations as well as adjunctive antifungal therapy.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Raghav Vij
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Peter R Judzewitsch
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, NSW, Australia
| | - Sven Müller-Loennies
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Taynara Lopes Silva
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, NSW, Australia
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia.
- Australian Centre for NanoMedicine, UNSW, Sydney, NSW, Australia.
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany.
| |
Collapse
|
7
|
Herculano RD, Dos Reis CE, de Souza SMB, Pegorin Brasil GS, Scontri M, Kawakita S, Carvalho BG, Bebber CC, Su Y, de Sousa Abreu AP, Mecwan MM, Mandal K, Fusco Almeida AM, Mendes Giannini MJS, Guerra NB, Mussagy CU, Bosculo MRM, Gemeinder JLP, de Almeida BFM, Floriano JF, Farhadi N, Monirizad M, Khorsandi D, Nguyen HT, Gomez A, Tirpáková Z, Peirsman A, da Silva Sasaki JC, He S, Forster S, Burd BS, Dokmeci MR, Terra-Garcia M, Junqueira JC, de Mendonça RJ, Cardoso MR, Dos Santos LS, Silva GR, Barros NR, Jucaud V, Li B. Amphotericin B-loaded natural latex dressing for treating Candida albicans wound infections using Galleria mellonella model. J Control Release 2024; 365:744-758. [PMID: 38072085 DOI: 10.1016/j.jconrel.2023.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Amphotericin B (AmB) is the gold standard for antifungal drugs. However, AmB systemic administration is restricted because of its side effects. Here, we report AmB loaded in natural rubber latex (NRL), a sustained delivery system with low toxicity, which stimulates angiogenesis, cell adhesion and accelerates wound healing. Physicochemical characterizations showed that AmB did not bind chemically to the polymeric matrix. Electronic and topographical images showed small crystalline aggregates from AmB crystals on the polymer surface. About 56.6% of AmB was released by the NRL in 120 h. However, 33.6% of this antifungal was delivered in the first 24 h due to the presence of AmB on the polymer surface. The biomaterial's excellent hemo- and cytocompatibility with erythrocytes and human dermal fibroblasts (HDF) confirmed its safety for dermal wound application. Antifungal assay against Candida albicans showed that AmB-NRL presented a dose-dependent behavior with an inhibition halo of 30.0 ± 1.0 mm. Galleria mellonella was employed as an in vivo model for C. albicans infection. Survival rates of 60% were observed following the injection of AmB (0.5 mg.mL-1) in G. mellonella larvae infected by C. albicans. Likewise, AmB-NRL (0.5 mg.mL-1) presented survival rates of 40%, inferring antifungal activity against fungus. Thus, NRL adequately acts as an AmB-sustained release matrix, which is an exciting approach, since this antifungal is toxic at high concentrations. Our findings suggest that AmB-NRL is an efficient, safe, and reasonably priced ($0.15) dressing for the treatment of cutaneous fungal infections.
Collapse
Affiliation(s)
- Rondinelli Donizetti Herculano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| | - Camila Eugênia Dos Reis
- Fundação Educacional do Município de Assis (FEMA), 1200 Getulio Vargas Avenue, 19807-130 Assis, SP, Brazil
| | | | - Giovana Sant'Ana Pegorin Brasil
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Mateus Scontri
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Bruna Gregatti Carvalho
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; University of Campinas (UNICAMP), Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, 13083-852 Campinas, SP, Brazil
| | - Camila Calderan Bebber
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Yanjin Su
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Ana Paula de Sousa Abreu
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Marvin M Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Ana Marisa Fusco Almeida
- São Paulo State University (UNESP), Department of Clinical Analysis, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Maria José Soares Mendes Giannini
- São Paulo State University (UNESP), Department of Clinical Analysis, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | | | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Maria Rachel Melo Bosculo
- University Center of the Integrated Faculties of Ourinhos (UNIFIO), Km 338, BR-153, 19909-100 Ourinhos, SP, Brazil
| | - José Lúcio Pádua Gemeinder
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; University Center of the Integrated Faculties of Ourinhos (UNIFIO), Km 338, BR-153, 19909-100 Ourinhos, SP, Brazil
| | | | - Juliana Ferreira Floriano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; São Paulo State University (UNESP), School of Sciences, 17033-360 Bauru, SP, Brazil
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Zuzana Tirpáková
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Plastic, Reconstructive and Aesthetic Surgery, University Hospital Ghent, Ghent, Belgium
| | - Josana Carla da Silva Sasaki
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Siqi He
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Samuel Forster
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Betina Sayeg Burd
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Maíra Terra-Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), 12244-514 São José dos Campos, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), 12244-514 São José dos Campos, SP, Brazil
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Roberto Cardoso
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13561-970 São Carlos, SP, Brazil
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo University (USP), 3900 Bandeirantes Avenue, 14, 040-901 Ribeirão Preto, SP, Brazil
| | - Gláucio Ribeiro Silva
- Federal Institute of Education, Science, and Technology of Minas Gerais, s/n São Luiz Gonzaga Street, 35577-010, Formiga, MG, Brazil
| | - Natan Roberto Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| |
Collapse
|
8
|
da Silva JT, Dantas de Sousa PH, Costa AF, de Menezes LB, Alves SF, Pellegrini F, Amaral AC. Fluconazole and propolis co-encapsulated in chitosan nanoparticles for the treatment of vulvovaginal candidiasis in a murine model. Med Mycol 2023; 61:myad113. [PMID: 37947253 DOI: 10.1093/mmy/myad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is a fungal infection caused mainly by Candida albicans. The treatment of VVC with azoles has been impaired due to the increased cases of resistance presented by this pathogen. The aim of the present study was to investigate the antifungal activity of mucoadhesive chitosan nanoparticles encapsulating both green propolis and fluconazole for topical use in the treatment of VVC. The nanoparticles were prepared by the ionic gelation method, resulting in a size of 316.5 nm containing 22 mg/kg of green propolis and 2.4 mg/kg of fluconazole. The nanoparticles were non-toxic in vitro using red blood cells or in vivo in a Galleria mellonella toxicity model. The treatment of female BALB/c mice infected by C. albicans ATCC 10231 with topical nanoparticles co-encapsulating fluconazole and green propolis was effective even using a fluconazole amount 20 times lower than the amount of miconazole nitrate 2% cream. Considering that the mucoadhesive property of chitosan, which is known to allow a prolonged retention time of the compounds at the mucous epithelia, the antifungal potential of the phenols and flavonoids present in green propolis may have favored the effectiveness of this treatment. These results indicate that this formulation of topical use for fluconazole associated with green propolis can be used as a promising approach to therapy for the treatment of VVC, thus contributing to reducing the development of resistance to azoles.
Collapse
Affiliation(s)
- Jacqueline Teixeira da Silva
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| | - Paulo Henrique Dantas de Sousa
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| | - Adelaide Fernandes Costa
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| | - Liliana Borges de Menezes
- Laboratory of Pathology, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| | - Suzana Ferreira Alves
- Pharmacy Course, School of Medical Sciences, Pharmaceuticals and Biomedical Sciences, Pontifícia Universidade Católica de Goiás, Av university, 1440, Goiânia, GO, 74175-120, Brazil
| | - Flavio Pellegrini
- Company Citrinitas, St Pedroso Alvarenga, 505, São Paulo, SP, 04531-930, Brazil
| | - Andre Correa Amaral
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
9
|
Alabi PE, Gautier C, Murphy TP, Gu X, Lepas M, Aimanianda V, Sello JK, Ene IV. Small molecules restore azole activity against drug-tolerant and drug-resistant Candida isolates. mBio 2023; 14:e0047923. [PMID: 37326546 PMCID: PMC10470600 DOI: 10.1128/mbio.00479-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/13/2023] [Indexed: 06/17/2023] Open
Abstract
Each year, fungi cause more than 1.5 billion infections worldwide and have a devastating impact on human health, particularly in immunocompromised individuals or patients in intensive care units. The limited antifungal arsenal and emerging multidrug-resistant species necessitate the development of new therapies. One strategy for combating drug-resistant pathogens is the administration of molecules that restore fungal susceptibility to approved drugs. Accordingly, we carried out a screen to identify small molecules that could restore the susceptibility of pathogenic Candida species to azole antifungals. This screening effort led to the discovery of novel 1,4-benzodiazepines that restore fluconazole susceptibility in resistant isolates of Candida albicans, as evidenced by 100-1,000-fold potentiation of fluconazole activity. This potentiation effect was also observed in azole-tolerant strains of C. albicans and in other pathogenic Candida species. The 1,4-benzodiazepines selectively potentiated different azoles, but not other approved antifungals. A remarkable feature of the potentiation was that the combination of the compounds with fluconazole was fungicidal, whereas fluconazole alone is fungistatic. Interestingly, the potentiators were not toxic to C. albicans in the absence of fluconazole, but inhibited virulence-associated filamentation of the fungus. We found that the combination of the potentiators and fluconazole significantly enhanced host survival in a Galleria mellonella model of systemic fungal infection. Taken together, these observations validate a strategy wherein small molecules can restore the activity of highly used anti-infectives that have lost potency. IMPORTANCE In the last decade, we have been witnessing a higher incidence of fungal infections, due to an expansion of the fungal species capable of causing disease (e.g., Candida auris), as well as increased antifungal drug resistance. Among human fungal pathogens, Candida species are a leading cause of invasive infections and are associated with high mortality rates. Infections by these pathogens are commonly treated with azole antifungals, yet the expansion of drug-resistant isolates has reduced their clinical utility. In this work, we describe the discovery and characterization of small molecules that potentiate fluconazole and restore the susceptibility of azole-resistant and azole-tolerant Candida isolates. Interestingly, the potentiating 1,4-benzodiazepines were not toxic to fungal cells but inhibited their virulence-associated filamentous growth. Furthermore, combinations of the potentiators and fluconazole decreased fungal burdens and enhanced host survival in a Galleria mellonella model of systemic fungal infections. Accordingly, we propose the use of novel antifungal potentiators as a powerful strategy for addressing the growing resistance of fungi to clinically approved drugs.
Collapse
Affiliation(s)
- Philip E. Alabi
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Cécile Gautier
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Thomas P. Murphy
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Xilin Gu
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Mathieu Lepas
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Molecular Mycology Unit, Paris, France
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Molecular Mycology Unit, Paris, France
| | - Jason K. Sello
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
10
|
de Souza PC, Corrêa AEDN, Gameiro JG, de Oliveira Júnior AG, Panagio LA, Venancio EJ, Almeida RS. Production of IgY against iron permease Ftr1 from Candida albicans and evaluation of its antifungal activity using Galleria mellonella as a model of systemic infection. Microb Pathog 2023:106166. [PMID: 37290729 DOI: 10.1016/j.micpath.2023.106166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Candida albicans is one of the leading pathological agents of mucosal and deep tissue infections. Considering that the variety of antifungals is restricted and that toxicity limits their use, immunotherapies against pathogenic fungi have been viewed as alternatives with reduced adverse effects. In this context, C. albicans has a protein used to capture iron from the environment and the host, known as the high-affinity iron permease Ftr1. This protein may be a new target of action for novel antifungal therapies, as it influences the virulence of this yeast. Thus, the aim of the present study was to produce and conduct the biological characterization of IgY antibodies against C. albicans Ftr1. Immunization of laying hens with an Ftr1-derived peptide resulted in IgY antibodies extracted from egg yolks capable of binding to the antigen with high affinity (avidity index = 66.6 ± 0.3%). These antibodies reduced the growth and even eliminated C. albicans under iron restriction, a favorable condition for the expression of Ftr1. This also occurred with a mutant strain that does not produce Ftr1 in the presence of iron, a circumstance in which the protein analog of iron permease, Ftr2, is expressed. Furthermore, the survival of G. mellonella larvae infected with C. albicans and treated with the antibodies was 90% higher than the control group, which did not receive treatment (p < 0.0001). Therefore, our data suggest that IgY antibodies against Ftr1 from C. albicans can inhibit yeast propagation by blocking iron uptake.
Collapse
Affiliation(s)
- Patricia Canteri de Souza
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Alana Elke do Nascimento Corrêa
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Juliana Gutschow Gameiro
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Admilton Gonçalves de Oliveira Júnior
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Luciano Aparecido Panagio
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Emerson José Venancio
- Department of Pathological Sciences, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Ricardo Sergio Almeida
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil.
| |
Collapse
|
11
|
Santos AL, Beckham JL, Liu D, Li G, van Venrooy A, Oliver A, Tegos GP, Tour JM. Visible-Light-Activated Molecular Machines Kill Fungi by Necrosis Following Mitochondrial Dysfunction and Calcium Overload. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205781. [PMID: 36715588 PMCID: PMC10074111 DOI: 10.1002/advs.202205781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Invasive fungal infections are a growing public health threat. As fungi become increasingly resistant to existing drugs, new antifungals are urgently needed. Here, it is reported that 405-nm-visible-light-activated synthetic molecular machines (MMs) eliminate planktonic and biofilm fungal populations more effectively than conventional antifungals without resistance development. Mechanism-of-action studies show that MMs bind to fungal mitochondrial phospholipids. Upon visible light activation, rapid unidirectional drilling of MMs at ≈3 million cycles per second (MHz) results in mitochondrial dysfunction, calcium overload, and ultimately necrosis. Besides their direct antifungal effect, MMs synergize with conventional antifungals by impairing the activity of energy-dependent efflux pumps. Finally, MMs potentiate standard antifungals both in vivo and in an ex vivo porcine model of onychomycosis, reducing the fungal burden associated with infection.
Collapse
Affiliation(s)
- Ana L. Santos
- Department of ChemistryRice UniversityHoustonTX77005USA
- IdISBA – Fundación de Investigación Sanitaria de las Islas BalearesPalma07120Spain
| | | | - Dongdong Liu
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Gang Li
- Department of ChemistryRice UniversityHoustonTX77005USA
| | | | - Antonio Oliver
- IdISBA – Fundación de Investigación Sanitaria de las Islas BalearesPalma07120Spain
- Servicio de MicrobiologiaHospital Universitari Son EspasesPalma07120Spain
| | - George P. Tegos
- Office of ResearchReading HospitalTower Health, 420 S. Fifth AvenueWest ReadingPA19611USA
| | - James M. Tour
- Department of ChemistryRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoEngineeringRice UniversityHoustonTX77005USA
- NanoCarbon Center and the Welch Institute for Advanced MaterialsRice UniversityHoustonTX77005USA
| |
Collapse
|
12
|
Antifungal activity and potential mechanism of action of caspofungin in combination with ribavirin against Candida albicans. Int J Antimicrob Agents 2023; 61:106709. [PMID: 36640848 DOI: 10.1016/j.ijantimicag.2023.106709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
The number of invasive fungal infections has increased dramatically, resulting in high morbidity and mortality among immunocompromised patients. With increasing use of caspofungin (CAS), resistant strains have emerged frequently and led to limitations in the treatment of patients with severe invasive Candida albicans infections. Combination therapy is an important method to deal with this issue. As such, this study investigated the activity of CAS in combination with ribavirin (RBV) against C. albicans. The results of this in-vitro study showed that the minimum inhibitory concentrations (MICs) of CAS and RBV when they were used as monotherapy were 0.5-1 μg/mL and 2-8 μg/mL, respectively, while the MIC of CAS decreased from 0.5-1 μg/mL to 0.0625-0.25 μg/mL when used in combination with RBV, with a fractional inhibitory concentration index (FICI) ≤0.5. In addition, the RBV + CAS combination group displayed synergistic effects against C. albicans biofilm over 4 h; the sessile MIC (sMIC) of CAS decreased from 0.5-1 µg/mL to 0.0625-0.25µg/mL and the sMIC of RBV decreased from 4-16 µg/mL to 1-2 µg/mL, with FICI <0.5. The survival of C. albicans-infected Galleria mellonella was prolonged, the fungal burden was decreased, and the area of tissue damage was reduced after combination therapy. Further study showed that the mechanisms of action of the synergistic effect were related to the inhibition of biofilm formation, the inhibition of hyphal growth, and the activation of metacaspases, but were not related to the accumulation of reactive oxygen species. It is hoped that these findings will contribute to the understanding of drug resistance in C. albicans, and provide new insights for the application of RBV.
Collapse
|
13
|
Secretions from Serratia marcescens Inhibit the Growth and Biofilm Formation of Candida spp. and Cryptococcus neoformans. J Microbiol 2023; 61:221-232. [PMID: 36809632 DOI: 10.1007/s12275-022-00007-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 02/23/2023]
Abstract
Candida spp. and Cryptococcus are conditional pathogenic fungi that commonly infect immunocompromised patients. Over the past few decades, the increase in antifungal resistance has prompted the development of new antifungal agents. In this study, we explored the potential antifungal effects of secretions from Serratia marcescens on Candida spp. and Cryptococcus neoformans. We confirmed that the supernatant of S. marcescens inhibited fungal growth, suppressed hyphal and biofilm formation, and downregulated the expression of hyphae-specific genes and virulence-related genes in Candida spp. and C. neoformans. Furthermore, the S. marcescens supernatant retained biological stability after heat, pH, and protease K treatment. The chemical profile of the S. marcescens supernatant was characterized by ultra-high-performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry analysis and a total of 61 compounds with an mzCloud best match of greater than 70 were identified. In vivo, treatment with the S. marcescens supernatant reduced the mortality of fungi-infected Galleria mellonella. Taken together, our results revealed that the stable antifungal substances in the supernatant of S. marcescens have promising potential applications in the development of new antifungal agents.
Collapse
|
14
|
Tenebrio molitor as a Simple and Cheap Preclinical Pharmacokinetic and Toxicity Model. Int J Mol Sci 2023; 24:ijms24032296. [PMID: 36768618 PMCID: PMC9917132 DOI: 10.3390/ijms24032296] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
The progression of drugs into clinical phases requires proper toxicity assessment in animals and the correct identification of possible metabolites. Accordingly, different animal models are used to preliminarily evaluate toxicity and biotransformations. Rodents are the most common models used to preliminarily evaluate the safety of drugs; however, their use is subject to ethical consideration and elevated costs, and strictly regulated by national legislations. Herein, we developed a novel, cheap and convenient toxicity model using Tenebrio molitor coleoptera (TMC). A panel of 15 drugs-including antivirals and antibacterials-with different therapeutic applications was administered to TMC and the LD50 was determined. The values are comparable with those already determined in mice and rats. In addition, a TMC model was used to determine the presence of the main metabolites and in vivo pharmacokinetics (PK), and results were compared with those available from in vitro assays and the literature. Taken together, our results demonstrate that TMC can be used as a novel and convenient preliminary toxicity model to preliminarily evaluate the safety of experimental compounds and the formation of main metabolites, and to reduce the costs and number of rodents, according to 3R principles.
Collapse
|
15
|
Petronio Petronio G, Pietrangelo L, Cutuli MA, Magnifico I, Venditti N, Guarnieri A, Abate GA, Yewhalaw D, Davinelli S, Di Marco R. Emerging Evidence on Tenebrio molitor Immunity: A Focus on Gene Expression Involved in Microbial Infection for Host-Pathogen Interaction Studies. Microorganisms 2022; 10:1983. [PMID: 36296259 PMCID: PMC9611967 DOI: 10.3390/microorganisms10101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 08/13/2023] Open
Abstract
In recent years, the scientific community's interest in T. molitor as an insect model to investigate immunity and host-pathogen interactions has considerably increased. The reasons for this growing interest could be explained by the peculiar features of this beetle, which offers various advantages compared to other invertebrates models commonly used in laboratory studies. Thus, this review aimed at providing a broad view of the T. molitor immune system in light of the new scientific evidence on the developmental/tissue-specific gene expression studies related to microbial infection. In addition to the well-known cellular component and humoral response process, several studies investigating the factors associated with T. molitor immune response or deepening of those already known have been reported. However, various aspects remain still less understood, namely the possible crosstalk between the immune deficiency protein and Toll pathways and the role exerted by T. molitor apolipoprotein III in the expression of the antimicrobial peptides. Therefore, further research is required for T. molitor to be recommended as an alternative insect model for pathogen-host interaction and immunity studies.
Collapse
Affiliation(s)
- Giulio Petronio Petronio
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Marco Alfio Cutuli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Getnet Atinafu Abate
- Department of Biology, College of Natural Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma P.O. Box 307, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Sergio Davinelli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| |
Collapse
|
16
|
Smith DFQ, Casadevall A. On the relationship between Pathogenic Potential and Infective Inoculum. PLoS Pathog 2022; 18:e1010484. [PMID: 35696437 PMCID: PMC9232127 DOI: 10.1371/journal.ppat.1010484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/24/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Pathogenic Potential (PP) is a mathematical description of an individual microbe, virus, or parasite's ability to cause disease in a host, given the variables of inoculum, signs of disease, mortality, and in some instances, median survival time of the host. We investigated the relationship between pathogenic potential (PP) and infective inoculum (I) using two pathogenic fungi in the wax moth Galleria mellonella with mortality as the relevant outcome. Our analysis for C. neoformans infection revealed negative exponential relationship between PP and I. Plotting the log(I) versus the Fraction of animals with signs or symptoms (Fs) over median host survival time (T) revealed a linear relationship, with a slope that varied between the different fungi studied and a y-intercept corresponding to the inoculum that produced no signs of disease. The I vs Fs/T slope provided a measure of the pathogenicity of each microbial species, which we call the pathogenicity constant or kPath. The kPath provides a new parameter to quantitatively compare the relative virulence and pathogenicity of microbial species for a given host. In addition, we investigated the PP and Fs/T from values found in preexisting literature. Overall, the relationship between Fs/T and PP versus inoculum varied among microbial species and extrapolation to zero signs of disease allowed the calculation of the lowest pathogenic inoculum (LPI) of a microbe. Microbes tended to fall into two groups: those with positive linear relationships between PP and Fs/T vs I, and those that had a negative exponential PP vs I relationship with a positive logarithmic Fs/T vs I relationship. The microbes with linear relationships tended to be bacteria, whereas the exponential-based relationships tended to be fungi or higher order eukaryotes. Differences in the type and sign of the PP vs I and Fs/T vs I relationships for pathogenic microbes suggest fundamental differences in host-microbe interactions leading to disease.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
17
|
Curtis A, Binder U, Kavanagh K. Galleria mellonella Larvae as a Model for Investigating Fungal-Host Interactions. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:893494. [PMID: 37746216 PMCID: PMC10512315 DOI: 10.3389/ffunb.2022.893494] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 09/26/2023]
Abstract
Galleria mellonella larvae have become a widely accepted and utilised infection model due to the functional homology displayed between their immune response to infection and that observed in the mammalian innate immune response. Due to these similarities, comparable results to murine studies can be obtained using G. mellonella larvae in assessing the virulence of fungal pathogens and the in vivo toxicity or efficacy of anti-fungal agents. This coupled with their low cost, rapid generation of results, and lack of ethical/legal considerations make this model very attractive for analysis of host-pathogen interactions. The larvae of G. mellonella have successfully been utilised to analyse various fungal virulence factors including toxin and enzyme production in vivo providing in depth analysis of the processes involved in the establishment and progression of fungal pathogens (e.g., Candida spps, Aspergillus spp., Madurella mycetomatis, Mucormycetes, and Cryptococcus neoformans). A variety of experimental endpoints can be employed including analysis of fungal burdens, alterations in haemocyte density or sub-populations, melanisation, and characterisation of infection progression using proteomic, histological or imaging techniques. Proteomic analysis can provide insights into both sides of the host-pathogen interaction with each respective proteome being analysed independently following infection and extraction of haemolymph from the larvae. G. mellonella can also be employed for assessing the efficacy and toxicity of antifungal strategies at concentrations comparable to those used in mammals allowing for early stage investigation of novel compounds and combinations of established therapeutic agents. These numerous applications validate the model for examination of fungal infection and development of therapeutic approaches in vivo in compliance with the need to reduce animal models in biological research.
Collapse
Affiliation(s)
- Aaron Curtis
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
18
|
Huang XW, Xu MN, Zheng HX, Wang ML, Li L, Zeng K, Li DD. Pre-exposure to Candida glabrata protects Galleria mellonella against subsequent lethal fungal infections. Virulence 2021; 11:1674-1684. [PMID: 33200667 PMCID: PMC7714416 DOI: 10.1080/21505594.2020.1848107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Commensal fungi are an important part of human microbial community, among which Candida albicans and Candida glabrata are two common opportunistic pathogens. Unlike the high pathogenicity of C. albicans, C. glabrata is reported to show low pathogenicity to the host. Here, by using a Galleria mellonella infection model, we were able to confirm the much lower virulence of C. glabrata than C. albicans. Interestingly, pre-exposure to live C. glabrata (LCG) protects the larvae against subsequent various lethal fungal infections, including C. albicans, Candida tropicalis, and Cryptococcus neoformans. Inconsistently, heat-inactivated C. glabrata (HICG) pre-exposure can only protect against C. albicans or C. tropicalis re-infection, but not C. neoformans. Mechanistically, LCG or HICG pre-exposure enhanced the fungicidal activity of hemocytes against C. albicans or C. tropicalis. Meanwhile, LCG pre-exposure enhanced the humoral immunity by modulating the expression of fungal defending proteins in the cell-free hemolymph, which may contribute to the protection against C. neoformans. Together, this study suggests the important role of C. glabrata in enhancing host immunity, and demonstrates the great potential of G. mellonella model in studying the innate immune responses against infections.
Collapse
Affiliation(s)
- Xiao-Wen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Mei-Nian Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Huan-Xin Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Meng-Lei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - De-Dong Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh , Pittsburgh, PA, USA.,Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, China
| |
Collapse
|
19
|
Possamai Rossatto FC, Tharmalingam N, Escobar IE, d’Azevedo PA, Zimmer KR, Mylonakis E. Antifungal Activity of the Phenolic Compounds Ellagic Acid (EA) and Caffeic Acid Phenethyl Ester (CAPE) against Drug-Resistant Candida auris. J Fungi (Basel) 2021; 7:jof7090763. [PMID: 34575801 PMCID: PMC8466507 DOI: 10.3390/jof7090763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
Candida auris is an emerging healthcare-associated fungal pathogen that has become a serious global health threat. Current treatment options are limited due to drug resistance. New therapeutic strategies are required to target this organism and its pathogenicity. Plant polyphenols are structurally diverse compounds that present a vast range of biological properties. In the present study, plant-derived molecules ellagic acid (EA) and caffeic acid phenethyl ester (CAPE) were investigated for their antifungal and antivirulence activities against Candida auris. We also tested against C. albicans. The minimum inhibitory concentration (MIC) for EA ranged from 0.125 to 0.25 µg/mL and for CAPE ranged from 1 to 64 µg/mL against drug-resistant C. auris strains. Killing kinetics determined that after 4 h treatment with CAPE, there was a complete reduction of viable C. auris cells compared to fluconazole. Both compounds might act by modifying the fungal cell wall. CAPE significantly reduced the biomass and the metabolic activity of C. auris biofilm and impaired C. auris adhesion to cultured human epithelial cells. Furthermore, both compounds prolonged the survival rate of Galleria mellonella infected by C. auris (p = 0.0088 for EA at 32 mg/kg and p = 0.0028 for CAPE at 4 mg/kg). In addition, EA at 4 μg/mL prolonged the survival of C. albicans-infected Caenorhabditis elegans (p < 0.0001). CAPE was not able to prolong the survival of C. albicans-infected C. elegans. These findings highlight the antifungal and antivirulence effects of EA and CAPE against C. auris, and warrant further investigation as novel antifungal agents against drug-resistant infections.
Collapse
Affiliation(s)
- Fernanda Cristina Possamai Rossatto
- Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil; (F.C.P.R.); (P.A.d.); (K.R.Z.)
| | - Nagendran Tharmalingam
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, 593 Eddy Street, P.O. Box 328/330, Providence, RI 02903, USA; (N.T.); (I.E.E.)
| | - Iliana E. Escobar
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, 593 Eddy Street, P.O. Box 328/330, Providence, RI 02903, USA; (N.T.); (I.E.E.)
| | - Pedro Alves d’Azevedo
- Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil; (F.C.P.R.); (P.A.d.); (K.R.Z.)
| | - Karine Rigon Zimmer
- Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil; (F.C.P.R.); (P.A.d.); (K.R.Z.)
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, 593 Eddy Street, P.O. Box 328/330, Providence, RI 02903, USA; (N.T.); (I.E.E.)
- Correspondence: ; Tel.: +1-401-444-7845; Fax: +1-401-444-8179
| |
Collapse
|
20
|
Granato MQ, Mello TP, Nascimento RS, Pereira MD, Rosa TLSA, Pessolani MCV, McCann M, Devereux M, Branquinha MH, Santos ALS, Kneipp LF. Silver(I) and Copper(II) Complexes of 1,10-Phenanthroline-5,6-Dione Against Phialophora verrucosa: A Focus on the Interaction With Human Macrophages and Galleria mellonella Larvae. Front Microbiol 2021; 12:641258. [PMID: 34025603 PMCID: PMC8138666 DOI: 10.3389/fmicb.2021.641258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Phialophora verrucosa is a dematiaceous fungus that causes mainly chromoblastomycosis, but also disseminated infections such as phaeohyphomycosis and mycetoma. These diseases are extremely hard to treat and often refractory to current antifungal therapies. In this work, we have evaluated the effect of 1,10-phenanthroline-5,6-dione (phendione) and its metal-based complexes, [Ag (phendione)2]ClO4 and [Cu(phendione)3](ClO4)2.4H2O, against P. verrucosa, focusing on (i) conidial viability when combined with amphotericin B (AmB); (ii) biofilm formation and disarticulation events; (iii) in vitro interaction with human macrophages; and (iv) in vivo infection of Galleria mellonella larvae. The combination of AmB with each of the test compounds promoted the additive inhibition of P. verrucosa growth, as judged by the checkerboard assay. During the biofilm formation process over polystyrene surface, sub-minimum inhibitory concentrations (MIC) of phendione and its silver(I) and copper(II) complexes were able to reduce biomass and extracellular matrix production. Moreover, a mature biofilm treated with high concentrations of the test compounds diminished biofilm viability in a concentration-dependent manner. Pre-treatment of conidial cells with the test compounds did not alter the percentage of infected THP-1 macrophages; however, [Ag(phendione)2]ClO4 caused a significant reduction in the number of intracellular fungal cells compared to the untreated system. In addition, the killing process was significantly enhanced by post-treatment of infected macrophages with the test compounds. P. verrucosa induced a typically cell density-dependent effect on G. mellonella larvae death after 7 days of infection. Interestingly, exposure to the silver(I) complex protected the larvae from P. verrucosa infection. Collectively, the results corroborate the promising therapeutic potential of phendione-based drugs against fungal infections, including those caused by P. verrucosa.
Collapse
Affiliation(s)
- Marcela Q. Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Renata S. Nascimento
- Laboratório de Citotoxicidade e Genotoxicidade (LaCiGen), Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Marcos D. Pereira
- Laboratório de Citotoxicidade e Genotoxicidade (LaCiGen), Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | | | | | - Malachy McCann
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Michael Devereux
- Center for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Citotoxicidade e Genotoxicidade (LaCiGen), Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Lucimar F. Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Wang Y, Lu C, Zhao X, Wang D, Liu Y, Sun S. Antifungal activity and potential mechanism of Asiatic acid alone and in combination with fluconazole against Candida albicans. Biomed Pharmacother 2021; 139:111568. [PMID: 33845374 DOI: 10.1016/j.biopha.2021.111568] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans (C. albicans) infection remains a challenge to clinicians due to the limited available antifungals. With the widespread use of antifungals in the clinic, the drug resistance has been emerging continuously, especially fluconazole. Therefore, searching for new antifungals, active constituents of natural or traditional medicines, and approaches to overcome antifungals resistance is needed. This study investigated the activity of Asiatic acid (AA) alone and in combination with fluconazole (FLC) against C. albicans in vitro and in vivo. The in vitro studies indicated that the drug combination had a synergistic effect on FLC-resistant C. albicans, with fractional inhibitory concentration index (FICI) of 0.25. And when AA at the dose of 32 µg/mL, the drug combination group could decrease the sessile minimum inhibitory concentration (sMIC) of FLC from > 1024 µg/mL to 0.125-0.25 µg/mL within 8 h against C. albicans biofilms, even with the FICI > 0.5. In vivo, the antifungal efficacy of AA used alone and in combination with FLC was evaluated by Galleria mellonella (G. mellonella) larvae. The drug combination group prolonged the survival rate and reduced tissue invasion of larvae infected with resistant C. albicans. Furthermore, mechanism studies indicated that the antifungal effects of AA in combination with FLC might be associated with the inhibition of drug efflux pump, the accumulation of reactive oxygen species (ROS) and the inhibition of hyphal growth. These findings might provide novel insights for overcoming drug resistance of C. albicans and bring new reference data for the development and application of AA in future.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China
| | - Chunyan Lu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China
| | - Xia Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province 27100, People's Republic of China
| | - Yaxin Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China.
| |
Collapse
|
22
|
Health Potential of Clery Strawberries: Enzymatic Inhibition and Anti- Candida Activity Evaluation. Molecules 2021; 26:molecules26061731. [PMID: 33808822 PMCID: PMC8003815 DOI: 10.3390/molecules26061731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Strawberries, belonging to cultivar Clery (Fragaria × ananassa Duchesne ex Weston) and to a graft obtained by crossing Clery and Fragaria vesca L., were chosen for a study on their health potential, with regard to the prevention of chronic and degenerative diseases. Selected samples, coming from fresh and defrosted berries, submitted to different homogenization techniques combined with thermal and microwave treatments, had been previously analyzed in their polyphenolic content and antioxidant capacity. In the present work, these homogenates were evaluated in relation to their enzymatic inhibition activity towards acetylcholinesterase and butyrylcholinesterase, α-amylase, α-glucosidase and tyrosinase. All these enzymes, involved in the onset of diabetes, and neurodegenerative and other chronic diseases, were modulated by the tested samples. The inhibitory effect on tyrosinase and cholinesterase was the most valuable. Antifungal activity against Candida albicans, recently shown to play a crucial role in human gut diseases as well as diabetes, rheumatoid arthritis and Alzheimer’s disease, was also shown in vitro and confirmed by the in vivo text on Galleria mellonella. Overall, the obtained results confirm once again the health potential of strawberries; however, the efficacy is dependent on high quality products submitted to correct processing flow charts.
Collapse
|
23
|
Bidaud AL, Schwarz P, Herbreteau G, Dannaoui E. Techniques for the Assessment of In Vitro and In Vivo Antifungal Combinations. J Fungi (Basel) 2021; 7:jof7020113. [PMID: 33557026 PMCID: PMC7913650 DOI: 10.3390/jof7020113] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic fungal infections are associated with high mortality rates despite adequate treatment. Moreover, acquired resistance to antifungals is increasing, which further complicates the therapeutic management. One strategy to overcome antifungal resistance is to use antifungal combinations. In vitro, several techniques are used to assess drug interactions, such as the broth microdilution checkerboard, agar-diffusion methods, and time-kill curves. Currently, the most widely used technique is the checkerboard method. The aim of all these techniques is to determine if the interaction between antifungal agents is synergistic, indifferent, or antagonistic. However, the interpretation of the results remains difficult. Several methods of analysis can be used, based on different theories. The most commonly used method is the calculation of the fractional inhibitory concentration index. Determination of the usefulness of combination treatments in patients needs well-conducted clinical trials, which are difficult. It is therefore important to study antifungal combinations in vivo, in experimental animal models of fungal infections. Although mammalian models have mostly been used, new alternative animal models in invertebrates look promising. To evaluate the antifungal efficacy, the most commonly used criteria are the mortality rate and the fungal load in the target organs.
Collapse
Affiliation(s)
- Anne-Laure Bidaud
- Parasitology-Mycology Unit, Microbiology Department, APHP, European Georges Pompidou Hospital, Paris-Descartes University, F-75015 Paris, France;
| | - Patrick Schwarz
- Department of Internal Medicine, Respiratory and Critical Care Medicine, University Hospital Marburg, Baldingerstraße, D-35043 Marburg, Germany;
- Center for Invasive Mycoses and Antifungals, Philipps University Marburg, D-35037 Marburg, Germany
| | | | - Eric Dannaoui
- Parasitology-Mycology Unit, Microbiology Department, APHP, European Georges Pompidou Hospital, Paris-Descartes University, F-75015 Paris, France;
- Dynamyc Research Group, Paris Est Créteil University (UPEC, EnvA), F-94010 Paris, France
- Correspondence: ; Tel.: +33-1-56-09-39-48; Fax: +33-1-56-09-24-46
| |
Collapse
|
24
|
Vega-Chacón Y, de Albuquerque MC, Pavarina AC, Goldman GH, Mima EGDO. Verapamil inhibits efflux pumps in Candida albicans, exhibits synergism with fluconazole, and increases survival of Galleria mellonella. Virulence 2021; 12:231-243. [PMID: 33410730 PMCID: PMC8923067 DOI: 10.1080/21505594.2020.1868814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The emergence of resistance requires alternative methods to treat Candida albicans infections. We evaluated efficacy of the efflux pump inhibitor (EPI) verapamil (VER) with fluconazole (FLC) against FLC-resistant (CaR) and -susceptible C. albicans (CaS). The susceptibility of both strains to VER and FLC was determined, as well as the synergism of VER with FLC. Experiments were performed in vitro for planktonic cultures and biofilms and in vivo using Galleria mellonella. Larval survival and fungal recovery were evaluated after treatment with VER and FLC. Data were analyzed by analysis of variance and Kaplan-Meier tests. The combination of VER with FLC at sub-lethal concentrations reduced fungal growth. VER inhibited the efflux of rhodamine 123 and showed synergism with FLC against CaR. For biofilms, FLC and VER alone reduced fungal viability. The combination of VER with FLC at sub-lethal concentrations also reduced biofilm viability. In the in vivo assays, VER and FLC used alone or in combination increased the survival of larvae infected with CaR. Reduction of fungal recovery was observed only for larvae infected with CaR and treated with VER with FLC. VER reverted the FLC-resistance of C. albicans. Based on the results obtained, VER reverted the FLC-resistance of C. albicans and showed synergism with FLC against CaR. VER also increased the survival of G. mellonella infected with CaR and reduced the fungal recovery.
Collapse
Affiliation(s)
- Yuliana Vega-Chacón
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry , Araraquara, Brazil
| | - Maria Carolina de Albuquerque
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry , Araraquara, Brazil
| | - Ana Cláudia Pavarina
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry , Araraquara, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP) , Ribeirão Preto, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry , Araraquara, Brazil
| |
Collapse
|
25
|
Romera D, Aguilera-Correa JJ, García-Coca M, Mahillo-Fernández I, Viñuela-Sandoval L, García-Rodríguez J, Esteban J. The Galleria mellonella infection model as a system to investigate the virulence of Candida auris strains. Pathog Dis 2020; 78:5937422. [PMID: 33098293 DOI: 10.1093/femspd/ftaa067] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Candida auris is a multiresistant pathogenic yeast commonly isolated from bloodstream infections in immunocompromised patients. In this work, we infected Galleria mellonella larvae with 105 CFU of a reference strains and two clinical isolates of C. albicans and C. auris and we compared the outcomes of infection between both species. Larvae were evaluated every 24 h for a total of 120 h following the G. mellonella Health Index Scoring System, and survival, activity, melanization and cocoon formation were monitored. Our results showed that clinical isolates were significantly more pathogenic than reference strains independently of the tested species, producing lower survival and activity scores and higher melanization scores and being C. albicans strains more virulent than C. auris strains. We did not find differences in mortality between aggregative and non-aggregative C. auris strains, although non-aggregative strains produced significantly lower activity scores and higher melanization scores than aggregative ones. Survival assays using Galleria mellonella have been previously employed to examine and classify strains of this and other microbial species based on their virulence before scaling the experiments to a mammal model. Taken together, these results show how a more complete evaluation of the model can improve the study of C. auris isolates.
Collapse
Affiliation(s)
- David Romera
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, UAM. Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | - John-Jairo Aguilera-Correa
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, UAM. Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | - Marta García-Coca
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, UAM. Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | - Ignacio Mahillo-Fernández
- Epidemiology and Biostatistics Service, Fundación Jiménez Díaz University Hospital, Av. Reyes Católicos, 2. 28040 Madrid, Spain
| | | | - Julio García-Rodríguez
- Department of Microbiology, La Paz University Hospital, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, UAM. Avda. Reyes Católicos 2, 28040 Madrid, Spain
| |
Collapse
|
26
|
Ciociola T, Zanello PP, D’Adda T, Galati S, Conti S, Magliani W, Giovati L. A Peptide Found in Human Serum, Derived from the C-Terminus of Albumin, Shows Antifungal Activity In Vitro and In Vivo. Microorganisms 2020; 8:E1627. [PMID: 33096923 PMCID: PMC7588913 DOI: 10.3390/microorganisms8101627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 01/19/2023] Open
Abstract
The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597-609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.
Collapse
Affiliation(s)
- Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Pier Paolo Zanello
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Tiziana D’Adda
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Serena Galati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Walter Magliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| |
Collapse
|
27
|
Lv QZ, Ni TJH, Li LP, Li T, Zhang DZ, Jiang YY. A New Antifungal Agent (4-phenyl-1, 3-thiazol-2-yl) Hydrazine Induces Oxidative Damage in Candida albicans. Front Cell Infect Microbiol 2020; 10:578956. [PMID: 33117733 PMCID: PMC7575736 DOI: 10.3389/fcimb.2020.578956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023] Open
Abstract
A gradual rise in immunocompromised patients over past years has led to the increasing incidence of invasive fungal infections. Development of effective fungicides can not only provide new means for clinical treatment, but also reduce the occurrence of fungal resistance. We identified a new antifungal agent (4-phenyl-1, 3-thiazol-2-yl), hydrazine (numbered as 31C) which showed high-efficiency, broad-spectrum and specific activities. The minimum inhibitory concentration of 31C against pathogenic fungi was between 0.0625-4 μg/ml in vitro, while 31C had no obvious cytotoxicity to human umbilical vein endothelial cells with the concentration of 4 μg/ml. In addition, 31C of 0.5 μg/ml could exhibit significant fungicidal activity and inhibit the biofilm formation of C. albicans. In vivo fungal infection model showed that 31C of 10 mg/kg significantly increased the survival rate of Galleria mellonella. Further study revealed that 31C-treatment increased the reactive oxygen species (ROS) in C. albicans and elevated the expression of some genes related to anti-oxidative stress response, including CAP1, CTA1, TRR1, and SODs. Consistently, 31C-induced high levels of intracellular ROS resulted in considerable DNA damage, which played a critical role in antifungal-induced cellular death. The addition of ROS scavengers, such as glutathione (GSH), N-Acetyl-L-cysteine (NAC) or oligomeric proanthocyanidins (OPC), dramatically reduced the antifungal activities of 31C and rescued the 31C-induced filamentation defect. Collectively, these results showed that 31C exhibited strong antifungal activity and induced obvious oxidative damage, which indicated that compounds with a structure similar to 31C may provide new sight for antifungal drug development.
Collapse
Affiliation(s)
- Quan-Zhen Lv
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ting-Jun-Hong Ni
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Ping Li
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tian Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Da-Zhi Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yuan-Ying Jiang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Marcos-Zambrano LJ, Bordallo-Cardona MÁ, Borghi E, Falleni M, Tosi D, Muñoz P, Escribano P, Guinea J. Candida isolates causing candidemia show different degrees of virulence in Galleria mellonella. Med Mycol 2020; 58:83-92. [PMID: 30874807 DOI: 10.1093/mmy/myz027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 01/22/2023] Open
Abstract
We aim to assess intra- and interspecies differences in the virulence of Candida spp. strains causing candidemia using the invertebrate Galleria mellonella model. We studied 739 Candida spp. isolates (C. albicans [n = 373], C. parapsilosis [n = 203], C. glabrata [n = 92], C. tropicalis [n = 53], and C. krusei [n = 18]) collected from patients with candidemia admitted to Gregorio Marañon Hospital (Madrid, Spain). Species-specific infecting inocula (yeast cells/larva) were adjusted (5 × 105 [C. albicans, and C. tropicalis], 2 × 106-5 × 106 [C. parapsilosis, C. glabrata, and C. krusei]) and used to infect 10 larvae per isolate; percentage of survival and median survival per isolate were calculated. According to the interquartile range of the median survival, isolates with a median survival under P25 were classified as of high-virulence and isolates with a median survival over P75 as of low virulence. The median survival of larvae infected with different species was variable: C. albicans (n = 2 days, IQR <1-3 days), C. tropicalis (n = 2 days, IQR 1.5-4 days), C. parapsilosis (n = 2 days, IQR 2-3.5 days), C. glabrata (n = 3 days, IQR 2-3 days), and C. krusei (n = 7 days, 6.5->8 days) (P < .001). Differences in virulence among species were validated by histological examination (day +1 post-infection) in the larvae infected by the isolates of each virulence category and species. Virulence-related gene expression in C. albicans isolates did not reach statistical significance. We report species-specific virulence patterns of Candida spp. and show that isolates within a given species have different degrees of virulence in the animal model.
Collapse
Affiliation(s)
- Laura Judith Marcos-Zambrano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Ángeles Bordallo-Cardona
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Elisa Borghi
- Laboratory of Microbiology, Department of Health Sciences. Università degli Studi di Milano, Milan, Italy
| | - Monica Falleni
- Division of Human Pathology, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Delfina Tosi
- Division of Human Pathology, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES (CD06/06/0058), Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES (CD06/06/0058), Madrid, Spain
| |
Collapse
|
29
|
Vera‐González N, Bailey‐Hytholt CM, Langlois L, Camargo Ribeiro F, Souza Santos EL, Junqueira JC, Shukla A. Anidulafungin liposome nanoparticles exhibit antifungal activity against planktonic and biofilm
Candida albicans. J Biomed Mater Res A 2020; 108:2263-2276. [DOI: 10.1002/jbm.a.36984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Noel Vera‐González
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island USA
| | - Christina M. Bailey‐Hytholt
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island USA
| | - Luc Langlois
- Department of Chemistry Brown University Providence Rhode Island USA
| | - Felipe Camargo Ribeiro
- Institute of Science and Technology, São Paulo State University (UNESP) São Paulo Brazil
| | | | | | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island USA
| |
Collapse
|
30
|
Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020. [DOI: 10.3390/microorganisms8030390
expr 890942362 + 917555800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
|
31
|
Jemel S, Guillot J, Kallel K, Botterel F, Dannaoui E. Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020; 8:microorganisms8030390. [PMID: 32168839 PMCID: PMC7142887 DOI: 10.3390/microorganisms8030390] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/26/2022] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
Affiliation(s)
- Sana Jemel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Jacques Guillot
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Kalthoum Kallel
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Françoise Botterel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Eric Dannaoui
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Hôpital Européen Georges Pompidou, APHP, Unité de Parasitologie-Mycologie, Service de Microbiologie, 75015 Paris, France
- Université René Descartes, Faculté de médecine, 75006 Paris, France
- Correspondence: ; Tel.: +33-1-56-09-39-48; Fax: +33-1-56-09-24-46
| |
Collapse
|
32
|
TmDorX2 positively regulates antimicrobial peptides in Tenebrio molitor gut, fat body, and hemocytes in response to bacterial and fungal infection. Sci Rep 2019; 9:16878. [PMID: 31728023 PMCID: PMC6856108 DOI: 10.1038/s41598-019-53497-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Dorsal, a member of the nuclear factor-kappa B (NF-κB) family of transcription factors, is a critical downstream component of the Toll pathway that regulates the expression of antimicrobial peptides (AMPs) against pathogen invasion. In this study, the full-length ORF of Dorsal was identified from the RNA-seq database of the mealworm beetle Tenebrio molitor (TmDorX2). The ORF of TmDorX2 was 1,482 bp in length, encoding a polypeptide of 493 amino acid residues. TmDorX2 contains a conserved Rel homology domain (RHD) and an immunoglobulin-like, plexins, and transcription factors (IPT) domain. TmDorX2 mRNA was detected in all developmental stages, with the highest levels observed in 3-day-old adults. TmDorX2 transcripts were highly expressed in the adult Malpighian tubules (MT) and the larval fat body and MT tissues. After challenging the larvae with Staphylococcus aureus and Escherichia coli, the TmDorX2 mRNA levels were upregulated 6 and 9 h post infection in the whole body, fat body, and hemocytes. Upon Candida albicans challenge, the TmDorX2 mRNA expression were found highest at 9 h post-infection in the fat body. In addition, TmDorX2-knockdown larvae exposed to E. coli, S. aureus, or C. albicans challenge showed a significantly increased mortality rate. Furthermore, the expression of 11 AMP genes was downregulated in the gut and fat body of dsTmDorX2-injected larvae upon E. coli challenge. After C. albicans and S. aureus challenge of dsTmDorX2-injected larvae, the expression of 11 and 10 AMPs was downregulated in the gut and fat body, respectively. Intriguingly, the expression of antifungal transcripts TmTenecin-3 and TmThaumatin-like protein-1 and -2 was greatly decreased in TmDorX2-silenced larvae in response to C. albicans challenge, suggesting that TmDorX2 regulates antifungal AMPs in the gut in response to C. albicans infection. The AMP expression profiles in the fat body, hemocytes, gut, and MTs suggest that TmDorX2 might have an important role in promoting the survival of T. molitor larvae against all mentioned pathogens.
Collapse
|
33
|
Zhang M, Yan H, Lu M, Wang D, Sun S. Antifungal activity of ribavirin used alone or in combination with fluconazole against Candida albicans is mediated by reduced virulence. Int J Antimicrob Agents 2019; 55:105804. [PMID: 31605727 DOI: 10.1016/j.ijantimicag.2019.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023]
Abstract
The incidence of fungal infections has increased continuously in recent years, and drug resistance, especially resistance to fluconazole (FLC), has emerged. To overcome this challenge, research on the antifungal activities of non-antifungal agents has gained more attention. In this study, we determined the anti-Candida activity of ribavirin (RBV), an antiviral drug commonly used in the clinic, and found that RBV displayed potent antifungal activity when used alone or in combination with FLC in vitro and in vivo. In vitro, the MIC80 values of RBV were 2-4 µg/mL for FLC-susceptible Candida albicans and 8 µg/mL for FLC-resistant C. albicans. When RBV at a dose of 1 µg/mL was combined with FLC, significant synergistic effects were exhibited against FLC-resistant C. albicans, and the MICs of FLC decreased from >512 µg/mL to 0.25-1 µg/mL. Synergism was also exhibited against C. albicans biofilms. In vivo, RBV plus FLC significantly improved the survival of infected Galleria mellonella larvae compared with the FLC-treated group over a 4-day period and attenuated the damage of FLC-resistant C. albicans to G. mellonella larvae tissue. Furthermore, mechanistic studies indicated that the antifungal effects of RBV used alone or in combination with FLC might be associated with inhibition of biofilm formation, reduced extracellular phospholipase activity and inhibition of hyphal growth, but is not related to promotion of FLC uptake and inhibition of FLC efflux. These results provide a promising direction for overcoming drug resistance and for expanding the clinical application of existing drugs.
Collapse
Affiliation(s)
- Min Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'an, Shandong Province, China; Department of Pharmacy, Tai'an Municipal Hospital, Tai'an, Shandong Province, China
| | - Haiying Yan
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong Province, China
| | - Mengjiao Lu
- Department of Pharmacy, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'an, Shandong Province, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong Province, China.
| |
Collapse
|
34
|
Staniszewska M, Gizińska M, Kazek M, de Jesús González-Hernández R, Ochal Z, Mora-Montes HM. New antifungal 4-chloro-3-nitrophenyldifluoroiodomethyl sulfone reduces the Candida albicans pathogenicity in the Galleria mellonella model organism. Braz J Microbiol 2019; 51:5-14. [PMID: 31486049 PMCID: PMC7058776 DOI: 10.1007/s42770-019-00140-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022] Open
Abstract
Candida albicans represents an interesting microorganism to study complex host-pathogen interactions and for the development of effective antifungals. Our goal was to assess the efficacy of 4-chloro-3-nitrophenyldifluoroiodomethyl sulfone (named Sulfone) against the C. albicans infections in the Galleria mellonella host model. We assessed invasiveness of CAI4 parental strain and mutants: kex2Δ/KEX2 and kex2Δ/kex2Δ in G. mellonella treated with Sulfone. We determined that KEX2 expression was altered following Sulfone treatment in G. mellonella-C. albicans infection model. Infection with kex2Δ/kex2Δ induced decreased inflammation and minimal fault in fitness of larvae vs CAI4. Fifty percent of larvae died within 4–5 days (P value < 0.0001) when infected with CAI4 and kex2Δ/KEX2 at 109 CFU/mL; survival reached 100% in those injected with kex2Δ/kex2Δ. Larvae treated with Sulfone at 0.01 mg/kg 30 min before infection with all C. albicans tested survived infection at 90–100% vs C. albicans infected-PBS-treated larvae. Hypersensitive to Sulfone, kex2Δ/kex2Δ reduced virulence in survival. KEX2 was down-regulated when larvae were treated with Sulfone: 30 min before and 2 h post-SC5314-wild-type infection respectively. kex2Δ/kex2Δ was able to infect larvae, but failed to kill host when treated with Sulfone. Sulfone can be used to prevent or treat candidiasis. G. mellonella facilitates studding of host-pathogen interactions, i.e., testing host vs panel of C. albicans mutants when antifungal is dosed.
Collapse
Affiliation(s)
- Monika Staniszewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | | | - Michalina Kazek
- Laboratory of Physiology, The Witold Stefański Institute of Parasitology, Polish Academy of Science, Twarda 51/55, 00-818, Warsaw, Poland
| | - Roberto de Jesús González-Hernández
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., Mexico
| | - Zbigniew Ochal
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Héctor M Mora-Montes
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., Mexico
| |
Collapse
|
35
|
Song Y, Li S, Zhao Y, Zhang Y, Lv Y, Jiang Y, Wang Y, Li D, Zhang H. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation. Int J Med Microbiol 2019; 309:151330. [DOI: 10.1016/j.ijmm.2019.151330] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023] Open
|
36
|
LIN MY, YUAN ZL, HU DD, HU GH, ZHANG RL, ZHONG H, YAN L, JIANG YY, SU J, WANG Y. Effect of loureirin A against Candida albicans biofilms. Chin J Nat Med 2019; 17:616-623. [DOI: 10.1016/s1875-5364(19)30064-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 12/27/2022]
|
37
|
Gong Y, Liu W, Huang X, Hao L, Li Y, Sun S. Antifungal Activity and Potential Mechanism of N-Butylphthalide Alone and in Combination With Fluconazole Against Candida albicans. Front Microbiol 2019; 10:1461. [PMID: 31312187 PMCID: PMC6614440 DOI: 10.3389/fmicb.2019.01461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a common opportunistic fungal pathogen that may cause nosocomial fungal infections. The resistance of Candida albicans to traditional antifungal drugs has been increasing rapidly in recent years, and it brings a great challenge in clinical treatment. N-butylphthalide is originally extracted from the seed of Apium graveolens and is currently used for the treatment of ischemic stroke in the clinic. This study demonstrated that n-butylphthalide exhibited antifungal activity against Candida albicans with minimum inhibitory concentrations of 128 μg/ml; moreover, n-butylphthalide combined with fluconazole showed synergistic antifungal effects against resistant Candida albicans, resulting in a decrease in the minimum inhibitory concentrations of fluconazole from >512 to 0.25–1 μg/ml. Time-killing curves verified the antifungal activity in dynamic. Besides, n-butylphthalide exhibited anti-biofilm activity against Candida albicans, biofilms preformed <12 h with sessile minimum inhibitory concentrations of 128–256 μg/ml and synergism was observed when n-butylphthalide combined with fluconazole against resistant Candida albicans biofilms preformed <12 h, resulting in a decrease in the sessile minimum inhibitory concentrations of fluconazole from >1,024 to 0.5–8 μg/ml. Furthermore, in vitro antifungal effects of n-butylphthalide were confirmed in vivo. N-butylphthalide prolonged survival rate of larvae infected by Candida albicans, reduced the fungal burden in larvae and caused less damage to larval tissues. Notably, n-butylphthalide inhibited hyphal growth and induced intracellular reactive oxygen species accumulation and a loss in mitochondrial membrane potential, which was a potential antifungal mechanism. Besides, the synergistic effects between n-butylphthalide and fluconazole potentially relied on the mechanism that n-butylphthalide significantly promoted drug uptake, and suppressed drug efflux via down-regulating the drug transporter encoding genes CDR1 and CDR2. These findings demonstrated the antifungal effects and mechanisms of n-butylphthalide against Candida albicans for the first time, which might provide broad prospects for the identification of new potential antifungal targets.
Collapse
Affiliation(s)
- Ying Gong
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Weiguo Liu
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First University, Jinan, China
| | - Xin Huang
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First University, Jinan, China
| | - Lina Hao
- Department of Pharmacy, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First University, Jinan, China
| |
Collapse
|
38
|
Osmanov A, Wise A, Denning DW. In vitro and in vivo efficacy of miramistin against drug-resistant fungi. J Med Microbiol 2019; 68:1047-1052. [PMID: 31169488 DOI: 10.1099/jmm.0.001007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Miramistin is a topical antiseptic with broad antimicrobial activity that was developed in the Soviet Union during the Cold War. AIM To investigate the antifungal activity of miramistin against clinically relevant drug-resistant fungi. METHODOLOGY The in vitro activity of miramistin was determined following Clinical and Laboratory Standards Institute (CLSI) guidelines. Mammalian cell toxicity was tested using a McCoy cell line and topical and systemic tolerability, and in vivo efficacy was tested using Galleria mellonella models. RESULTS The minimal inhibitory concentration (MIC) range against fungi was 1.56-25 mg l-1 (GM 3.13 mg l-1 ). In the G. mellonella model, miramistin provided potent survival benefits for Candida albicans and Aspergillus fumigatus infection. Miramistin was tolerated by McCoy cell lines at concentrations up to 1000 mg l-1 and was systemically safe in G. mellonella at 2000 mg kg-1. Topical administration at 32 000 mg l-1 was well tolerated with no adverse effects. CONCLUSION These findings support further investigation of miramistin and suggest its possible use for treatment of superficial fungal infections.
Collapse
Affiliation(s)
- Ali Osmanov
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew Wise
- Evotec UK Ltd, Block 23 Alderley Park, Macclesfield SK10 4TG, UK
| | - David W Denning
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Southmoor Road, Manchester M23 9LT, UK
| |
Collapse
|
39
|
Rossoni RD, Ribeiro FDC, dos Santos HFS, dos Santos JD, Oliveira NDS, Dutra MTDS, de Lapena SAB, Junqueira JC. Galleria mellonella as an experimental model to study human oral pathogens. Arch Oral Biol 2019; 101:13-22. [DOI: 10.1016/j.archoralbio.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/28/2022]
|
40
|
Monk BC, Sagatova AA, Hosseini P, Ruma YN, Wilson RK, Keniya MV. Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140206. [PMID: 30851431 DOI: 10.1016/j.bbapap.2019.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
The cytochrome P450 enzyme lanosterol 14α-demethylase (LDM) is the target of the azole antifungals used widely in medicine and agriculture as prophylaxis or treatments of infections or diseases caused by fungal pathogens. These drugs and agrochemicals contain an imidazole, triazole or tetrazole substituent, with one of the nitrogens in the azole ring coordinating as the sixth axial ligand to the LDM heme iron. Structural studies show that this membrane bound enzyme contains a relatively rigid ligand binding pocket comprised of a deeply buried heme-containing active site together with a substrate entry channel and putative product exit channel that reach to the membrane. Within the ligand binding pocket the azole antifungals have additional affinity determining interactions with hydrophobic side-chains, the polypeptide backbone and via water-mediated hydrogen bond networks. This review will describe the tools that can be used to identify and characterise the next generation of antifungals targeting LDM, with the goal of obtaining highly potent broad-spectrum fungicides that will be able to avoid target and drug efflux mediated antifungal resistance.
Collapse
Affiliation(s)
- Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Alia A Sagatova
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Parham Hosseini
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Yasmeen N Ruma
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rajni K Wilson
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Mikhail V Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
41
|
Deng L, Zou L, Wu J, Liu H, Luo T, Zhou X, Li W, Ren B. Voriconazole inhibits cross-kingdom interactions between Candida albicans and Actinomyces viscosus through the ergosterol pathway. Int J Antimicrob Agents 2019; 53:805-813. [PMID: 30818001 DOI: 10.1016/j.ijantimicag.2019.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/11/2019] [Accepted: 02/16/2019] [Indexed: 02/05/2023]
Abstract
Candida albicans and Actinomyces viscosus are prominent microbes associated with dental root caries. The aim of this study was to investigate the effect of C. albicans on A. viscosus biofilms and to identify the mechanisms associated with this interaction. A. viscosus and C. albicans strains (wide-type and mutants) were used to form biofilms in vitro and in vivo, which were subsequently analysed by crystal violet assay and scanning electron microscopy (SEM) to investigate the effect of C. albicans on A. viscosus growth. A viable plate count and survival curve for C. albicans mutants and A. viscosus combinations were used to identify which C. albicans pathway was crucial for cross-kingdom interactions. Voriconazole was used to block their interactions both in vitro and in vivo. SEM, fluorescence in situ hybridisation (FISH), quantitative PCR and survival curve analyses were performed to evaluate the activity of voriconazole on C. albicans and A. viscosus interactions. The biomass and virulence of mixed-species biofilms were significantly enhanced compared with the A. viscosus biofilm alone. However, this was not observed in the mixed-species biofilms with the C. albicans mutant erg11Δ/Δ in vitro and in vivo, indicating that azoles may work on the mixed-species biofilms. As expected, voriconazole can effectively reduce the biomass of mixed-species biofilms. A high concentration of voriconazole (1 µg/mL) reduced the abundance of C. albicans, whilst a low voriconazole concentration (0.25 µg/mL) blocked their interactions similar to the effect of the erg11Δ/Δ mutant. Voriconazole may be a candidate strategy to combat root caries pathogens.
Collapse
Affiliation(s)
- Ling Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Juan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Haixia Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Tao Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Wei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China.
| |
Collapse
|
42
|
Wuensch A, Trusch F, Iberahim NA, van West P. Galleria melonella as an experimental in vivo host model for the fish-pathogenic oomycete Saprolegnia parasitica. Fungal Biol 2019; 122:182-189. [PMID: 29458721 PMCID: PMC5840505 DOI: 10.1016/j.funbio.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 11/05/2022]
Abstract
Oomycetes are eukaryotic pathogens infecting animals and plants. Amongst them Saprolegnia parasitica is a fish pathogenic oomycete causing devastating losses in the aquaculture industry. To secure fish supply, new drugs are in high demand and since fish experiments are time consuming, expensive and involve animal welfare issues the search for adequate model systems is essential. Galleria mellonella serves as a heterologous host model for bacterial and fungal infections. This study extends the use of G. mellonella for studying infections with oomycetes. Saprolegniales are highly pathogenic to the insects while in contrast, the plant pathogen Phytophthora infestans showed no pathogenicity. Melanisation of hyphae below the cuticle allowed direct macroscopic monitoring of disease progression. However, the melanin response is not systemic as for other pathogens but instead is very local. The mortality of the larvae is dose-dependent and can be induced by cysts or regenerating protoplasts as an alternative source of inoculation. Galleria mellonella serves as a heterologous host model system for Saprolegniales. The melanisation of the larvae is local around the growing hyphae. Regenerating protoplasts can be used as an alternative inoculum to cysts.
Collapse
Affiliation(s)
- Andreas Wuensch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, UK.
| | - Franziska Trusch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, UK.
| | - Nurul A Iberahim
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, UK.
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, UK.
| |
Collapse
|
43
|
Lopez-Moya F, Suarez-Fernandez M, Lopez-Llorca LV. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants. Int J Mol Sci 2019; 20:E332. [PMID: 30650540 PMCID: PMC6359256 DOI: 10.3390/ijms20020332] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Chitosan is a versatile compound with multiple biotechnological applications. This polymer inhibits clinically important human fungal pathogens under the same carbon and nitrogen status as in blood. Chitosan permeabilises their high-fluidity plasma membrane and increases production of intracellular oxygen species (ROS). Conversely, chitosan is compatible with mammalian cell lines as well as with biocontrol fungi (BCF). BCF resistant to chitosan have low-fluidity membranes and high glucan/chitin ratios in their cell walls. Recent studies illustrate molecular and physiological basis of chitosan-root interactions. Chitosan induces auxin accumulation in Arabidopsis roots. This polymer causes overexpression of tryptophan-dependent auxin biosynthesis pathway. It also blocks auxin translocation in roots. Chitosan is a plant defense modulator. Endophytes and fungal pathogens evade plant immunity converting chitin into chitosan. LysM effectors shield chitin and protect fungal cell walls from plant chitinases. These enzymes together with fungal chitin deacetylases, chitosanases and effectors play determinant roles during fungal colonization of plants. This review describes chitosan mode of action (cell and gene targets) in fungi and plants. This knowledge will help to develop chitosan for agrobiotechnological and medical applications.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| | - Marta Suarez-Fernandez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| | - Luis Vicente Lopez-Llorca
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| |
Collapse
|
44
|
Singkum P, Muangkaew W, Suwanmanee S, Pumeesat P, Wongsuk T, Luplertlop N. Suppression of the pathogenicity of Candida albicans by the quorum-sensing molecules farnesol and tryptophol. J GEN APPL MICROBIOL 2019; 65:277-283. [DOI: 10.2323/jgam.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Pantira Singkum
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University
| | - San Suwanmanee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University
| | - Potjaman Pumeesat
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University
| | - Thanwa Wongsuk
- Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University
| |
Collapse
|
45
|
Immune Response of Galleria mellonella against Human Fungal Pathogens. J Fungi (Basel) 2018; 5:jof5010003. [PMID: 30587801 PMCID: PMC6463112 DOI: 10.3390/jof5010003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 01/20/2023] Open
Abstract
In many aspects, the immune response against pathogens in insects is similar to the innate immunity in mammals. This has caused a strong interest in the scientific community for the use of this model in research of host⁻pathogen interactions. In recent years, the use of Galleria mellonella larvae, an insect belonging to the Lepidoptera order, has emerged as an excellent model to study the virulence of human pathogens. It is a model that offers many advantages; for example, it is easy to handle and establish in every laboratory, the larvae have a low cost, and they tolerate a wide range of temperatures, including human temperature 37 °C. The immune response of G. mellonella is innate and is divided into a cellular component (hemocytes) and humoral component (antimicrobial peptides, lytic enzymes, and peptides and melanin) that work together against different intruders. It has been shown that the immune response of this insect has a great specificity and has the ability to distinguish between different classes of microorganisms. In this review, we delve into the different components of the innate immune response of Galleria mellonella, and how these components manifest in the infection of fungal pathogens including Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, and Histoplasma capsulatum.
Collapse
|
46
|
Implications of the EUCAST Trailing Phenomenon in Candida tropicalis for the In Vivo Susceptibility in Invertebrate and Murine Models. Antimicrob Agents Chemother 2018; 62:AAC.01624-18. [PMID: 30224538 DOI: 10.1128/aac.01624-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022] Open
Abstract
Candida tropicalis isolates often display reduced but persistent growth (trailing) over a broad fluconazole concentration range during EUCAST susceptibility testing. Whereas weak trailing (<25% of the positive growth control) is common and found not to impair fluconazole efficacy, we investigated if more pronounced trailing impacted treatment efficacy. Fluconazole efficacy against two weakly (≤25% growth), two moderately (26% to 50% growth), and one heavily (>70% growth) trailing resistant isolate and one resistant (100% growth) isolate were investigated in vitro and in vivo (in a Galleria mellonella survival model and two nonlethal murine models). CDR1 expression levels and ERG11 sequences were characterized. The survival in fluconazole-treated G. mellonella was inversely correlated with the degree of trailing (71% to 9% survival in treatment groups). In mice, resistant and heavily trailing isolates responded poorly to fluconazole treatment. CDR1 expression was significantly higher in trailing and resistant isolates than in wild-type isolates (1.4-fold to 10-fold higher). All isolates exhibited ERG11 wild-type alleles. Heavily trailing isolates were less responsive to fluconazole in all in vivo models, indicating an impact on fluconazole efficacy. CDR1 upregulation may have contributed to the observed differences. Moderately trailing isolates responded less well to fluconazole in larvae only. This confirms clinical data suggesting fluconazole is effective against infections with such isolates in less severely ill patients and supports the current 50% growth endpoint for susceptibility testing. However, it is still unclear if the gradual loss of efficacy observed for moderately trailing isolates in the larva model may be a reason for concern in selected vulnerable patient populations.
Collapse
|
47
|
Zhang M, Yang X, Wang D, Yu C, Sun S. Antifungal activity of immunosuppressants used alone or in combination with fluconazole. J Appl Microbiol 2018; 126:1304-1317. [PMID: 30307675 DOI: 10.1111/jam.14126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/07/2018] [Accepted: 09/29/2018] [Indexed: 01/26/2023]
Abstract
Fungal infections remain a challenge to clinicians due to the limited available antifungals. With the increasing use of antifungals in clinical practice, drug resistance has been emerging continuously, especially to fluconazole (FLC). Thus, a search for new antifungals and approaches to overcome antifungal resistance is needed. However, the development of new antifungals is usually costly and time consuming; discovering the antifungal activity of non-antifungal agents is one way to address these problems. Interestingly, some researchers have demonstrated that several classes of immunosuppressants (calcineurin inhibitors, glucocorticoids, etc) also displayed potent antifungal activity when used alone or in combination with antifungals, especially with FLC. Some of them could increase FLC's susceptibility against resistant Candida albicans significantly reversing fungal resistance to FLC. This article reviews the antifungal activities of immunosuppressants used alone or in combination with antifungals and their potential antifungal mechanisms that have been discovered so far. Although immunosuppressive agents have been identified as risk factors for fungal infection, we believe these findings are very important for overcoming drug resistance and developing new antifungals.
Collapse
Affiliation(s)
- M Zhang
- School of Pharmaceutical Sciences, Taishan Medical University, Taian, Shandong Province, China
| | - X Yang
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - D Wang
- School of Pharmaceutical Sciences, Taishan Medical University, Taian, Shandong Province, China
| | - C Yu
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - S Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
48
|
Beekman CN, Meckler L, Kim E, Bennett RJ. Galleria mellonella as an insect model for P. destructans, the cause of White-nose Syndrome in bats. PLoS One 2018; 13:e0201915. [PMID: 30183704 PMCID: PMC6124720 DOI: 10.1371/journal.pone.0201915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Pseudogymnoascus destructans is the fungal pathogen responsible for White-nose Syndrome (WNS), a disease that has killed millions of bats in North America over the last decade. A major obstacle to research on P. destructans has been the lack of a tractable infection model for monitoring virulence. Here, we establish a high-throughput model of infection using larvae of Galleria mellonella, an invertebrate used to study host-pathogen interactions for a wide range of microbial species. We demonstrate that P. destructans can kill G. mellonella larvae in an inoculum-dependent manner when infected larvae are housed at 13°C or 18°C. Larval killing is an active process, as heat-killed P. destructans spores caused significantly decreased levels of larval death compared to live spores. We also show that fungal spores that were germinated prior to inoculation were able to kill larvae 3–4 times faster than non-germinated spores. Lastly, we identified chemical inhibitors of P. destructans and used G. mellonella to evaluate these inhibitors for their ability to reduce virulence. We demonstrate that amphotericin B can effectively block larval killing by P. destructans and thereby establish that this infection model can be used to screen biocontrol agents against this fungal pathogen.
Collapse
Affiliation(s)
- Chapman N. Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Lauren Meckler
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Eleanor Kim
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
- * E-mail:
| |
Collapse
|
49
|
Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nat Commun 2018; 9:2470. [PMID: 29941885 PMCID: PMC6018213 DOI: 10.1038/s41467-018-04926-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/05/2018] [Indexed: 11/23/2022] Open
Abstract
Tolerance to antifungal drug concentrations above the minimal inhibitory concentration (MIC) is rarely quantified, and current clinical recommendations suggest it should be ignored. Here, we quantify antifungal tolerance in Candida albicans isolates as the fraction of growth above the MIC, and find that it is distinct from susceptibility/resistance. Instead, tolerance is due to the slow growth of subpopulations of cells that overcome drug stress more efficiently than the rest of the population, and correlates inversely with intracellular drug accumulation. Many adjuvant drugs used in combination with fluconazole, a widely used fungistatic drug, reduce tolerance without affecting resistance. Accordingly, in an invertebrate infection model, adjuvant combination therapy is more effective than fluconazole in treating infections with highly tolerant isolates and does not affect infections with low tolerance isolates. Furthermore, isolates recovered from immunocompetent patients with persistent candidemia display higher tolerance than isolates readily cleared by fluconazole. Thus, tolerance correlates with, and may help predict, patient responses to fluconazole therapy. The authors show that antifungal tolerance, defined as the fraction of growth of a fungal pathogen above the minimal inhibitory concentration, is due to the slow growth of subpopulations of cells that overcome drug stress, and that high tolerance is often associated with persistent infections.
Collapse
|
50
|
Huang X, Liu Y, Xi L, Zeng K, Mylonakis E. Galleria mellonella as a model invertebrate host for the study of muriform cells of dematiaceous fungi. Future Microbiol 2018; 13:1021-1028. [PMID: 29927339 DOI: 10.2217/fmb-2018-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To study the pathogenesis of chromoblastomycosis using the alternative model host Galleria mellonella. METHODOLOGY We analyzed the virulence of different dematiaceous fungal strains and the host immune responses (hemocytes density and morphological changes) to Fonsecaea monophora by the alternative infection model. Then detected the development of the pathogenic muriform cells within larvae under microscope. RESULTS Increasing inocula resulted in greater larval mortality and Cladophialophora carrionii was the most virulent. Low inocula activated the humoral immune response significantly. Moreover, the conidia underwent morphological transition to muriform cells within larvae. CONCLUSION We developed an invertebrate host model that can be used to evaluate the virulence of dematiaceous fungi, which may provide further insights into overcoming current limitations in studying chromoblastomycosis in vivo.
Collapse
Affiliation(s)
- Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Yinghui Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.,Department of dermatology, Guangdong Provincial Dermatology Hospital, Guangzhou, PR China
| | - Liyan Xi
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.,Department of dermatology, Guangdong Provincial Dermatology Hospital, Guangzhou, PR China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| |
Collapse
|